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Supplementary Note 1. Homogenization and classification of the 

designed metamaterials  

A. Numerical-based homogenization method via the Cauchy-Born hypothesis 

The homogenization theory [1-3] establishes the relationship between the 

microstructures and the macroscopic properties of the metamaterial by assuming that 

there is an equivalent continuous medium which exhibits the same macroscopic 

behavior as the metamaterial. Due to the complexity of the microstructures in the 

proposed metamaterial, a numerical-based homogenization method is developed with 

the help of commercial finite element (FE) method software to calculate the effective 

elasticity tensors of the metamaterials.  

First, the area of a unit cell in 2D metamaterial can be defined as 𝑆 = |(𝒂1 × 𝒂2)|, 

where 𝒂1  and 𝒂2  are the two translation vectors of the unit cell. For the 3D 

metamaterial, the volume of a unit cell is defined as 𝑉 = |𝒂3 ∙ (𝒂1 × 𝒂2)|, where 𝒂𝑖 

(𝑖 = 1,2,3) represents the translation vector. Periodic boundary conditions (PBCs) are 

imposed on the unit cell’s boundary with the Cauchy-Born hypothesis being considered. 

Therefore, the microscopic displacement deformations at boundary can be expressed as 

a function of a macroscopic strain field 𝐄 [2,4] 

 𝐮(𝐗𝐛 + 𝐚) = 𝐮(𝐗𝐛) + 𝐄 ∙ 𝐚 (1) 

where 𝐮(𝐗𝐛) is the displacement at a node point 𝐗𝐛 located on the boundary of the 

meshed unit cell, and 𝒂 represents the translation vector between two nearby unit cells. 

It is worth noting that these constraints automatically guarantee traction continuity on 

the unit cell’s boundary. Next, the strain energy of the metamaterial unit cell 𝑈0 and 

that of an effective medium with the same area/volume 𝑈𝑒𝑓𝑓 can be calculated directly 

with the help of a commercial FE software. Finally, following the assumption of 

homogenization stating that the strain energy obtained from a metamaterial’s unit cell 

is equal to that obtained from an effective medium, namely 

 𝑈0 = 𝑈𝑒𝑓𝑓 =
𝑉

2
𝐄: 𝐂𝑒𝑓𝑓: 𝐄 (2) 

the components of the effective elasticity tensor 𝐂𝑒𝑓𝑓 can be determined [5].  
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By recognizing the symmetry of the elasticity tensor, 6 (or 21) independent 

components for the 2D (or 3D) case are unknown, and we need to specify at least 6 (or 

21) different types of macroscopic strain fields to determine the effective elasticity 

tensor of a 2D (or 3D) metamaterial. Specifically, we specify 6 types of macroscopic 

strain fields as two uniaxial, one biaxial, one shear, and two combinations of uniaxial 

and shear strains for the 2D case, while we choose 21 types of macroscopic strain fields 

as three uniaxial, three shears, three biaxial, nine combinations of uniaxial and shear, 

and three combinations of shear strains [5].  

B. Classification of the extremal metamaterials 

It is well known that general Hooke's law states the linear relationship between stress 

and strain, as 𝝈 = 𝐂: 𝜺, where 𝐂 represents the fourth-order elasticity tensor which 

can be represented as a stiffness matrix c, a positive definite symmetric 𝑛 × 𝑛 matrix 

(𝑛 = 3  for 2D elasticity and 𝑛 = 6  for 3D elasticity). When elastic symmetry is 

considered [6], general Hooke’s law can then be rewritten as 

 �⃗⃗� = 𝐜�⃗�  (3) 

where the stress �⃗⃗�  and strain �⃗�  are n-element column matrixes. Mathematically, the 

stiffness matrix c has 𝑛  real eigenvalues 𝜆(𝑝)  with their corresponding mutually 

orthogonal eigenvectors, 𝐒 (𝑝). One can have 

 𝜆(𝑝)𝐒 (𝑝) = 𝐜𝐒 (𝑝) (4) 

where (𝐒 (𝑝))𝑇𝐒 (𝑞) = 𝛿𝑝𝑞 , 𝑝, 𝑞 = 1,2, … , 𝑛 . 𝛿𝑝𝑞  is the Kronecker delta. Comparing 

Eq. (3) with Eq. (4), the eigenvalues and eigenvectors of the stiffness matrix are 

related to the principal stiffnesses and strains, respectively.  

Interestingly, if an eigenvalue 𝜆(𝑝)  goes to zero, the corresponding principal 

stiffness of the material also turns into zero, and therefore, no stress is generated when 

deformation is applied along the principal direction. As a result, a zero mode can be 

identified for the material. By counting the number of zero eigenvalues, the number of 

existing zero modes can be found accordingly and we can categorize all elastic 
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materials into four types of extremal metamaterials from null-mode to tri-mode for 2D 

cases or seven types of extremal metamaterials from null-mode to hexa-mode for 3D 

cases [7]. 

Supplementary Note 2. Homogenization analysis of 2D metamaterials. 

Here, a representative unit cell for 2D tessellations is shown in Supplementary Fig. 

1. For each unit cell, the side length and the minimal angle of the rhombus are 𝐿0 = 5 

mm and 𝜃0 = 𝜋 12⁄ , respectively, and the radius at the hinge is 𝑟0 = 0.5 mm. Two 

angles denoted by 𝜃𝑥 and 𝜃𝑦 are defined to distinguish different configurations. Here, 

𝜃𝑥 = 0, 𝜃𝑦 = 𝜋 3⁄  corresponds to the CF configuration, 𝜃𝑥 = 𝜃𝑦 = 0 corresponds to 

the CE configuration, 𝜃𝑥 = 0, 𝜃𝑦 = 𝜋 4⁄  (or 𝜃𝑥 = 𝜋 4⁄ , 𝜃𝑦 = 0) corresponds to the 

PF-y (or PF-x) configuration, and 𝜃𝑥 = 𝜃𝑦 = 𝜋 8⁄  corresponds to the PF configuration 

in both directions. 

 

Supplementary Fig. 1 The schematic unit cell for 2D tessellations. 

With the aforementioned numerical-based homogenization method, we can calculate 

the effective elasticity tensors of all four types of 2D metamaterials shown in Fig. 1a in 

the main text, and they are rewritten as the form of the stiffness matrix 𝐜𝑒𝑓𝑓. Due to 

the more practical weakened connections are applied to replace the ideal revolute joints, 

the corresponding eigenvalues of the effective stiffness matrix may not accurately be 

zero. With the eigenvalues less than 1.0e-3 being recognized as the ones corresponding 
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to the zero modes, the classification for the four 2D metamaterial unit cells are shown 

in Supplementary Table 1. 

For the first configuration, three eigenvalues of the effective stiffness matrix are 

larger than 1.0e-3 and therefore, no zero mode can be found, which indicates that it is 

a null-mode metamaterial. For the second configuration, only one eigenvalue (7.0e-5) 

is smaller than 1.0e-3 and therefore, a uni-mode metamaterial is identified with the only 

zero mode being shear deformation. For the third configuration, only one eigenvalue 

(1.4e-1) is larger than 1.0e-3 and therefore, a bi-mode metamaterial is identified with 

the shear deformation and the uniaxial deformation along the y-direction being related 

to the two zero modes, respectively. Moreover, this type of bi-mode metamaterial is 

different from the previously reported bi-mode metamaterial which only supports 

hydrostatic pressure. For the last configuration, all three eigenvalues are smaller larger 

than 1.0e-3 and therefore, a tri-mode metamaterial is identified. 

Supplementary Table 1 The normalized effective stiffness matrix, the calculated eigenvalues, 

the corresponding zero mode and the classification of each 2D metamaterial. All eigenvalues 

are normalized by the young’s modulus of the constituent E0. 

Supplementary Note 3. Kinematic property of the 3D metamaterial 

unit. 

Unit cell 0/eff Ec  Eigenvalues  Zero mode Classification 
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As shown in Supplementary Fig. 2a, the 3D unit cell consists of eight cubes and 

twelve rhomboids. From a mechanism design perspective, one can take the cubes and 

rhomboids as links, and take the rotation connections between the cube and rhomboid 

as revolute joints. Hence, the mechanical model of such unit cell in Supplementary Fig. 

2b consists of 8 corner links, 12 edge links and 24 revolute joints. In details, joints B1a, 

B1b, B2a, B2b marked by orange color along the z-axis form the 4-bar linkage in x-y 

plane on the top side of the unit. The other 4-bar linkage in x-y plane is formed with 

joints D1a, D1b, D2a, D2b on the bottom side of the unit. Similarly, joints A1a, A1b, C1a, 

C1b and joints A2a, A2b, C2a, C2b, marked by blue color, form two 4-bar linkages in x-

z plane, while joints E1a, E1b, E2a, E2b and joints F1a, F1b, F2a, F2b, marked by red 

color, form two 4-bar linkages in y-z plane.  

 

Supplementary Fig. 2 The unit cell and its mechanism schematic. a. The prototype of the 3D 

unit cell with 8 cubes and 12 rhomboids. b. The mechanical model of the 3D unit cell with 8 corner 

links, 12 edge links and 24 revolute joints. 

The planar 4-bar linkage is one of the simplest linkages with four links and four 

revolute joints to form a closed loop. Once one of four links is fixed to the ground, the 

linkage becomes one-degree-of-freedom (1-DoF) system, i.e., the rotation of any one 

revolute joint will decide the rotations of the rest three joints kinematically. As a result, 

the configuration of the linkage is known. For our unit cell, the two linkages in the same 

directional set always have the simultaneous motion as their four respective joints are 

collinear, i.e., A1a and A2a are collinear, etc., so these two linkages form a 1-DoF 

system. There are three such systems along three coordinate axes, respectively. Their 
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motions are independent in each direction and therefore, a unit with decoupled motions 

of six 4-bar linkages in three orthogonal directions can be obtained subsequently. Hence, 

the unit has three degrees of freedom. 

Since the unit cell is a 3-DoF system, the workspace of the unit cell is distributed in 

the entire three-dimensional space, and the boundary of the workspace is defined by the 

maximum rotation angle of the rhomboids in a single direction, which can be tuned by 

changing the angle of the rhomboids accordingly. Taking the linkage A2a -A2b-C2a-C2b 

as an example, we can find that when the small angle of the rhombus is /2, x can 

rotate in the range of 0 to /2. At 0 or /2, the 4-bar linkage reaches the limiting position 

while at /4, the rhombus stays in the middle position, which makes the unit in a cube 

profile. Hence, we only consider the half motion range with x ∈ (0, /4), as the two 

halves are symmetry about the middle position. The same rule applied to y and z and 

therefore, the working space of this 3-DoF unit cell can be described as a cubic space 

with a side length of /4, as shown in Supplementary Fig. 3. By controlling the rotation 

angle of the rhomboids in different directions, the structure can be moved to any point 

in the workspace, and the movement path is also diverse. Three motion paths starting 

from the origin are chosen to show the structural transformation capabilities, including 

curved paths along the coordinate axis, along the diagonal of the cube surface, and 

across the workspace. Under the first path, by setting y = z = 0, while changing x 

from 0 to /8 and then to /4, the unit traverses any point on the x coordinate axis. In 

the second path, by setting y = 0, while changing x and z in equal proportions, the 

unit moves diagonally from the origin to another vertex on the x-z plane. Under the 

third path, the unit cell passes through the coordinate origin (0, 0, 0), coordinate point 

(/12, /8, /8), and coordinate point (/4, /4, /8) successively.  
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Supplementary Fig. 3 Workspace representation and three possible motion paths. 

Supplementary Note 4. Static experiments on 3D reconfigurable 

metamaterials. 

The experimental samples of the metamaterial are manufactured using a 3D printer 

(Raise 3D Pro2). For the printing process of metamaterial with complex geometry, we 

choose thermoplastic polyurethanes (TPU) as the modelling material and water-soluble 

PVA as the supporting material (holds all overhanging parts and can be removed later). 

In order to reduce the anisotropy of the printed sample, the effect of the printing 

direction is considered and the 4×4×4 sample (in its initial all-CF configuration) is 

printed along its body-diagonal direction, as shown in Supplementary Fig. 4. 

 

Supplementary Fig. 4 The 3D printing setup for the 4×4×4 sample in all-CF configuration to 

be printed along its body-diagonal direction. 

With the help of the numerical-based homogenization method, three configurations 

of the sample are investigated and are predicted to be tri-mode, tri-mode’ (an alternative 

tri-mode configuration) and penta-mode, as shown in Supplementary Fig. 5. 
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Supplementary Fig. 5 The normalized effective stiffness matrix, the calculated eigenvalues, 

the corresponding zero mode for selected three configurations of the sample. All eigenvalues are 

normalized by the young’s modulus of the constituent E0.  

A three-step reconfiguration path is chosen from tri-mode to penta-mode, then to tri-

mode’ (3’ in Fig. 3), and return to penta-mode. Nylon fixtures A and B are fabricated 

by 3D printing (Selective Laser Sintering) and are used for reconfiguring the sample 

into penta-mode and tri-mode’ configurations as displayed in Supplementary Fig. 6a 

and 6b, respectively.  

 

Supplementary Fig. 6 Photograph of fixtures used to reconfigure the sample. a. Fixture A for 

the penta-mode configuration. b. Fixture B for the tri-mode’ configuration. 
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To study the mechanical properties of the sample, the compression and shear tests 

are conducted on INSTRON 5982 High Force Universal Testing Machine. A 

photograph of the experiment setup is shown in Supplementary Fig. 7.  

 

Supplementary Fig. 7 Experiment setup for the compression and shear tests. a. Photograph of 

the INSTRON testing platform. b. The setup of base and rail used for compression and shear tests.  

First, compression tests are conducted to obtain the force-displacement curves along 

the three orthogonal directions. Considering the small deformation, the Young's moduli 

along the three directions can be calculated from the force-displacement curves as, 

 𝐸𝛼 =
𝜎𝛼

𝜀𝛼
=

𝐹𝛼/𝐴𝛼

𝑢𝛼/𝐿𝛼
  (5) 

where 𝛼 = 𝑥, 𝑦, 𝑧, 𝜎𝛼 and 𝜀𝛼 represent the compressive stress and axial strain, 𝑢𝛼 

and 𝐹𝛼 represent the applied displacement and measured force, respectively. 𝐿𝛼 and 

𝐴𝛼 are the width and the cross-section area of the sample, respectively. Second, shear 

tests are conducted and the sample is rotated 90 degrees with one end being fixed on 

the base while the other end being connected to the loading unit, as shown in 
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Supplementary Fig. 7. To ensure pure shear deformation, a section of rail is designed 

and installed between the loading unit and the end of the sample to minimize unwanted 

bending moment. Hence, the relationship between the shear force and the 

corresponding displacement can be obtained and therefore, the shear moduli can be 

derived from [8] 

 𝐺𝛼 =
𝜏𝛼𝛽

𝛾𝛼𝛽
=

𝐹𝛼𝛽/𝐴𝑎

𝑢𝛽/𝐿𝛼
 (6) 

Where 𝜏𝛼𝛽  and 𝛾𝛼𝛽  represent the shear stress and strain, 𝐹𝛼𝛽  represents the 

measured shear force, and 𝑢𝛽 represents the corresponding displacement. The initial 

parts of force-displacement curves with the displacements from 0 to 0.2mm are selected 

to calculate the Young’s moduli and shear moduli. Moduli obtained from the 

experimental results are shown in Supplementary Table 2.  

 Ex/kPa Ey/kPa Ez/kPa Gx/kPa Gy/kPa Gz/kPa 

Tri-mode 4.7e2 5.4e2 5.4e2 5.7 6.6 6.3 

Penta-mode 1.7e1 1.4e1 5.7e2 8.3 7.1 8.0 

Tri-mode’ 3.4e2 1.4e1 7.3e2 1.5e2 8.8 1.7e1 

Penta-mode 1.1e1 1.0e1 4.6e2 6.6 6.5 7.6 

Supplementary Table 2 Moduli of sample in different configurations. 

Additionally, both x-directional compression and tension tests are conducted for the 

sample in the tri-mode’ configuration, as shown in Supplementary Fig. 8a. In this case, 

the sample is in the CF configuration along the x direction, where the cubes and 

rhomboids are bonded with adhesives which can be dissolved with degummant when 

necessary. As shown in the figure, under the two loading methods, the obtained force-

displacement curves are relatively consistent and linear, and only small difference can 

be found. 

To further evaluate the reversibility of the TPU material under thermal treatment, 

tensile tests have been conducted on a dog-bone specimen made with TPU, which was 

repeatedly thermally treated for four rounds. After each round of treatment, which is 

the same thermal treatment as that given to the 3D tessellation sample, a tensile test was 
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performed and the results of the initially printed specimen and the specimen after four 

rounds of thermal treatments are shown in Supplementary Fig. 8b. It can be found that 

the obtained material modulus was softened in the first two rounds, but stabilized 

afterwards, which indicates that the TPU material is suitable for reversible thermal 

treatment. 

 

Supplementary Fig. 8 a. The x-direction compression and tension test results for the sample in the 

tri-mode’ configuration. b. Tensile test results of a dog-bone specimen at initial printed state and 

after four thermal treatment rounds for 2.5 hours at 130°C. Error bars represent standard deviation. 

Supplementary Note 5. Homogenization analysis of 3D metamaterials. 

We study the ten types of 3D metamaterials shown in Fig. 3c in the main text via the 

homogenization method. Noted that weaken connections are also considered instead of 

ideal revolute joints, so the corresponding eigenvalues of the effective stiffness matrix 

are not accurately zero. With the eigenvalues less than 1.0e-3 being recognized as the 

ones corresponding to the zero modes, the normalized effective stiffness matrix, the 

calculated eigenvalues, the corresponding zero mode and the classification of each 3D 

metamaterial are shown in Supplementary Fig. 9.  

For the first configuration, i = 0 (i = x, y, z), all eigenvalues of the effective stiffness 

matrix are larger than 1.0e-3 and therefore, no zero mode can be found, which indicates 

that it is a null-mode metamaterial. For the second configuration, z = /4 while x = y 

= 0, only one eigenvalue is smaller than 1.0e-3 and therefore, a uni-mode metamaterial 

is identified with the only zero mode being shear deformation in y-z plane. For the third 
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configuration, z = y = /4 while x = 0, two eigenvalues are smaller than 1.0e-3 and 

therefore, a bi-mode metamaterial is identified with the two zero modes being the two 

shear deformations in y-z and x-y planes. For the fourth configuration, x = y = 0 while 

z = /8, two eigenvalues are smaller than 1.0e-3 and therefore, an alternative bi-mode 

(bi-mode’) metamaterial is identified with the two zero modes being the axial 

deformation along the z direction and the shear deformation in y-z plane. For the fifth 

configuration, i = /4 (i = x, y, z), three eigenvalues are smaller than 1.0e-3 and 

therefore, a tri-mode metamaterial is identified with the three zero modes being the 

shear deformations in x-y, y-z and x-z planes. For the sixth configuration, x = 0, y = 

/8 and z = /4, three eigenvalues are smaller than 1.0e-3 and therefore, an alternative 

tri-mode (tri-mode’) metamaterial is identified with three zero modes being the axial 

deformation along the z direction and the two shear deformations in y-z and x-y planes. 

For the seventh configuration, x = /8 while y = z = /4, four eigenvalues are smaller 

than 1.0e-3 and therefore, a quadra-mode metamaterial is identified with four zero 

modes being the three shear deformations and the axial deformation along the x 

direction. For the eighth configuration, x = 0 while y = z = /8, four eigenvalues are 

smaller than 1.0e-3 and therefore, an alternative quadra-mode (quadra-mode’) 

metamaterial is identified with four zero modes being the two shear deformations in x-

y and y-z planes and the two axial deformations along the y and z directions. For the 

ninth configuration, x = y = /8 while z = /4, five eigenvalues are smaller than 1.0e-

3 and therefore, a penta-mode metamaterial is identified with five zero modes being the 

three shear deformations and the two axial deformations along the x and y directions. 

For the last configuration, i = /8 (i = x, y, z), all eigenvalues are smaller than 1.0e-3 

and therefore, a hexa-mode metamaterial is identified with all axial and shear 

deformations being zero modes. It is the 3D version of the 2D tri-mode metamaterial. 
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Supplementary Fig. 9 The normalized effective stiffness matrix, the calculated eigenvalues, 

the corresponding zero mode and the classification of each 3D metamaterial. All eigenvalues 

are normalized by the young’s modulus of the constituent E0. 
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Supplementary Note 6. Effective compressive and shear moduli of the 

ten configurations 

We first transform the printed tessellation sample from the penta-mode configuration 

to the hexa-mode configuration with the fixture C. Sequentially, quadra-mode, tri-mode, 

bi-mode, uni-mode, null-mode, bi-mode’, and quadra-mode’ configurations can be 

obtained with eight fixtures D, E, F, G, H, I and J, respectively. These eight fixtures and 

their corresponding transformed configurations are shown in Supplementary Fig. 10. 

Specifically, the penta-mode and tri-mode’ configurations are obtained with fixtures A 

and B, as shown in Supplementary Fig. 6. 

We also conduct compression and shear tests for each configuration and all ten 

tessellations’ compressive and shear moduli are experimentally obtained. On the other 

hand, we can calculate the effective compressive (or tensile) moduli 𝐸𝑖  and shear 

moduli 𝐺𝑖 (𝑖 = 𝑥, 𝑦, 𝑧) of each metamaterial configuration along the three orthogonal 

directions based on the compliance matrix 𝐬𝑒𝑓𝑓, which has the following relation [1]  

 𝐬𝑒𝑓𝑓 = (𝐜𝑒𝑓𝑓)−1 =

[
 
 
 
 
 
 
1/𝐸𝑥 −𝜈𝑦𝑥/𝐸𝑦 −𝜈𝑧𝑥/𝐸𝑧 0 0 0

1/𝐸𝑦 −𝜈𝑧𝑦/𝐸𝑧 0 0 0

1/𝐸𝑧 0 0 0

1/𝐺𝑦 0 0

𝑠𝑦𝑚. 1/𝐺𝑧 0

1/𝐺𝑥]
 
 
 
 
 
 

  (7) 

where 𝐜𝑒𝑓𝑓 is the effective stiffness matrix obtained with the homogenization method. 

Finally, the experimentally obtained moduli and numerically calculated moduli are 

normalized with the measured and calculated shear moduli of the tri-mode metamaterial, 

respectively.  
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Supplementary Fig. 10 Photograph of fixtures used to reconfigure the sample. a. Fixture C for 

the hexa-mode configuration. b. Fixture D for the quadra-mode configuration. c. Fixture E for the 

tri-mode configuration. d. Fixture F for the bi-mode configuration. e. Fixture G for the uni-mode 

configuration. f. Fixture H for the null-mode configuration. g. Fixture I the for bi-mode’ 

configuration. h. Fixture J for the quadra-mode’ configuration. 
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Supplementary Note 7. Effects of different geometrical parameters 

In this part, we first investigate the effects of folding angles on the normalized 

effective moduli along three orthogonal directions to validate the decoupled orthogonal 

mechanism design. In Supplementary Fig. 11, one can found that the elastic modulus 

changes only when the folding angle along the same direction changes, which validates 

the decoupled design. 

 
Supplementary Fig. 11 The effects of three folding angles (𝜽𝒊, 𝒊 = 𝒙, 𝒚, 𝒛) on three normalized 

effective compression moduli. a Ex. b Ey. c Ez. 𝜃⊥ is defined as the maximum value of the folding 

angle. The thickness of the hinge ℎ0 = 1 mm and the length of the rhombus 𝐿0 = 10 mm. all 

moduli are normalized by the minimal one. 

Second, we conduct calculations of Force-Displacement curves based on the FE 

model. Different geometrical properties, including the folding angle 𝜃𝑧  (𝜃𝑥  and 𝜃𝑦 

have the same effect due to the decoupled orthogonal design), the length of diamond 

bars 𝐿0 , and the thickness of the hinge ℎ0 , are chosen. The results are shown in 

Supplementary Fig. 12. It can be found that changing the folding angle can result in 

qualitative transformation of the metamaterial, while changing the other two 

geometrical properties can only affect the elastic moduli quantitatively. To be specific, 

when 𝜃𝑧/𝜃⊥ = 1, the metamaterial is in CE configurations along the three orthogonal 

directions and therefore, it is a tri-mode with three shear zero modes. When 𝜃𝑧/𝜃⊥ 

decreases (𝜃𝑧/𝜃⊥ ≠ 0), the metamaterial is in PF configuration along z direction and 

therefore, the metamaterial’s compressive deformation along the z direction becomes a 
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zero mode. When 𝜃𝑧/𝜃⊥ = 0, the metamaterial is in CF configuration along z direction 

and therefore, two zero modes (the compressive deformation along the z direction and 

the shear deformation in the z-y plane) disappear, as shown in Supplementary Fig. 12a. 

When we change the length of diamond bars 𝐿0 and the thickness of the hinge ℎ0 

(𝜃𝑧/𝜃⊥ = 𝜃𝑥/𝜃⊥ = 𝜃𝑦/𝜃⊥ = 1 being fixed), the tri-mode state (with only three shear 

zero modes) stays unchanged, as shown in Supplementary Fig. 12b and 12c, 

respectively. It can be concluded that the number of zero mode depends majorly on the 

folding angle, while both the thickness of the hinge ℎ0 and the length of the rhombus 

𝐿0 have little effect on the zero mode. 

 

Supplementary Fig. 12 Predicted Force-Displacement curves of metamaterials with different 

geometrical parameters using a FE approach. a The effect of the folding angle 𝜃𝑧 on the Force-

Displacement curves, where 𝜃𝑥/𝜃⊥ = 𝜃𝑦/𝜃⊥ = 1, 𝐿0 = 10 mm, ℎ0 = 1 mm. b The effect of the 

thickness of the hinge ℎ0 on the Force-Displacement curves, where 𝜃𝑥/𝜃⊥ = 𝜃𝑦/𝜃⊥ = 𝜃𝑧/𝜃⊥ =

1, 𝐿0 = 10 mm. c The effect of the length of the rhombus 𝐿0 on the Force-Displacement curves, 

where 𝜃𝑥/𝜃⊥ = 𝜃𝑦/𝜃⊥ = 𝜃𝑧/𝜃⊥ = 𝜃⊥, ℎ = 1 mm. 

Supplementary Note 8. Dynamic experiments on the transformable 

metamaterial 

To illustrate the unconventional dynamic properties of the transformable 

metamaterial, we conduct an experiment for 1D polarized elastic wave manipulation 

with the fabricated transformable metamaterial sample. A 6×6 sample is fabricated for 
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the dynamic experiment. The sample is made of TPU (𝐸TPU = 48.9 MPa, 𝜐TPU = 0.4, 

𝜌TPU = 1200 kg m-3) and is in CE configuration with in-plane translational lattice 

constant being 29 mm (corresponding to 𝜆L 24⁄ , where 𝜆L represents the wavelength 

of longitudinal (L) wave in the metamaterial at 80 Hz) and with out-of-plane thickness 

being 5 mm. Considering the 3D printing accuracy, the smallest size for the compliant 

joints is 0.6 mm.  

The experimental setup is shown in Supplementary Fig. 13. One end of the sample 

is fixed on a metal fixture, while the other ends are free. The metal fixture is constrained 

on a slide track so that it can only move along one direction. A harmonic wave (80 Hz) 

signal is generated by the scanning laser Doppler vibrometer (LDV) (Polytec PSV-500) 

and amplified with a wideband power amplifier (Krohn-Hite 7602M), which then 

drives a shaker (LDS V201). The harmonic wave excitation from the shaker is 

transformed to the left end of the sample via a stinger connected to the metal fixture. L 

or transverse (T) wave incidence can be generated by switching the connections 

between the stinger and the metal fixture. With the x-y coordinate being fixed to the 

sample, the excited L or T wave propagates along the x direction in the sample. The in-

plane displacements (Ux and Uy) on the other end of the sample are measured via the 

LDV. All results are obtained by averaging five measurements and are normalized by 

the corresponding displacements of the metal fixture. 

Numerical harmonic wave simulations with the FE model (with exact geometry) of 

the sample are also conducted. First, same boundary conditions as in the experiment are 

applied to the FE sample. Next, two displacement probes are defined on the left and 

right sides (same positions as the experiment) to obtain the displacement amplitudes. 

Finally, normalized displacements (the ratios of displacement amplitudes on the right 

side to that on the left side) are obtained and compared with those obtained from the 

experimental measurements, as shown in the second column of Fig. 4a in the main text. 
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Supplementary Fig. 13 Dynamic experiment setup for L (a) and T (b) wave incidences. 

Furthermore, we conduct same numerical harmonic wave simulations with 

homogenized effective metamaterial models. Since the effective uni-mode 

metamaterial has a negligible shear modulus but a substantial effective longitudinal 

modulus, so the incident L wave is totally transmitted (Ux = 1 and Uy = 0), while the 

incident T wave are completed blocked (Ux = 0 and Uy = 0). For effective bi-mode and 

null-mode metamaterials, numerical harmonic wave simulations are conducted 

accordingly. Experimental measurement results and numerical simulation results on FE 

models as well as on the homogenized effective metamaterial models are compared in 

bar chats (the third column of Fig. 4a in the main text). 

Finally, to illustrate transmitted wave patterns, numerical wave simulations are also 

conducted on the length-extended FE metamaterial sample (with exact geometry) as 

well as the equivalent effective metamaterial sample. Absorbing boundary is applied to 

the right end and PBCs are applied to the upper and bottom sides to eliminate any 

unwanted wave reflection and the harmonic L or T wave is excited on the left end, as 

shown in Supplementary Fig. 14. For the FE model, it consists of 84 unit cells, and each 

unit cell is discretized into about 1500 triangular elements. The wavelength of the 

incident L wave is 15 times larger than the size of a unit cell. The equivalent effective 

model has the same size and boundary conditions as the FE model, and the maximum 

mesh size is controlled to be one tenth of the wavelength. The simulation results are 

shown in the fourth column of Fig. 4a in the main text. 
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Supplementary Fig. 14 The length-extended models of the FE sample and the equivalent 

effective metamaterial sample for the uni-mode (CE). 

By using the similar reconfiguration process in the static experiments, we transform 

the sample’s CE configuration into the PF-x configuration (bi-mode) with the fixture K, 

then into the CF configuration (null-mode) with the fixture L, as shown in 

Supplementary Fig. 15. Both fixtures are fabricated via 3D printed nylon materials. 

Similar dynamics experiments are performed on the sample after each reconfiguration, 

and the results are compared with the numerical wave simulations on FE and effective 

models.  

  

Supplementary Fig. 15 Reconfiguration paths of the sample for dynamic experiments. 
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Since the metamaterial’s ability of polarized elastic wave manipulation is based on 

its reconfigurable effective elasticity, we demonstrate its frequency insensitivity by 

choosing different harmonic wave frequencies, as shown in Supplementary Fig. 16.  

  
Supplementary Fig. 16 Frequency insensitivity of polarized elastic wave manipulation via the 

transformable metamaterial sample. Measured (Exp.) results, simulated results with FE model 

and effective (Eff.) model, a-c at 90 Hz, d-f at 100 Hz.  

Supplementary Note 9. 2D and 3D wave analysis of transformable 

metamaterials 

Here, we provide detailed analysis on the wave behaviors of the 2D and 3D 

transformable metamaterials based on the FE models and the equivalent effective 

metamaterial models.  

For wave analysis in 2D metamaterials, the microstructures and the effective elastic 

stiffnesses of the uni-mode and bi-mode metamaterials shown in Supplementary Table 

1 are selected, and effective mass densities are shown in Supplementary Table 3. FE 

models used for the simulations consist of more than 2000 unit cells and have at least 

18 unit cells along the x or y direction. Absorbing layers are adopted on the right and 

upper ends of the FE models to avoid unnecessary reflected waves. A Gaussian beam 
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of the L wave with operating frequency 10 kHz is launched along 45º direction from 

the left-bottom end of the FE sample. Same Gaussian beam and absorbing layers are 

applied to the equivalent effective metamaterial models. Harmonic wave simulations 

on the FE models as well as the equivalent effective metamaterial models are performed 

with COMSOL Multiphysics. In the uni-mode metamaterial (with all CE 

configurations), same 90º wave-splitting results can be found in both FE and equivalent 

effective models, which confirms the accuracy of the equivalent effective model. In the 

bi-mode metamaterial (with the PF-y configuration), x-directional wave propagation 

can be observed in the wave simulation results of both models. However, another wave 

with much shorter wavelength propagating about 50 degrees away from the primary x-

directional wave can be found in the result of the FE model, but absence in the result of 

equivalent effective model. This discrepancy comes from the weakened (not ideal) 

linkage design in the FE model. 

 
2D 3D 

Uni-mode Bi-mode Tri-mode Penta-mode 

𝜌𝑒𝑓𝑓/𝜌0 2.7e-1 3.9e-1 2.5e-1 2.7e-1 

Supplementary Table 3 The normalized effective mass density. 𝜌0 represents the mass density 

of the constituent material. 

To better understand the unique wave direction manipulations in the 2D and 3D 

metamaterials, the wave propagation characteristics in the effective homogenous media 

are investigated. Plane harmonic elastic wave propagations are determined by the 

Christoffel equation [9]: 

 (𝐤 ∙ 𝐜𝑒𝑓𝑓 ∙ 𝐤 )𝑣 = 𝜌𝑒𝑓𝑓𝜔
2�⃗�  (8) 

where 𝐤  is the wave vector, �⃗�  is the wave polarization velocity vector, and 𝜔 is the 

angular frequency. Moreover, 𝜌𝑒𝑓𝑓 and 𝐜𝑒𝑓𝑓 represent the effective mass density and 

elastic tensor of a metamaterial, respectively. Therefore, an eigenvalue problem forms 

and its solution determines the dispersive nature of the metamaterial. By specifying a 

frequency, equi-frequency curves (EFCs) of uni-mode and bi-mode metamaterials can 
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be drawn by calculating components of wave vectors along all directions. 

EFCs of the uni-mode metamaterial are shown in Supplementary Fig. 17a. Red 

arrows normal to the EFCs indicate the wave energy propagation directions. First, when 

a wave propagates along the x or y direction, only one type of wave can be identified 

with its energy propagation direction being along the x or y direction. Second, when the 

propagation direction is away from the x or y direction, two types of waves can be 

identified with their energy propagation directions being always parallel with the x and 

y directions, respectively. Such strong anisotropic wave behavior in the uni-mode 

metamaterial explains the unique 90º wave-splitting results for the 45º L wave beam 

incidence in Fig. 4b in the main text.  

EFCs of the bi-mode metamaterial with PF-y configuration are shown in 

Supplementary Fig. 17b. First, no wave propagates along the y direction. Second, when 

the propagation direction is away from the y direction, only one wave can be identified 

with its energy propagation direction being always parallel with the x direction, which 

also explains the only x-directional wave propagation result in Fig. 4c in the main text.  

 

Supplementary Fig. 17 Equi-frequency curves (EFCs) of the 2D transformable metamaterial. 

a. The EFCs of the uni-mode metamaterial. b. The EFC of the bi-mode metamaterial. kx and ky 

represent two components of the wave vector, and k0 defined as k0 = 𝜔/√𝐸0/𝜌0, represents the 

wavenumber of the constituent material. 

For wave analysis in 3D metamaterial, equivalent effective models of tri-mode (3) 

and penta-mode (5) are investigated. Each model is obtained by cutting a corner of a 

cube along the orange triangle area normal to the body diagonal of the cube (as 

illustrated in Fig. 4d-e in the main text). L wave incidence with a Gaussian distribution 
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on the blue circle area is applied, and the operating frequency is 10 kHz. Absorbing 

layers are also applied to all three square ends to eliminate boundary reflections. Since 

the 3D tri-mode metamaterial is the 3D counterpart of the 2D uni-mode metamaterial, 

a three-wave-splitting phenomenon can be observed in Fig. 4d in the main text. On the 

other hand, the 3D penta-mode metamaterial (with CE-z, PF-x, and PF-y configuration) 

is the 3D counterpart of the 2D bi-mode metamaterial and therefore, the incident L wave 

only propagates along the z direction, as shown in Fig. 4e in the main text.  

 

Supplementary References 

[1] Nemat-Nasser, S., Hori M., Micromechanics: Overall Properties of Heterogeneous Materials 

(Elsevier, 2013). 

[2] Phani, A. Srikantha, Hussein, Mahmoud I. Dynamic of Lattice Materials (John Wiley & Sons, 

2017).  

[3] Liu, X. N., Hu, G. K., Huang, G. L., Sun, C. T. An elastic metamaterial with simultaneously 

negative mass density and bulk modulus. Appl. Phys. Lett. 98, 251907 (2011). 

[4] Hutchinson, R.G., Fleck, N.A. The structural performance of the periodic truss. J. Mech. 

Phys. Solids 54, 756–782 (2006). 

[5] Wang, K., Cai, M., Zhou, P. Z. Hu, G. K. Homogenization in a simpler way: analysis and 

optimization of periodic unit cells with Cauchy–Born hypothesis. Struct. Multidiscip. Optim. 

64, 3911-3935 (2021). 

[6] Auld, B. A., Acoustic fields and waves in solids. (John Wiley & Sons, 1973). 

[7] Milton, G. W., Cherkaev A. V., J. Eng. Mater. Technol., 117, 483 (1995). 

[8] Sun, C. T., Vaidya R. S., Compos. Sci. Technol., 56, 171 (1996). 

[9] Brillouin, L., Wave Propagation in Periodic Structures (Dover, New York, 1953). 


