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Supporting Information Text

1. Circular Kalman filtering

Here, we present a derivation of the circular Kalman filter (circKF), which we use as an ideal observer model in the main text.
The following derivation’s main purpose is to provide the reader with some intuition behind the formalism, such that it uses a
discrete-time approximation, followed by taking the continuous-time limit. For a mathematically-rigorous, continuous-time
derivation of the circKF, please consult (1).

A. Generative model. Assuming time to be discretized in steps of dt, the overall goal is to derive an online estimator for the
unobserved true head direction (HD) ϕt ∈ [−π, π] at each point in time t, conditioned on a continuous stream of noisy angular
velocity observations Vt = {v0, vdt, . . . vt} (in the main text denoted v0:t) with vτ ∈ R and HD observations Zt = {z0, zdt, . . . zt}
(in the main text denoted z0:t) with zτ ∈ [−π, π]. We assume that these observations are generated from the (true) angular
velocity ϕ̇t = ϕt−ϕt−dt

dt
and HD ϕt, respectively, and are corrupted by zero-mean noise at each point in time:

p(vt|ϕt, ϕt−dt) = N
(

vt;
ϕt − ϕt−dt

dt
,

1
κv dt

)
, [S1]

p(zt|ϕt) = VM (zt; ϕt, κz dt) , [S2]

where VM(φ; µ, κ) = eκ cos(φ−µ)

2πI0(κ) denotes the von Mises distribution of a circular random variable φ with mean µ and precision κ.
κv and κz refer to the precision of the angular velocity and HD observations, respectively. The precision κzdt of HD observations
scales with dt to ensure that smaller “time steps” come with less informative HD observations to avoid “oversampling” in the
dt→ 0 limit. More technically, we need to ensure that the Fisher information that each HD observation has about the HD
scales linearly with dt. As we show in (1, Theorem 2), this Fisher information is given by Izt (ϕt) =

√
2γzdt where γz is the HD

observation Fisher information rate per unit time. For small dt→ 0 we furthermore have γzdt→ (κzdt)2/2 (see (1)) such that
κz needs to be adjusted if the simulation time step size ∆t changes in order to keep γz constant. As our simulations all use the
same time step size, we safely ignore this subtlety for the remainder of this text.

We further assume that HD ϕt follows a diffusion on the circle, which serves as a dynamic prior over HD in terms of a
transition density:

p(ϕt|ϕt−dt) ∼ N
(

ϕt; ϕt−dt,
dt

κϕ

)
mod 2π, [S3]

Here, κϕ ≥ 0 is related to the inverse diffusion constant: a large κϕ implies limited diffusion and an almost-stationary stochastic
process. In this case, past observations are generally highly informative about the current HD. A small κϕ implies that HD
is most likely to change significantly from one time step to the next, indicating that past observations only provide limited
information about our current HD.

B. Discrete-time Bayesian filtering. Given the posterior p(ϕt−dt|Yt−dt, Zt−dt) at some previous time-step t− dt, we compute
the posterior at the current time step t using the conditional dependencies of the model and Bayes’ theorem:

p(ϕt|Vt, Zt) ∝ϕt p(zt|ϕt)p(ϕt|Vt, Zt−dt)

= p(zt|ϕt)
∫

dϕt−dt p(ϕt|ϕt−dt, vt)p(ϕt−dt|Zt−dt, Vt−dt).
[S4]

This equation offers a way to recursively compute the current posterior density from the previous one, by taking two distinct
steps: the so-called prediction and update step. The prediction step is a convolution between the previous posterior and the
transition density p(ϕt|ϕt−dt, vt), as implemented by the above integral. It tells us how the posterior is expected to evolve
in a single time step when only observing angular velocity information, but no HD observations, are present, resulting in
the prediction density p(ϕt|Vt, Zt−dt). Note that the angular velocity observations vt enter this step through the effective
transition probability p(ϕt|ϕt−dt, vt). In the update step, we multiply the result of the prediction step with the HD observation
likelihood p(zt|ϕt). Intuitively, this step can be understood as Bayesian cue integration between the prediction density and the
HD observations.

In general, we will not be able to solve Eq. [S4] in closed form∗ for continuous variables like HD. We thus have to introduce
approximations of p(ϕt|Vt, Zt) that allow us to consistently perform prediction and update steps. Specifically, as one of the
simplest choices for unimodal probability distributions for circular variables, we chose to approximate the posterior by a von
Mises distribution,

p(ϕt|Vt, Zt) ≈ VM(ϕt; µt, κt). [S5]

By using this approximation, the estimation task reduces to having to find evolution equations, conditioned on angular velocity
observations vt and HD observations zt, for the two parameters µt and κt, which are sufficient to fully specify the posterior
distribution. In what follows, we will consider the effect of angular velocity observations and HD observations on the two
parameters separately.

∗ In fact, a closed-form solution is almost never achievable for continuous state-spaces. One of the few cases where it is is when prediction and update steps are linear Gaussians, in which case Eq. [S4]
yields the Kalman filter.
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B.1. Angular velocity observations. In Eq. [S4], angular velocity observations enter through a modified transition density
p(ϕt|ϕt−dt, vt), which can be computed using Bayes’ theorem:

p(ϕt|vt, ϕt−dt) ∝ϕt p(vt|ϕt, ϕt−dt)p(ϕt|ϕt−dt). [S6]

The modified transition probability is again a Gaussian, as can be seen from its logarithm being quadratic in ϕt,

− log p(ϕt|vt, ϕt−dt) = κvdt

2

(
vt −

ϕt − ϕt−dt

dt

)2
+ κϕ

2dt
(ϕt − ϕt−dt)2 +R

= 1
2

κv + κϕ

dt
(ϕt − ϕt−dt)2 − κv

dt
(ϕt − ϕt−dt) vtdt +R

= 1
2

κv + κϕ

dt

(
ϕt −

(
ϕt−dt + κv

κv + κϕ
vtdt

))2

+R,

[S7]

where terms independent of ϕt, collectively denoted by R, can be absorbed in the normalization. Hence, the modified transition
probability reads:

p(ϕt|vt, ϕt−dt) = N
(

ϕt; ϕt−dt + κv

κϕ + κv
vt dt,

dt

κϕ + κv

)
mod 2π. [S8]

Together with the assumption that the posterior of the last time step, p(ϕt−dt|Vt−dt, Zt−dt), is given by a von Mises
distribution with mean µt−dt and precision κt−dt, we can write down the expression for the prediction density p(ϕt|Vt, Zt−dt)
(cf. first line in Eq. [S4]):

p(ϕt|Vt, Zt−dt) =
∫ π

−π

dϕt−dt p(ϕt|vt, ϕt−dt)p(ϕt−dt|Zt−dt, Vt−dt)

=
∫ π

−π

dϕt−dtN
(

ϕt; ϕt−dt + κv

κϕ + κv
vt dt,

dt

κϕ + κv

)
VM (ϕt−dt; µt−dt, κt−dt) .

[S9]

Unfortunately, there is no closed-form solution for this integral. To approximate the prediction density p(ϕt|Vt, Zt−dt) at each
moment in time by a von Mises density VM(ϕt; µ̃t, κ̃t), we will use a more sophisticated approximation method, namely a
projection filter (2). Such a filter ensures that this approximation is optimal by minimizing the infinitesimal Kullback-Leibler
divergence at each moment in time. The technical details can be found in (1), and in this SI we limit ourselves to giving the
final result:

dµt = κv

κv + κϕ
vt dt, [S10]

dκt = − f(κt)
2(κv + κϕ)κt dt. [S11]

Here, the decay of the certainty κt is governed by the nonlinear function

f(κt) = A(κt)
κt −A(κt)− κA(κt)2 , with A(κt) = I1(κt)

I0(κt)
, [S12]

where I0(·) and I1(·) denote the modified Bessel functions of the first kind of order 0 and 1. This function takes care of the fact
that the true HD ϕt follows a diffusion on the circle, which becomes particularly relevant for small values of κt. In particular,
f(κt) ≈ 1 for small κt and f(κt) ≈ 2κt − 2 for large κt, indicating that the decay is asymptotically quadratic.

B.2. HD observations. Angular-valued HD observations zt are integrated by multiplying the observation likelihood p(zt|ϕt) with
the prediction density p(ϕt|Vt, Zt−dt). If the prediction density is also von Mises (which is the assumption above), this cue
integration is closed:

p(ϕt|zt, dyt) = VM(zt; ϕt, κz dt) · VM(ϕt; µ̃t, κ̃t)

∝ exp

((
cos ϕt

sin ϕt

)⊤
·
(

κz dt

(
cos zt

sin zt

)
+ κ̃t

(
cos µ̃t

sin µ̃t

)))
[S13]

!= exp

((
cos ϕt

sin ϕt

)⊤
· κt

(
cos µt

sin µt

))
. [S14]

Thus, the natural parameters of the posterior distribution, xt = (x1, x2) = (κt cos µt, κt sin µt)⊤, can be written as the sum of
the natural parameters of the prediction density and the likelihood†:

xt = x̃t + κz

(
cos zt

sin zt

)
dt [S15]

dxt = xt − x̃t = κz

(
cos zt

sin zt

)
dt. [S16]

†This is not too surprising, as it is well known that in exponential family distributions these update steps boil down to adding up the natural parameters.
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The updates of the parameters µt and κt of the von Mises distribution due to the observation zt are obtained by transforming
the update of xt to polar coordinates:

dµupdate
t = d arctan 2 (x2, x1) = κz

κt
sin(zt − µt)dt [S17]

dκupdate
t = d

√
x2

1 + x2
2 = κz cos(zt − µt)dt. [S18]

B.3. The circular Kalman filter. In the continuum limit dt→ 0, we do not distinguish between the parameters of the prediction
density, µ̃t and κ̃t, and that of the posterior density, µt and κt. The circKF equations result from taking the prediction and
update steps simultaneously, thereby combining Eq. [S10] with Eq. [S17] for the mean dynamics, and Eq. [S11] with Eq. [S18]
for the precision dynamics:

dµt = κv

κϕ + κv
vt dt + κz

κt
sin(zt − µt)dt, [S19]

dκt = − f(κt)
2(κϕ + κv)κtdt + κz cos(zt − µt)dt. [S20]

Here, we adhered to expressing these equations in terms of their infinitesimal difference, dµt and dκt, instead of a differential
equation. This is a standard way to express stochastic differential equations (SDEs), which makes it more straightforward to
deal with the non-linear time scaling of the HD observations zt.

B.4. The quadratic approximation of the circular Kalman filter. If κt is sufficiently large, the nonlinearity f(κt) can be approximated by
a linear function, f(κt) ≈ 2κt − 2, such that the decay in Eq. [S20] becomes quadratic:

dκt ≈ −
1

κϕ + κv

(
κ2

t − κt

)
dt + κz cos(zt − µt)dt. [S21]

We use this approximation when implementing the Bayesian ring attractor network.

C. Coordinate transforms [Technical]. The von Mises distribution can be parametrized by its mean and precision parameters,
µ and κ, or in terms of its natural parameters, x = (x1, x2)⊤ = (κ cos µ, κ sin µ)⊤. These two parametrizations are perfectly
equivalent, and can be thought of as the polar and Cartesian coordinates of a vector, respectively. Except when κ = 0, which
we assume to never occur, we can go back and forth between these representations by performing a coordinate transformation.

For the neural network we describe further below, it is easier to decode x than µ and κ from neural population activity.
Thus, it is useful to express the circular Kalman filter as SDEs for x. Unfortunately, we cannot simply find these SDEs by
applying a coordinate transform to Eqs. [S19] and [S20]. Technically speaking, since the angular velocity observations vt

follow a stochastic process, we have to take into account second-order derivatives, which is called Itô’s lemma in stochastic
calculus (see (3) for an introduction). As we will here show in a slightly technical argument, using stochastic instead of ordinary
calculus explains why we need an additional decay term in the network implementation in Sec. 3 that would not arise from a
simple coordinate transform. Understanding this argument is not required for understanding our general theory and network
implementation, and thus can safely be skipped.

First, we express the generative model in Eqs. [S3] and [S1] in terms of their equivalent Itô stochastic differential equations
(SDEs). Defining the infinitesimal increment dut := vt dt, the SDEs read:

dϕt = 1
√

κϕ
dWt [S22]

dut = dϕt + 1√
κv

dVt, = 1
√

κϕ
dWt + 1√

κv
dVt, [S23]

where dWt ∈ R ∼ N (0, dt) and dVt ∈ R ∼ N (0, dt) are uncorrelated scalar-valued Brownian motion processes with dWt dVt = 0.
Since the variance of Brownian motion processes grows linearly in time, we have that (dWt)2 = dt, (dVt)2 = dt, and thus
(dut)2 =

(
1

κϕ
+ 1

κv

)
dt. The second equality in Eq. [S23] tells us that whenever angular velocity observations are drawn from

the ‘true’ generative model in Eq. [S1], they automatically inherit the noise of the process that was used to generate ϕt.
Itô’s lemma tells us how to perform a variable transformation from a stochastic process xt, which is governed by an Itô

SDE, to another stochastic process yt = g(xt):

dyt = dg(xt) = ∂g(x)
∂x

∣∣∣∣
x=xt

dxt + 1
2

∂2g(x)
∂x2

∣∣∣∣
x=xt

(dxt)2. [S24]

Thus, we can use Itô’s lemma to transform the dynamics of µt and κt in Eqs. [S10] and [S11] to the dynamics of the natural
parameters of the von Mises distribution. Note that, since the dynamics of κt are independent of the angular velocity
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observations, Eq. [S11] is deterministic with (dκt)2 = 0:

dxt = d
[

κt

(
cos µt

sin µt

)]
=
(

cos µt

sin µt

)
dκt + κt

(
− sin µt

cos µt

)
dµt + 1

2κt

(
− cos µt

− sin µt

)
(dµt)2

= − f(κt)
2(κϕ + κv)κt

(
cos µt

sin µt

)
dt + κtκv

κϕ + κv

(
− sin µt

cos µt

)
dut −

1
2

(
x1
x2

)
κ2

v

(κv + κϕ)2 (dut)2

= −1
2

f(κt)
κv + κϕ

xt dt− 1
2

κv/κϕ

κv + κϕ
xt dt + κv

κv + κϕ

(
0 −1
1 0

)
xt dut.

[S25]

Here, the additional decay term − 1
2

κv/κϕ

κv+κϕ
xtdt arises from the stochastic nature of the increment process ut.

Since HD observations zt are added on the level of natural parameters (cf. Eq. [S16]), these can be included in a straightforward
manner, yielding the circular Kalman filter in its natural parameter form:

dxt = −1
2

f(κt) + κv/κϕ

κv + κϕ
xt dt + κv

κv + κϕ

(
0 −1
1 0

)
xt dut + κz

(
cos zt

sin zt

)
dt. [S26]

D. Numerical benchmarks. As described above, the circKF approximates the posterior at each point in time by a von Mises
distribution, and thus is itself an approximate algorithm. To compare its performance, and that of the Bayesian ring attractor
to the truly best filtering performance for the assumed generative model, we additionally used a Bootstrap particle filter, which
is exact in the limit of an infinite number of particles. Here, we first outline the algorithm itself, and then discuss how we
assess filtering performance in general, to compare performance across algorithms.

D.1. Bootstrap particle filter. As a numerical benchmark, we used a Sequential Importance Sampling/Resampling particle filter (4)
(SIS-PF; member of the family of Bootstrap particle filters) that we modified to be applicable to angular velocity observations.
Here, we briefly outline the numerical implementation of the SIS-PF for our particular filtering problem, and refer the reader
to more specialized literature for derivation and convergence results (e.g., in (4, 5)).

The principle behind particle filters is that they provide a weighted empirical estimate of the posterior distribution,

p (ϕt|Vt, Zt) ≈
N∑

i=1

w
(i)
t δ(ϕt − φ

(i)
t ), [S27]

where we refer to w
(i)
t as the importance weight of the i-th particle with position φ

(i)
t . Weighted particle filters are asymptotically

exact, i.e. they provide us with the best possible inference performance in the limit of infinitely many particles N →∞. At
each discrete time step, the N particles in the SIS-PF are propagated according to the proposal density π, which we chose to
correspond to the modified transition density in Eq. [S8]:

π
(

φ
(j)
t |φ

(j)
t−∆t, vt

)
= N

(
φ

(j)
t ; φ

(j)
t−∆t + κv

κv + κφ
vt ∆t,

∆t

κφ + κv

)
mod 2π. [S28]

Subsequently, each particle j is weighted at each time step according to how well the proposed particle distribution fits to the
HD observation zt. This is equivalent to multiplying the previous weight with the observation likelihood (Eq. [S2]):

w
(i)
t = w

(i)
t−∆t · VM

(
zt; φ

(i)
t , κz∆t

)
. [S29]

Lastly, the particles are re-weighted such that the importance weights sum to 1,
∑

i
w

(i)
t = 1:

w
(i)
t ←

w
(i)
t∑

j
w

(j)
t

[S30]

In our simulations, we used N = 103 particles, which is sufficient if HD observations are present.
Mean µt and precision rt ∈ [0, 1] of the filtering distribution approximated by the SIS-PF can be determined at each time

step according to a weighted average on the circle, i.e. the first circular moment:

rt exp(iµt) =
N∑

j=1

w
(j)
t exp

(
iφ

(j)
t

)
. [S31]
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D.2. HD tracking performance measures. In the main text, we quantified HD tracking performance by estimating the absolute
value of the circular average distance between the estimate µT at the end of the trial (using the mean of the filter posterior,
which is the filter’s best guess), and the true HD ϕT , averaged across P simulations with different noisy observation sequences,
v0, . . . , vT and z0, . . . , zT :

m1 = 1
P

P∑
k=1

exp
(

i
(

µ
(k)
T − ϕ

(k)
T

))
. [S32]

Here, m1 is a complex number, and HD tracking performance corresponds to its absolute value, |m1| (larger = better / more
accurate). Note that this absolute value is one minus the circular variance of the error. As this variance is bounded by zero
and one, zero variance implies a performance of |m1| = 1, and maximum variance of one implies a performance of |m1| = 0. To
get a sense of how estimates µT are distributed around the true HD ϕT for a given value of |m1|, we provide representative
histograms in Fig. S5.
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2. Neural encoding example: encoding of the von Mises distribution with a linear probabilistic population code

In the main text, we assume a bump-like encoding of the HD posterior belief whose bump amplitude is scaled by the encoded
certainty κt. This implies that the amplitude of the first Fourier component is proportional to the certainty (see main text
Eq. (3)). This is trivially fulfilled for the cosine-shaped tuning curves that we used for illustration in the main text (main text
Fig. 2). Here, we will demonstrate that this also holds for a more elaborate bump encoding scheme: specifically, we consider
the case of a linear probabilistic population code (lPPC) (6–8) with independent Poisson neural noise. The central idea behind
such an lPPC is that neuronal activity encodes an exponential family probability distribution, e.g., about HD, such that the
natural parameters of this distribution can be retrieved through linear operations, that is, a weighted sum of neural activity.

In what follows, we will first show that an lPPC for a von Mises distribution with independent Poisson neurons gives rise to
von Mises shape tuning curves, which are scaled by the encoded certainty (following (6)). Using this result, we will derive the
population activity profile as a function of the encoded estimate and certainty that results from this encoding scheme, and
show that the amplitude of this profile is indeed also proportional to the encoded certainty.

A. Tuning with respect to (true) HD ϕt. We assume that tuning curves of the population encoding the posterior p(ϕt|Vt, Zt) can
be described by a typical shape f̃ , which is scaled by the population gain g. That is, the tuning curve of a single neuron i is
given by fi(ϕt) = g f̃i(ϕt). Following (6), we further assume that the neuronal population consists of N independent Poisson
neurons, which densely tile the stimulus space of true HDs, ϕ. Thus, we can write down the probability of a population firing
pattern r ∈ RN

+ as

p(r|ϕt, g) =
∏

i

(gf̃i(ϕt))ri

ri!
exp
(
−gf̃i(ϕt)

)
= exp

(∑
i

ri log(g f̃i(ϕt))−
∑

i

log ri!−
∑

i

g f̃i(ϕt)

)

∝ϕt exp

(∑
i

ri log f̃i(ϕt)

)
,

[S33]

where we used that
∑

i
g f̃i(ϕt) is approximately independent of HD ϕt due to the dense-tiling assumption.

Assuming that p(ϕt|r) follows an exponential family distribution, such as the von Mises distribution, an lPPC requires that
the natural parameters of this distribution can be recovered from the population activity by a linear operation, i.e., a weighted
sum. For a general exponential family distribution with d sufficient statistics T(ϕt) ∈ Rd, and natural parameters x, we thus
can re-parametrize the distribution in terms of the the population activities r (6):

p(ϕt|r) = 1
Z(ϕt, x) exp

(
T(ϕt)T · x

)
= 1

Z(ϕt, r) exp
(
T(ϕt)T ·Ar

)
,

[S34]

where the decoder matrix A ∈ Rd×N is defined via x = Ar. Assuming a uniform prior over HD, that is, p(ϕt) ∝ 1, we can
relate Eqs. [S33] and [S34] by Bayes’ rule, p(ϕt|r) ∝ p(r|ϕt, g). This results in the following conditions for the tuning curves:

p(ϕt|r) ∝ϕt p(r|ϕt), [S35]

⇒ log f̃(ϕt) = AT ·T(ϕt). [S36]

For a von Mises distribution, the natural parameters are given by T(ϕt) = (cos ϕt, sin ϕt)T . Thus, the argument of the
exponential in the neurons’ tuning curves is a linear combination of sines and cosines. This, in turn, can be written as a single
cosine ∝ c cos(ϕt − ϕi), where ϕi ∈ [−π, π] denotes the “preferred HD” of neuron i. The tuning curve of a single neuron is thus
von-Mises shaped, i.e.,

f̃i(ϕt) = exp (ξ cos(ϕt − ϕi)) , [S37]

where ξ is an additional parameter that controls the width of the tuning curves. Furthermore, the decoder matrix is constrained
via (AT )i = ξ (cos ϕi, sin ϕi).

In order to determine the population gain g, note that we require the natural parameters of the von Mises distribution,
x = κt (sin µt, cos µt), to be linearly decodable from the population activity via x = Ar. Since x is proportional in κt, this
linearity implies that the overall population activity r should also be overall scaled by κt. Hence, the tuning curve of a neuron
with preferred HD ϕi reads:

fi(ϕt) = gf̃i(ϕt) = κt exp (ξ cos(ϕ− ϕi)) . [S38]

To summarize, an lPPC with independent Poisson neurons gives rise to von Mises shaped tuning curves, whose gain is
scaled by the encoded certainty κt. Importantly, unlike for the encoded von Mises distribution, an increase in certainty κt does
not cause the resulting activity profile to sharpen.
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B. Tuning with respect to HD estimate µt. Tuning to true HD ϕt can only be measured if we have access to the encoded HD
estimate. To instead find the tuning with respect to µt and κt that parametrize the distribution of ϕt, we need to average the
neuron’s tuning for a given µt and κt over all possible realizations of ϕt. This results in the following tuning with respect to µt

and κt:

fi(µt, κt) =
∫ π

−π

dϕt fi(ϕt)VM (ϕt; µt, κt)

= κt

2πI0(κt)

∫ π

−π

dϕt exp (ξ cos(ϕt − ϕi) + κt cos(ϕt − µt))

= κt

2πI0(κt)

∫ π

−π

dϕt exp (κ̃t,i cos(ϕt − µ̃i))

= κt
I0(κ̃t,i)
I0(κt)

,

[S39]

with κ̃t,i =
√

ξ2 + κ2
t + 2ξκt cos(ϕi − µt). This tuning curve is again bump-shaped, with a peak at the encoded HD estimate

µt and the bump amplitude modulated by encoded certainty κt in a nonlinear manner.
For small values of encoded certainty, the tuning curve approaches a cosine-shaped tuning with a gain that is a nonlinear

function of κt. To see this, we use the series expansion of the Bessel function for a small argument z,

I0(z) =
∞∑

m=0

1
m!Γ(m + 1)

(
z

2

)2m

≈ 1 + 1
4z2 +O(z4), [S40]

and write for the tuning curve in the small-κt limit

κt
I0(κ̃t,i)
I0(κt)

≈ κt

I0(κt)

(
1 + 1

2 κ̃2
t,i

)
= κt

I0(κt)

(
1 + 1

4
(
ξ2 + κ2

t + ξκt cos(ϕi − µt)
))

. [S41]

Thus, the tuning curve of a neuron i for small values of κt is cosine-shaped, and modulated by the nonlinear factor ξκ2
t

4I0(κt) ,
which asymptotically approaches ξ

4 κ2
t for κt → 0.

For large values of κt, the tuning curve is von-Mises shaped and the gain is asymptotically linear in encoded certainty. To
see this, we use the Hankel expansion of the Bessel function I0(z) in the limit of large arguments z:

I0(z) ≈ ez

√
2πzz

+O
( 1

z2

)
, [S42]

and simplify

κt
I0(κ̃t,i)
I0(κt)

≈ κt

√
κt

κ̃t,i
exp (κ̃t,i − κt) . [S43]

Taylor-expanding the exponent κ̃t,i − κt for small values of 1/κt yields,

κ̃t,i − κt = κt

√
1 + ξ2

κ2
t

+ ξ

κt
cos(ϕi − µt)− κt ≈

ξ

2 cos(ϕi − µt) + ξ2

2κt
+O

(
1
κ2

t

)
. [S44]

Further, the pre-factor
√

κ̃t,i

κt
→ 1, and thus the tuning curve in the large-κt limit reads:

fi(µt, κt)→ κt exp
(

ξ

2 cos(ϕi − µt)
)

. [S45]

The choice of the width parameter ξ determines how large κt has to be for the tuning curve to scale linearly with encoded
certainty.

In Fig. S1, we demonstrate these limits (assuming ξ = 1 without loss of generality), and find numerically that linear scaling
of the population activity amplitude holds well even for small κt (e.g., κt ∼ 1, cf. Fig. S1f). In addition, the width of the profile
saturates quickly as we increase κt (which indicates the transition from cosine-shaped to von-Mises shaped tuning curve),
which makes the shape almost independent of κt. Therefore, the population profile is not just a rescaled version of the encoded
probability distribution (Fig. S1c), because an increase in certainty does not cause the bump to sharpen indefinitely.

The linear scaling of the amplitude with κt, and (almost) constant width, indicate that the parameters of the von Mises
distribution, µt and κt, can be retrieved from the population activity by computing the first Fourier coefficients:

Feven
1 [fi(µt, κt)] := 1

π

∫ π

−π

dϕi fi(µt, κt) cos(ϕi) ∝ κt cos µt = xt,1, [S46]

Fodd
1 [fi(µt, κt)] := 1

π

∫ π

−π

dϕi fi(µt, κt) sin(ϕi) ∝ κt sin µt = xt,2. [S47]
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The certainty κt can be retrieved via κt =
√

x2
t,1 + x2

t,2, and thus is proportional to the amplitude c1 of the first Fourier com-
ponent in amplitude-phase form. Likewise, the mean µt is the angle of the first Fourier component, i.e. µt = arctan 2(xt,1, xt,2).
In other words, the tuning profile can be expanded as

fi(µt, κt) ∼ κt cos(µt − ϕi) +R, [S48]

where R collectively denotes the orthogonal other Fourier modes. In Fig. S1g-j, we confirm the proportionality of the amplitudes
of the first Fourier coefficient in κt numerically.
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3. Details on Bayesian ring attractor dynamics and parameter tuning

In the main text we consider a rate-based network model, called the Bayesian ring attractor, that implements an approximation
to the circKF in the dynamics of its bump position and amplitude. Here, we derive this network in two steps. First, we
start with a network that implements the circKF exactly (in the limit of an infinite number of neurons) by implementing the
dynamics described by Eqs. [S19] and [S20]. This network won’t be a ring attractor, as its activity will decay to zero in the
absence of external inputs. After that we will change the network to instead implement the quadratic approximation to the
circKF by implementing the dynamics described by Eqs. [S19] and [S21], resulting in the Bayesian ring attractor described in
the main text.

Our derivation starts with a general network in the limit of infinitely many neurons, continuously covering the space of
preferred HDs. For this network we will analytically derive dynamics of bump position and amplitude. Matching these dynamics
to that of the circKF equations then allows us to determine the network parameters required for this implementation. The
network we present in the main text is formulated for a finite number of neurons, and here we will further demonstrate that it
is straightforward to change between those two representations. In fact, any network coefficients for the infinite-neuron network
are chosen such that they also describe those used for the finite-neuron network in the main text.

A. Network that exactly implements the circKF. Let us make an ansatz for a continuous-space, linear network dynamics with an
additional non-linear interaction term:

drt(ϕ) = − 1
τ

rt(ϕ)dt + g (rt(ϕ)) · rt(ϕ)dt + (W ∗ rt) (ϕ) dt + Iext
t (ϕ). [S49]

Here, rt(ϕ) denotes the activity of a neuron identified by its preferred HD ϕ at time t, and Iext
t (ϕ) is an external input. Due

to the circular symmetry, the recurrent connectivity function W (∆ϕ) only depends on the relative distance ∆ϕ between two
neurons’ preferred HD. Further, (W ∗ rt) (ϕ) := 1

π

∫
dϕ′W (ϕ− ϕ′)rt(ϕ) denotes a convolution.

We consider the decomposition of the activity profile rt(ϕ) in terms of its Fourier modes:

rt(ϕ) = 1
2r0(t) +

∞∑
k=1

(
reven

k (t) cos kϕ + rodd
k (t) sin kϕ

)
[S50]

= 1
2r0(t) +

∞∑
k=1

r̃k(t) cos k(ϕ−Ψk(t)). [S51]

Note, that the Fourier coefficients reven
k (t) and rodd

k (t) are related to the coefficient’s amplitude r̃k(t) and phase Ψk(t) via a
Cartesian to polar coordinate transformation. Taking the derivative on both sides (in the amplitude-phase form) results in:

drt(ϕ) = 1
2 dr0(t) +

∞∑
k=1

(
cos k(ϕ−Ψk(t)) dr̃k(t) + kr̃k(t) sin k(ϕ−Ψk(t)) dΨk(t)

)
. [S52]

Thus, we can determine the dynamics of the Fourier coefficients r0, r̃k, and Ψk by Fourier-transforming Eq. [S49], and
subsequently matching the coefficients in the Fourier modes:

dr0(t) = 1
π

∫ π

−π

dϕ (drt) =
(
− 1

τ
+ w0

)
r0(t) dt− g(rt)r̃0(t) dt + Iext

0 (t), [S53]

dr̃k(t) = 1
π

∫ π

−π

dϕ cos k(ϕ−Ψk(t)) (drt)

=
(
− 1

τ
+ weven

k

)
r̃k(t) dt− g(rt)r̃k(t) dt + Ik(t) cos(Φk(t)−Ψk(t))

[S54]

dΨk(t) = 1
kr̃k(t)

1
π

∫ π

−π

dϕ sin k(ϕ−Ψk(t)) (drt)

= wodd
k

k
dt + Ik(t)

kr̃k(t) sin(Φk(t)−Ψk(t)),
[S55]

where we used the Fourier decompositions W (∆ϕ) = w0
2 +

∑∞
k=1

(
weven

k cos(k∆ϕ) + wodd
k sin(k∆ϕ)

)
and Iext

t (ϕ) = I0
2 +∑∞

k=1 Ik cos(k(ϕ− Φk)). Note that here, Ik refers to the k-th Fourier amplitude of the input, and not to the modified Bessel
function. Furthermore, in the main text we restrict the discussion to w0, weven

1 and wodd
1 and denote them wconst ≡ w0,

wsym ≡ weven
1 , and wasym ≡ wodd

1 , respectively. Setting Ψ1(t) = µt and r̃1(t) = κt, the dynamics of the first Fourier components
in amplitude-phase form read:
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dµt = wodd
1 dt + I1(t) sin(Φ1(t)− µt), [S56]

dκt =
(
− 1

τ
+ weven

1

)
κt dt− g(rt)κt dt + I1(t) cos(Φ1(t)− µt) [S57]

Comparing Eq. [S19] (µt from circKF) with Eq. [S56] and Eq. [S20] (κt from circKF) with Eq. [S57] allows us to determine
conditions for network parameters and external input in Eq. [S49], such that the circKF is exactly implemented in the dynamics
of the network’s first Fourier mode:

Even recurrent connections weven
1 = 1/τ,

Odd recurrent connections wodd
1 = κv

κϕ + κv
vt,

External input strength I1 = κzdt,

External input phase Φ1(t) = zt,

Nonlinear inhibition g(rt) = f(κt(rt))
2(κϕ + κv) .

Here, vt denotes the (observed) angular velocity with reliability κv, and zt the HD observation with reliability κz. The nonlinear
inhibition needs to be able to compute the amplitude κt from the network activity rt(ϕ). Note that this does not impose
any conditions on network parameters which do not affect the first Fourier component dynamics, for instance, higher order
recurrent interaction strengths wk with k ̸= 1. These can in principle be chosen freely.‡ Note that, in this simple network,
angular velocity observations modulate the first odd component of the recurrent connectivity matrix. This is biologically
unrealistic, and will be addressed once we move to the multi-population network further below.

To summarize, one potential (out of many possible) network dynamics that implements the circKF in the dynamics of its
first Fourier components reads:

drt(ϕ) = − 1
τ

rt(ϕ) dt− f(κt(rt))
2(κϕ + κv)rt(ϕ)dt + 1

τ
(cos ∗rt) (ϕ)dt + κv

κϕ + κv
vt (sin ∗rt) (ϕ) dt + Iext

t (ϕ). [S58]

Please consult Sec. D for an additional term required to account for rt being a stochastic process. We have not included this
term here, as it only becomes important in the dt→ 0 limit, and does not contribute additional intuition about the network’s
operation.

B. Network with quadratic nonlinearity. While the network we have derived so far implements the cricKF exactly, its activity
decays to zero in the absence of external inputs, such that it is not an attractor network. In this section we will instead use the
quadratic approximation to the circKF, which will lead to the Bayesian ring attractor we discuss in the main text. To do so,
we use the following nonlinearity for the inhibitory interaction:

g(rt)rt = wquad(M ∗ [rt]+)(ϕ) ◦ rt(ϕ), [S59]

with rectification nonlinearity [·]+ and a constant function M = π
2 . Here, ◦ denotes the Hadamar (piecewise) product. In the

main text, we wrote this interaction as g(rt)rt → wquad
(

π
∑N

i=1[r(i)
t ]+

)
· rt, which is equivalent, but less technical.

We assume rt to be dominated by its first Fourier component, such that the other orders become negligible, i.e. rt(ϕ) =
κt cos(ϕ− µt) +R with R small.§ We find

(M ∗ [rt]+)(ϕ) ≈ 1
π

∫ π

−π

dϕ′
π

2
[
κt cos(ϕ′ − µt)

]
+ = κt. [S60]

Fourier-transforming the nonlinearity with respect to the amplitude-phase form yields:

1
π

∫ π

−π

dϕ′ cos(ϕ′ − µt)g(rt)rt = wquad

π

∫ π

−π

dϕ′ cos(ϕ′ − µt) (M ∗ [rt]+)(ϕ′) · rt(ϕ′)

= wquad

π
κt

∫ π

−π

dϕ′ cos(ϕ′ − µt) rt(ϕ′) = wquadκ2
t .

[S61]

Thus, the dynamics of the first Fourier amplitude of a network with this nonlinearity is given by:

‡Practically, we chose them such that higher-order Fourier modes and the zero-th mode decay reasonably fast, to produce a unimodal activity bump.
§Alternatively, we can consider additionally convolving rt with a cosine before applying the rectification, effectively filtering out the desired mode.
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dκt =
(
− 1

τ
+ weven

1

)
κt dt− wquadκ2

t dt + I1(t) cos(Φ1(t)− µt). [S62]

The network parameters can be tuned such that the dynamics match that of the quadratic approximation of the circular
Kalman filter (Eq. [S19] and [S21]), analogously to the previous section. This yields the following network parameters for a
Bayesian ring-attractor network:

Even recurrent connections weven
1 = 1/τ + 1

κϕ + κv
,

Odd recurrent connections wodd
1 = κv

κϕ + κv
vt,

External input strength I1 = κzdt,

External input phase Φ1(t) = zt,

Quadratic inhibition wquad = 1
κϕ + κv

,

C. Continuous vs. discrete networks. The analysis we have presented above is valid for a continuum of neurons, i.e. N →∞,
that span a continuum of preferred HDs. Formally, this implies that the difference in preferred HD between two ’neighboring’
neurons converges to zero, ∆ϕ := ϕi − ϕj = 2π

N
→ 0. In the text and for our simulations, we used a discretized network, where

we assumed the preferred HDs of the neurons to be equally spaced, but finite.
It is straightforward to go back and forth between these two representations (cf. (9)): in a discretized network, rt denotes a

vector of neural activities, indexed by their preferred HD ϕi, which becomes a function rt(ϕ) for a continuous network. Likewise,
connectivity matrices W become functions with two arguments W (ϕi, ϕj), and matrix multiplications become integrals. The
circular symmetry of HD implies that the entries of a connectivity matrix only depend on the relative distance between two
neurons, and not on absolute position, such that for a connectivity matrix W we can write Wij = W (ϕi, ϕj) = W (ϕi − ϕj).
Thus, we can write matrix multiplications as convolutions (assuming the vectors and matrix are ordered with respect to their
preferred HD):

(W · rt)i =
N∑

j=1

Wijrt,j = N

2π

N∑
j=1

Wijrt,j∆ϕ [S63]

N→∞,∆ϕ→0→ N

2π

∫ π

−π

dϕ′W (ϕ, ϕ′)rt(ϕ′) = N

2π

∫ π

−π

dϕ′W (ϕ− ϕ′)rt(ϕ′) = N

2 (W ∗ rt) (ϕ). [S64]

where we defined the convolution as above. Thus, to ensure consistency between the coefficients of the matrices used in the
main text and the coefficients of the connectivity functions we used in our analysis in the SI, we scaled the connectivity matrices
in the main text by a factor 2

N
.

D. Stochastic correction [Technical]. The derivation in the previous section did not take into account that due to the dependence
on the angular velocity observations vt, the phase Ψk(t) is actually an Itô stochastic process, and hence the network activity rt

is, too. Thus, when performing a change of variables, such as the expansion Eq. [S52], we have to use Itô’s lemma (Eq. [S24]),
and expand up to second order in Ψk(t) (we have seen that the dynamics of the amplitude r̃k(t) is independent of vt, and thus
only carries first order terms):

drt(ϕ) = d

(
1
2r0(t) +

∞∑
k=1

r̃k(t) cos k(ϕ−Ψk(t))

)
[S65]

= 1
2dr0(t) +

∞∑
k=1

(
cos k(ϕ−Ψk(t))dr̃k(t) + kr̃k(t) sin k(ϕ−Ψk(t))dΨk(t)

− 1
2k2r̃k(t) cos k(ϕ−Ψk(t))(dΨk(t))2

)
,

[S66]

This implies that, if we take the effect of stochastic processes into account, comparing the Fourier coefficients in amplitude-phase
form will not single out the dynamics of the amplitude dr̃k, because there are now two terms proportional to cos k(ϕ−Ψk(t)).
Fortunately, the problem can be solved “backwards” using the analogy to coordinate transforms in Section C, thereby restricting
ourselves to the first Fourier mode (higher modes are analogous): First, we perform the Fourier transform of the dynamics in
Cartesian coordinates, i.e., with respect to cos(ϕ) and sin(ϕ). We then note that changing this into amplitude-phase form
is mathematically equivalent to a coordinate transform between the natural parameters of the von Mises distribution and
the µ,κ-parametrization. Next, we require that such a coordinate transform ought to result in the dynamics for µt and κt in
Eq. [S56] and [S57]. Using the analogy to Section C, we find that an additional decay term − 1

2
κv/κϕ

κv+κϕ
rt(ϕ)dt is needed in the
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network dynamics, which implements the Itô correction on the level of the natural parameters (cf. Eq. [S26]). Apart from this
additional decay, the conditions on the other network parameters remains unchanged.

This stochastic correction is not strictly needed to gain intuition about the theory, and if anything, the use of continuous-time
stochastic calculus seems to make things less intuitive. Practically, we used an additional decay term in Eq. [S58] whenever the
angular velocity observations were drawn from the true generative model and the time step dt was small enough to justify the
notion of “continuous time”, which was the case for all our simulations.
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4. Details on Drosophila-like network

Relying on large-scale connectomics data of the Drosophila HD system (10, 11), we now ask if a Bayesian ring attractor can be
implemented in a network that obeys biological network connectivity constraints. Here we show how the motifs of this network
– and, by extension, any biological ring attractor network – could potentially implement dynamic Bayesian inference.

A. Connectivity motifs in the Drosophila HD system connectome. The ring attractor in the Drosophila HD system is composed
of three core cell types, called EPG, PEN1 and ∆7 neurons (10–12), cf. Fig. 4A,B. HD is represented as a bump of neural
activity in the EPG population (13). These neurons are recurrently connected with excitatory PEN1 neurons. When the fly
turns, this differentially activates PEN1 neurons in the right and left brain hemispheres, and because PEN1 neurons have
asymmetric (shifted) projections back to EPG neurons, they can rotate the bump of EPG activity in accordance with the fly’s
rotation (14, 15). This motif effectively establishes the velocity-modulated odd recurrent connectivity required to initiate turns
in ring attractor networks (Fig. 4D). Moreover, EPG neurons are recurrently connected with inhibitory ∆7 neurons, which
establishes broad inhibition (Fig. 4E). Finally, EPG neurons receive inhibitory inputs from so-called ER neurons, which send
HD information to EPG neurons (16–18) (Fig. 4F). In summary, the fly’s HD system is equipped with the basic motifs to
implement a Bayesian ring attractor.

B. A multi-network model mimicking the Drosophila HD system connectome. The main idea of the idealized network in the
previous section was to tune the network parameters such that the circKF (or the quadratic approximation of the circKF) was
implemented in the coefficients of the first Fourier mode. Here, we will use the connectome of the fruit fly Drosophila (10) to
build a recurrent neural network, and show that the quadratic approximation of the circKF can be implemented in such an
architecture by determining the coefficients analogously. Thereby, we first approximate the connectivity matrices describing
this connectome (Fig. 4B) by analytically accessible functions, which nonetheless retain the main features of this connectivity
(as outlined, e.g., in (12)), and preserve the motifs that implement the ring-attractor in the Drosophila HD system (see review
in (19), cf. Fig. 4C). We in turn analytically determine the conditions for the coefficients of the connectivities between (rather
than within) the different network populations, such that the dynamics of the first Fourier components match that of the
quadratic approximation of the circKF.

Specifically, we consider five neuronal populations: an HD population, rHD, which we designed to track HD estimate and
certainty with its bump parameter dynamics, two angular (AV+ and AV−) velocity populations, rAV +

and rAV− , which are
tuned to head direction and are differentially modulated by angular velocity input, an inhibitory (INH) population, rINH , and
a population Iext that represents external input, that is, the HD observations. As before, the population activities r(ϕ) are
functions of preferred HDs, ϕ, but we will drop the argument ϕ to keep the notation uncluttered.

We start with the following ansatz for a network dynamics:

drHD
t =− 1

τHD
rHD

t dt + WHD←HD ∗ rHD
t dt + WHD←AV + ∗ rAV +

t + WHD←AV− ∗ rAV−
t dt

+
(
WHD←INH ∗ [rINH

t ]+
)
◦ rHD

t dt + Iext
t ,

[S67]

drAV +
t = 1

τAV +

(
−rAV +

t + (oAV + vt)WAV +←HD ∗ rHD
t

)
dt, [S68]

drAV−
t = 1

τAV−

(
−rAV−

t + (oAV − vt)WAV−←HD ∗ rHD
t

)
dt, [S69]

drINH
t = 1

τINH

(
−rINH

t + WINH←HD ∗ [rHD
t ]+ + WINH←INH ∗ rINH

t

)
dt. [S70]

From the connectivity profile ((10), cf. Fig. 4B), we make the following ansatz for the connectivity functions (which results in
Fig. 4C):

WHD←HD(∆ϕ) = cHD
0 + cHD

1 [cos ∆ϕ] , [S71]

WAV±←HD(∆ϕ) = cAV±←HDδ(∆ϕ), [S72]

WHD←AV±(∆ϕ) = cHD←AV±
[
sin
(

∆ϕ± π

4

)]
+

, [S73]

WINH←HD(∆ϕ) = cINH←HD
0

2 + cINH←HD
1 cos(∆ϕ), [S74]

WINH←INH = cINH←INH
0

2 + cINH←INH
1 cos(∆ϕ), [S75]

WHD←INH(∆ϕ) = cHD←INHδ(∆ϕ). [S76]
In what follows, we will derive the conditions for the connection strengths in this ansatz that allow an implementation of the
quadratic approximation of the circKF in the dynamics of the first Fourier component. Thereby, we make the assumption
that the leading order of the HD population activity rHD

t is a cosine, i.e. rHD
t (ϕ) = rHD

0 (t)
2 + κt cos(ϕ − µt) +R, and that

higher-order Fourier modes are negligible. We further assume that the time constants of the AV± and INH populations, τAV±

and τINH , are much smaller than τHD of the HD population, which allows us to assume that the activity in those populations
is stationary.

Anna Kutschireiter, Melanie A. Basnak, Rachel I. Wilson and Jan Drugowitsch 15 of 30



B.1. AV± population. As described above, the integration of turning signals in the fruit fly is modulated through differential
activation of PEN1 neurons (our AV± population) in the right and left brain hemispheres that asymmetrically project back
to EPG neurons (our HD population) (14, 15). This motif implements the effective asymmetric angular velocity-dependent
recurrent connectivity that is needed to rotate the activity in ring-attractor networks (20, 21). Thus, we will tune the
parameters in the HD→AV± →HD circuit such that the resulting effective odd recurrent connectivity contribution wodd

1 (i.e.,
that proportional to sin(ϕ− µt) implements the turn in the activity profile due to angular velocity integration, cf. Eq. [S55]).

As a first step, we compute the activities in the AV± populations. It is straightforward to check that, if the time constant
τAV ≪ τHD, the activity in the AV populations can be described by its stationary activity at every point in time:

rAV±
t = (oAV ± vt)WAV±←HD ∗ rHD

t = cAV±←HD(oAV ± vt)
1
π

∫ π

−π

dϕ′δ(ϕ− ϕ′)rHD
t (ϕ′)

= cAV±←HD(oAV ± vt) rHD
t .

[S77]

Expanding the connectivity function from the HD to the AV± populations in a Fourier series yields:

WHD←AV± = cHD←AV±
[
± sin(∆ϕ± π

4 )
]

+
= cHD←AV±

(
1
π

+ 1
2
√

2
cos(∆ϕ)± 1

2
√

2
sin(∆ϕ)

)
+R, [S78]

allowing us to compute the effective recurrent contributions in the HD population that is mediated via this network motif:

WHD←AV + ∗ rAV +
t = cHD←AV±cAV±←HD(oAV + vt)

1
π

∫ π

−π

dϕ′
(

1
π

+ 1
2
√

2
cos(ϕ− ϕ′) + 1

2
√

2
sin(ϕ− ϕ′) +R

)
rHD

t (ϕ′)

= cHD←AV±cAV±←HD(oAV + vt)
(

rHD
0
π

+ κt

2
√

2
cos(ϕ− µt) + κt

2
√

2
sin(ϕ− µt)

)
,

[S79]

WHD←AV− ∗ rAV−
t = cHD←AV±cAV±←HD(oAV − vt)

(
rHD

0
π

+ κt

2
√

2
cos(ϕ− µt)−

κt

2
√

2
sin(ϕ− µt)

)
, [S80]

and thus

WHD←AV + ∗ rAV +
t +WHD←AV− ∗ rAV−

t

= cHD←AV±cAV±←HD

(
2oAV

π
rHD

0 + κt
oAV√

2
cos(ϕ− µt) + κtvt

1√
2

sin(ϕ− µt)
)

.
[S81]

Thus, this motif implements an effective odd recurrent connectivity with wodd
1 = cHD←AV±cAV±←HD

√
2 vt. We require that the

effective odd recurrent connectivity is the same as in the Bayesian ring attractor, that is,

wodd
1 = cHD←AV±cAV±←HD

√
2

vt
!= κv

κϕ + κv
vt, [S82]

and thus the condition for the coefficients reads:

cHD←AV± =
√

2
cAV±←HD

κv

κϕ + κv
. [S83]

Interestingly, due to the offset oAV we also obtain a recurrent contribution to the activity baseline r0(t), and a contribution
to the even first order recurrent connectivity,

weven, AV
1 = cHD←AV±cAV±←HD oAV√

2
[S84]

= κv

κϕ + κv
oAV .. [S85]

We will return to this when computing the recurrent connectivities within the HD populations below.

B.2. INH population.. In our network, the recurrent interaction with the INH population implements the quadratic inhibition. In
the same way we tracked the effective odd recurrent through the AV± recurrent loop, we will here determine the effective
quadratic interaction strength wquad as a function of the network parameters, and then tune it in order to implement the
quadratic approximation of the circKF.
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To determine the activity in the INH population, we first expand
[
rHD

t

]
+ in its Fourier series:

[
rHD

t

]
+ ≈

[
rHD

0
2 + κt cos(ϕ− µt)

]
+

≈ rHD
0 ϕc

2π
+ κt

π
sin ϕc +

(
κt

π
ϕc + rHD

0
2π

sin ϕc

)
cos(ϕ− µt) +R

≈ rHD
0
4 + κt

π
+
(

κt

2 + rHD
0
π

)
cos(ϕ− µt) +R, [S86]

with cutoff angle ϕc = arccos
(
− κt

2rHD
1

)
≈ π

2 + rHD
0
2κt

for κt ≫ rHD
0 /2. With the dynamics of the INH population in Eqs. [S70],

and the connectivity functions in [S74] and [S75], we can write down the dynamics of the first two Fourier coefficients in the
INH population:

τINH drINH
0 =

(
−rINH

0 +
(

rHD
0
2 + 2

π
κt

)
cINH←HD

0 + cINH←INH
0 rINH

0

)
dt, [S87]

τINH drINH
1 =

(
−rINH

1 +
(1

2κt + 1
π

rHD
0

)
cINH←HD

1 + cINH←INH
1 rINH

1

)
dt. [S88]

Assuming again that the dynamics in the INH population is much faster than in the HD population, τINH ≪ τHD, we can
write down the stationary activities of the activity profile in the INH population:

rINH
0 =

rHD
0
2 + 2

π
κt

1− cINH←INH
0

cINH←HD
0 , [S89]

rINH
1 =

1
2 κt + 1

π
rHD

0

1− cINH←INH
1

cINH←HD
1 . [S90]

Plugging this into Eq. [S67], we obtain the change in the amplitude of the first Fourier mode through the interaction with
the INH population:(

WHD←INH ∗ [rINH
t ]+

)
· rHD

t = cHD←INH

(
rINH

0
2 + rINH

1 cos(ϕ− µt)
)
· rHD

t (ϕ)

= cHD←INH

(
rINH

0
2 κt + rINH

1
rHD

0
2

)
cos(ϕ− µt) +R

= cHD←INH
[

cINH←HD
0

π(1− cINH←INH
0 )

κ2
t +
(

cINH←HD
0

1− cINH←INH
0

+ cINH←HD
1

1− cINH←INH
1

)
rHD

0
4 κt

+ cINH←HD
1

π(1− cINH←INH
1 )

(rHD
0 )2

2

]
cos(ϕ− µt). [S91]

The first term on the right hand side has our desired quadratic interaction. It matches that of the quadratic approximation of
the circKF wquad = 1/(κϕ + κv), if the following condition is fulfilled:

cHD←INH = − 1
κϕ + κv

π(1− cINH
0 )

cINH←HD
0

. [S92]

The other terms in Eq. [S91] are "nuisance" terms, which, if too large, may significantly interfere with the inference dynamics.
However, if rHD

0 is small compared to κt, which we confirmed in simulations to be generally the case, the effect of the nuisance
terms is negligible. This can further be stabilized by choosing |cINH←HD

1 | ≪ |1− cINH←INH
1 |. Interestingly, this implies that

certainty κt mainly governs the activity in the zero-th order of the INH activity (Eq. [S89]).

B.3. Recurrent excitation within HD population. In the same spirit as above, here we compute the effective even recurrent connectivity
of the network in order to match it with recurrent interaction weven

1 in the network implementation of the circKF. Starting
from the Fourier expansion of the recurrent connectivity,

WHD←HD = cHD
0 + cHD

1 [cos(∆ϕ)]+ ≈ cHD
0 + cHD

1
π

+ cHD
1
2 cos(∆ϕ) +R, [S93]

we determine the change in activity due to the recurrent interaction within the HD population:

WHD←HD ∗ rHD
t =

(
cHD

0 + cHD
1
π

)
rHD

0 + cHD
1
2 κt cos(ϕ− µt) +R. [S94]
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Recall that the interaction with the AV± populations also induced an effective even recurrent connectivity (Eq. [S85]), such
that the overall even recurrent connectivity in the network is given by,

weven
1 = weven, HD

1 + weven, AV
1 = cHD

1
2 + κv

κϕ + κv
oAV

!= 1
τ

+ 1
κϕ + κv

. [S95]

This defines the following condition for the recurrent interaction within the HD population:

cHD
1 = 2

(
1
τ

+ 1
κϕ + κv

− κv

κϕ + κv
oAV

)
. [S96]

The zero-order contribution in Eq. [S94] multiplying cHD
1 is significant, and exceeds the first-order interaction in magnitude,

which makes the network unstable. We thus require a negative constant recurrent connectivity to balance this zero-order
contribution, chosen such that this contributions in the dynamics of rHD

0 decays over time:

2
(

cHD
0 + cHD

1
π

)
!

<
1
τ

, [S97]

and thus we arrive at our final condition:
cHD

0 <
1

2τ
− cHD

1
π

. [S98]

B.4. Summary of network connectivities. To summarize, we analytically determined that the following connectivity matrices in
the network dynamics in Eq. [S67]-[S70] implement the quadratic approximation of the circKF in the HD population. As a
reminder, these network dynamics are:

drHD
t =− 1

τHD
rHD

t dt + WHD←HD ∗ rHD
t dt + WHD←AV + ∗ rAV +

t + WHD←AV− ∗ rAV−
t dt

+
(
WHD←INH ∗ [rINH

t ]+
)
◦ rHD

t dt + Iext
t ,

drAV +
t = 1

τAV +

(
−rAV +

t + (oAV + vt)WAV +←HD ∗ rHD
t

)
dt

drAV−
t = 1

τAV−

(
−rAV−

t + (oAV − vt)WAV−←HD ∗ rHD
t

)
dt

drINH
t = 1

τINH

(
−rINH

t + WINH←HD ∗ [rHD
t ]+ + WINH←INH ∗ rINH

t

)
dt.

Recurrent excitation within HD population:

(WHD←HD)ij = 2
NHD

(
cHD

0 + cHD
1
[
cos
(
ϕHD

i − ϕHD
j

)]
+

)
,

with cHD
1 = 2

(
1

κϕ + κv
+ 1

τHD
− oAV κv

κϕ + κv

)
, cHD

0 <
1

2τ
− cHD

1
π

.

[S99]

Recurrent excitation between HD and AV+ and AV- populations:

(WAV±←HD)ij = cAV±←HDδij , [S100]

(WHD←AV±)ij = 2
NAV±

cHD←AV±
[
sin
(

ϕHD
i − ϕAV±

j ± π

4

)]
+

,

with cHD←AV± =
√

2
cAV±←HD

κv

κϕ + κv
.

[S101]

Recurrent inhibition between HD and INH populations:
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(WINH←HD)ij = 2
NHD

(
cINH←HD

0
2 + cINH←HD

1 cos
(
ϕINH

i − ϕHD
j

))
, [S102]

(WINH←INH)ij = 2
NINH

(
cINH

0
2 + cINH

1 cos
(
ϕINH

i − ϕHD
j

))
,

with |cINH←HD
1 | << |1− cINH

1 |
[S103]

(WHD←INH)ij = cHD←INHδij ,

with cHD←INH = − 1
κϕ + κv

π(1− cINH
0 )

cINH←HD
0

.
[S104]

Activities of the EXT population were assumed to give rise to a bump-shaped inhibitory input opposite of the HD observation,
loosely related to how ring neurons mediate such input to the EPG neurons (17, 18). We thus modeled this bump-shaped
input to the HD population directly without explicitly representing a dynamics of the EXT population.

External input:

Iext
i,t = −2κzdt

[
cos(ϕHD

i − zt + π)
]

+ . [S105]

The network dynamics still has a considerable number of degrees of freedom. That is, the baseline oAV , network connectivity
strengths cAV±←HD, cINH←HD

0 , cINH←HD
1 , cINH

0 , cINH
1 , and time scales τHD, τAV + , τAV− and τINH can essentially be chosen

freely. If the number of neurons N differs between populations, the δij ’s can be replaced by a normalized, Gaussian-shaped
kernel with a finite width. For our analytical results to hold, we require τHD ≫ τAV + , τAV− , τINH . We further constrained the
network by choosing cINH←HD

0 > 0, cINH←HD
1 ≤ 0 and |cINH←HD

0 | > |cINH←HD
1 |, which leads to the broad excitatory input

into the INH population, and the formation of an ‘antibump’, similarly to the one observed in ∆7 neurons (12).

C. Drosophila-like network simulations and HD tracking performance. To demonstrate that the multi-population network can
indeed implement the quadratic approximation to the circKF, we measured its HD tracking performance and compared it to
the circKF and the Bayesian ring attractor.

We used the following parameters in the associated network simulations (Fig. 4G,H): κv = 5, T = 20, ∆t = 0.001, results are
averages over P = 5′000 simulations. Network architecture followed the full network in Eqs. [S67]-[S70], with baseline oAV = 0,
time scales τHD = 0.1, τAV + = τAV− = 0.01, τINH = 0.001, connection strengths cHD

0 = −0.2, cHD
1 = 0, cAV±←HD = 1,

cINH←HD
0 = 0.5, cINH←HD

1 = −0.5, cINH
0 = 0.1, cINH

1 = 0. Further, in the discretized dynamics we chose NHD = 100,
NAV + = 50, NAV− = 50, NINH = 100, and NEXT = 100.

As shown in Fig. 4G,H, the network simulations confirmed that this network indeed achieves a HD tracking performance
indistinguishable to that of our idealized Bayesian ring attractor network. Thus, even when we add the constraints dictated
by the actual connectivity patterns of neural networks in the brain, the resulting network is still able to implement dynamic
Bayesian inference.
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5. The impact of neural noise on inference dynamics

So far we have assumed the the only sources of noise were noisy inputs from angular velocity and HD observations. Here we
ask how the inference dynamics are impacted if the neurons that constitute the ring attractor are also noisy. We will do so in
three steps. First, we will make a qualitative observation of how such neural noise is expected to impact the dynamics of µt

and κt. Second, we will derive expressions for the impact of such noise on µt and κt for different noise models. Third, we will
ask how we can ensure that neural noise has a minimal impact on the performed inference. For all steps we return to our
single-population ring attractor whose dynamics are described by Eq. [S49], and assume that neural noise impacts the activity
of neuron j by

drt,j = h (rt,j) dWt,j , [S106]
where h(·) is a function of neural activity, and the dWt,j ’s are Brownian motion processes that are uncorrelated across neurons.
Different noise models correspond to different assumptions about the form of h(·). As for large population sizes N , individual
neural noise can be averaged out and will have limited impact (22). Therefore, we assume N to be sufficiently small for neural
noise to matter, but to be sufficiently large such that we can well-approximate various sums by their integral limit.

A. The qualitative impact of neural noise on inference dynamics. With neural noise, the population dynamics equation Eq. [S49]
becomes

drt(ϕ) = · · ·+ Iext
t (ϕ) + ηt(ϕ), [S107]

where Iext
t (ϕ) is our model’s (stochastic) external input, and the newly added ηt(ϕ) captures the activity perturbations induced

by neural noise. This shows that we can interpret neural noise as yet another stochastic input to the network. This implies
that this noise impacts the dynamics for ηt and κt (previously Eqs. [S56] & [S57]) through

dµt = · · ·+ I1(t) sin (Φ1(t)− µt) + η1(t) sin (ξ1(t)− µt) , [S108]
dκt = · · ·+ I1(t) cos (Φ1(t)− µt) + η1(t) cos (ξ1(t)− µt) , [S109]

where I1(t) and Φ1(t) are amplitude and phase of the first Fourier component of Iext
t (ϕ), and η1(t) and ξ1(t) are the analogous

quantities for the neural noise ηt(ϕ). As this noise is uniform on the circle, its phase is also uniform on the circle, and its
amplitude is roughly constant (for some fixed N). This implies that both η1(t) sin (ξ1(t)− µt) and η1 cos (ξ1(t)− µt) will have
the same variance. Crucially, the HD estimate µt is by Eq. [S56] formed by integrating all of its terms, such that the added
noise term results in a diffusion of this estimate (22). The certainty κt, in contrast, by Eq. [S57] performs a leaky integration of
its term, such that it low-pass filters the noise — it somewhat perturbs κt, but its contribution will be bounded.

B. How neural noise quantitatively impacts the dynamics of µt and κt. To get a better quantitative understanding of the impact
of neural noise, we here derive expressions for its impact on µt and κt for different noise models. First, we will assess the
impact of the generic noise model, Eq. [S106] on the posterior parameters, x1 and x2, in their Cartesian form. Second, we
will translate this impact to polar coordinates, µ and κ. Third, we will consider three different noise models to see how those
impact the dynamics of µ and κ. To simplify notation we assume some fixed time t, and leave the ·t subscript implicit.

B.1. The impact of neural noise on x1 and x2. For finite N , x1 and x2 are computed as

x1 = 2
N

N∑
j=1

cos (ϕj) rj , x2 = 2
N

N∑
j=1

sin (ϕj) rj , [S110]

where ϕj is the preferred HD of neuron j, and where the 2/N pre-factor ensures appropriate normalization. The generic neural
noise model, Eq. [S106], thus leads to

dx1 = 2
N

N∑
j=1

cos (ϕj) h (rj) dWj , dx2 = 2
N

N∑
j=1

sin (ϕj) h (rj) dWj , [S111]

independent of the current population activity r (except through h(rj)). It can be shown that ⟨dxi⟩ = 0 for i ∈ {1, 2}, and that

cov (dx) = 4
N2

(
c2T

h2 cT diag
(
h2) s

cT diag
(
h2) s s2T

h2

)
dt, [S112]

where we have defined the N -element vectors c, s, and h with elements cj = cos (ϕj), sj = sin (ϕj), and hj = h (rj), where the
·2’s are element-wise, and where diag

(
h2) denotes a diagonal matrix with diagonal h2. Thus, the noise-induced evolution of x

is described by the two-dimensional process
dx = GdW , [S113]

with G given by

G = 2
N
√

c2T h2

(
c2T

h2 0
cT diag

(
h2) s

√
s2T h2c2T h2 − (cT diag (h2) s)2

)
, [S114]

such that cov (dx) = GGT dt. Overall, this shows that neural noise will not cause a drift of x but will introduce (potentially)
correlated noise in both x1 and x2.
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B.2. The impact of neural noise on µ and κ. To translate the impact of neural noise from natural parameters x to parameters (µ, κ),
let us consider µ and κ in turn.

The impact of noise on µ. We have µ = atan2(x2, x1), whose gradient and Hessian with respect to x are

∇xµ = 1
κ2

(
−x2
x1

)
, Hxµ = 1

κ4

(
2x1x2 x2

2 − x2
1

x2
2 − x2

1 −2x1x2

)
, [S115]

where we have used κ =
√

x2
1 + x2

2. Applying Itô’s Lemma to this mapping results in

dµ = 1
2Tr

(
GT HxµG

)
dt + (∇xµ)T GdW

= 4
κ4N2

((
c2T

h2 − s2T
h2
)

x1x2 + cT diag
(
h2) s

(
x2

2 − x2
1
))

dt

+ 2
κ2N
√

c2T h2

((
cT diag

(
h2) sx1 − c2T

h2x2

)
dW1 +

√
s2T h2c2T h2 − (cT diag (h2) s)2x1dW2

)
,

[S116]

containing both a drift (second-to-last line) and a diffusion term (last line).

The impact of noise on κ. We have κ =
√

x2
1 + x2

2 whose gradient and Hessian with respect to x are

∇xκ = 1
κ

(
x1
x2

)
, Hxκ = 1

κ3

(
x2

2 −x1x2
−x1x2 x2

1

)
. [S117]

Applying Itô’s Lemma to this mapping results in

dκ = 1
2Tr

(
GT HxκG

)
dt + (∇xκ)T GdW

= 2
κ3N2

(
s2T

h2x2
1 − 2cT diag

(
h2) sx1x2 + c2T

h2x2
2

)
dt

+ 2
κN
√

c2T h2

((
c2T

h2x1 + cT diag
(
h2) sx2

)
dW1 +

√
s2T h2c2T h2 − (cT diag (h2) s)2x2dW2

)
,

[S118]

again containing both a drift and a diffusion term.

B.3. Neural noise models. To get a better understanding of the resulting µ and κ dynamics, we will now consider different noise
models. In particular, we will consider additive, Poisson-like multiplicative, and Weber-like multiplicative noise. The difference
between Poisson-like and Weber-like multiplicative noise is that, for Poisson-like noise, the noise variance scales with neural
activity, whereas, for Weber-like noise, it is the noise standard deviation that scales with neural activity. While we make
no assumptions about the shape of population activity for the additive noise case, we will assume sinusoidal activity for
multiplicative noise

rj ≈ κ cos (µ− ϕj) + b = κ cos(µ) cos (ϕj) + κ sin(µ) sin (ϕj) + b = x1cj + x2sj + b, [S119]

where b denotes the baseline activity. This assumption is required to find analytical results, and is warranted by noting that
our single-population networks were designed to filter out higher-order Fourier components, such that their contribution should
be minimal.

Additive noise. For additive neural noise we assume h(rj) = hj = σnn, independent of neural activity. This leads to

c2T
h2 = s2T

h2 = N

2 σ2
nn, cT diag

(
h2) s = 0, [S120]

where we have taken the large-N integral limit for the involved sums. Substituting these expressions into Eqs. [S116] & [S118]
results in

dµ =
√

2σnn

κ2
√

N
(−x2dW1 + x1dW2) , [S121]

dκ = σ2
nn

κN
dt +

√
2σnn

κ
√

N
(x1dW1 + x2dW2) , [S122]

with moments

⟨dµ⟩ = 0, ⟨dκ⟩ = σ2
nn

κN
dt, [S123]

var (dµ) = 2σ2
nn

κ2N
dt, var (dκ) = 2σ2

nn

N
dt, [S124]

cov (dµ, dκ) = 0. [S125]

This shows that additive neural noise causes µ to only diffuse without introducing additional drift, and κ to both drift and
diffuse. The drift of κ is obvious in hindsight, as it corresponds to the on average increasing radius of a two-dimensional random
walk.
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Poisson-like multiplicative noise. For Poisson-like multiplicative noise we assume h(rj) = hj = α
√

rj such that, by Eq. [S106],
the noise variance, var (drj) = α2rjdt is linear in the neuron’s activity rj . Assuming population activity to be described by
Eq. [S119] results in

c2T
h2 = s2T

h2 = α2Nb

2 , cT diag
(
h2) s = 0. [S126]

where we have again taken the large-N integral limit for the involved sums. Substituting these expressions into Eqs. [S116] &
[S118] results in

dµ =
√

2bα

κ2
√

N
(−x2dW1 + x1dW2) , [S127]

dκ = α2b

κN
dt +

√
2bα

K
√

N
(x1dW1 + x2dW2) , [S128]

with moments

⟨dµ⟩ = 0, ⟨dκ⟩ = α2b

κN
dt, [S129]

var (dµ) = 2α2b

κ2N
dt, var (dκ) = 2α2b

N
dt, [S130]

cov (dµ, dκ) = 0. [S131]

The moments are the same as for the additive noise model with a baseline activity-dependent noise variance σ2
nn = α2b.

Weber-like multiplicative noise. For Weber-like multiplicative noise we assume h(rj) = hj = αrj such that, by Eq. [S106], the
noise standard deviation,

√
var (drj) = αrj

√
dt is linear in the neuron’s activity rj . Assuming again that population activity is

described by Eq. [S119] results in

c2T
h2 = Nα2

2

(1
4
(
x2

1 − x2
2
)

+ 1
2κ2 + b2

)
, s2T

h2 = Nα2

2

(1
4
(
x2

2 − x2
1
)

+ 1
2κ2 + b2

)
, cT diag

(
h2) s = Nα2

4 x1x2.

[S132]
Substituting these expressions into Eqs. [S116] & [S118] results in

dµ =
√

2α
√

1
4 κ2 + b2

κ2
√

N
√

1
4 (x2

1 − x2
2) + 1

2 κ2 + b2

(
−
√

1
4κ2 + b2x2dW1 +

√
3
4κ2 + b2x1dW2

)
[S133]

dκ = α2

κN

(1
4κ2 + b2

)
dt +

√
2α
√

3
4 κ2 + b2

κ
√

N
√

1
4 (x2

1 − x2
2) + 1

2 κ2 + b2

(√
3
4κ2 + b2x1dW1 +

√
1
4κ2 + b2x2dW2

)
. [S134]

with moments

⟨dµ⟩ = 0, ⟨dκ⟩ = α2

κN

(1
4κ2 + b2

)
dt, [S135]

var (dµ) = 2α2

κ2N

(1
4κ2 + b2

)
dt, var (dκ) = 2α2

N

(3
4κ2 + b2

)
dt, [S136]

cov (dµ, dκ) = 0. [S137]

In summary, neither noise model results in a drift in µ, but all cause its diffusion with a diffusion variance that depends
on the chosen noise model. As this diffusion holds irrespective of whether the system is at its attractor states, these results
generalizes previous results for diffusion close to the attractor state (22). Furthermore, all noise models result in a positive
drift in κ away from the origin, as well as a noise model-dependent diffusion variance. In all cases, both drift and diffusion
magnitude for both µ and κ drop with N , and so become negligible once the population becomes significantly large, again
generalizing the results in (22) to dynamics away from the attractor state.

C. Compensating for noisy neurons when performing inference. As we have seen, neural noise affects both the dynamics of
µ and κ. For all noise models, it adds a zero-mean diffusion to µ, and a positive drift and diffusion to κ. The additional
perturbations are all of order 1/N and so become negligible once the neural population becomes sufficiently large. For small
population sizes, however, it might introduce perturbations that significantly impact inference accuracy in the network filter,
or, in other words, to significantly deviate from the circular Kalman filter. Here we discuss how to qualitatively counter-act
these perturbations to keep their impact to a minimum.

Let us first focus on µ. Without neural noise, the circular Kalman filter already assumes µ a-priori to follow a zero-mean
diffusion on the circle, Eq. [S3], and additional diffusion due to noisy angular velocity observations, Eq. [S1]. Both reduce
certainty in the HD estimate, which the filter accounts for by a drop in κ, as implemented by a leak term in Eq. [S20]. The
additional zero-mean diffusion introduced by neural noise further reduces the HD estimate’s certainty and thus needs to be
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accounted for by an additional leak of κ whose strength depends on the noise model. Thus, the impact of neural noise on µ can
be adequately accounted for by an additional leak of κ.

The impact of neural noise on κ requires a similar counter-measure. Without neural noise, the leak in the dynamics of κ,
Eq. [S20], results in a leaky accumulation of all remaining terms. This also applies to diffusion introduced by neural noise:
it will be integrated with leak, resulting its impact to be bounded. The stronger the leak, the weaker its impact. The drift
introduced by neural noise has a different effect: if not accounted for, it would cause the inference of κ to be biased. In
particular, as the drift is positive for all noise models, it would result in an overestimation of κ and so in overconfidence of the
network filter. Fortunately, we can account for this drift with an additional leak term of the same size as the drift. Thus, the
impact of neural noise on κ results in bounded additional diffusion of κ, and a drift that can be accounted for by an additional
leak of κ.

To summarize, neural noise results in an additional, unavoidable diffusion of µ, and a drift and diffusion of κ, both of which
can be accounted for by an additional leak of κ. The exact expression for the required leak depends on the chosen noise model,
and for neither model precisely matches our Bayesian ring attractor’s exact architecture and parametrization. Therefore,
we used numerical optimization to find the parameters that maximize HD tracking performance rather than relying on the
above analytical expressions. As we show in the main text and Fig. S4, in light of neural noise, such a network with re-tuned
parameters outperforms one that is only optimally tuned for the noise-free case, as expected from the above analysis.
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6. Supplementary Figures
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Fig. S1. Encoding the HD with linear probabilistic population codes. a) Tuning curves with respect to encoded HD estimate for small values of encoded certainty κt

are cosine-shaped. Here, we show tuning curves of 8 example neurons with κt = 1 (colors indicate preferred HD ϕi). b) Tuning curves with respect to HD estimate for
large values of encoded certainty κt are von-Mises shaped (same 8 example neurons as in a, but for κt = 10). c) Von Mises probability densities for different values of
encoded certainty κt and fixed mean µt = π

2 . Note that the density sharpens around the mean with increasing certainty. Inset shows vector representation of a von Mises
distribution with mean µt = π

2 , and, respectively, κt = 10 and κt = 1. d) Population activity profile (average neural firing rate conditioned on HD estimate µt and certainty
κt) encoding the von Mises densities with mean µt = π

2 and certainty κt = 1. Neurons are sorted by preferred HD ϕt. Colored dots correspond to activity of neurons with
tuning curves as in a). The phasor representation of the neural activity (inset) matches the vector representation of the encoded von Mises distribution in c. e) Population
activity profile encoding the von Mises densities with mean µt = π

2 and certainty κt = 10. f) Left: The amplitude (Max-Min) of the activity profile scales (approximately)
linearly with certainty κt, except for very small values of κt. Right: The population activity bump’s width (full width at half maximum, FWHM) is mostly unaffected by uncertainty
κt, and saturates at a finite value for large κt, unlike the von Mises distribution it encodes (e.g., b), whose FWHM approaches zero for large values of κt. g-j) The Fourier
component amplitudes of the population activity profile are mostly linear in encoded certainty κt, indicating that (i) the whole profile is scaled by κt, and that (ii) only focusing
on the first Fourier component in our analysis is justified. For the tuning curves, we used ξ = 1 without loss of generality.
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Fig. S2. Network inference performance is mostly independent of the number of neurons N in the Bayesian ring attractor network. Here, for each value of the
observation reliability κz and number of neurons in the network N we compute the circular average distance of the network’s HD estimate µT from the true HD ϕT at the end
of a simulation of length T = 20 from P = 10′000 simulated trajectories. The blue line (hidden below other lines) shows the performance of the quadratic approximation to
the circular Kalman filter that the networks aim to implement. The network parameters of the single-population network in Eq. [S49] were those of the Bayesian ring attractor,
i.e. weven

1 = 1
τ + 1

κϕ+κv
, wodd

1 = κv
κϕ+κv

vt, and wquad = 1
κϕ+κv

. Other simulation parameters were: κϕ = 1, κv = 1, and ∆t = 0.01.
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Fig. S4. Neural noise changes the optimal fixed point amplitude and decay speed. We simulated a network of N = 64 neurons with different levels of additive Gaussian noise
with variance σ2

nnδt to each neuron within each time step δt, for different fixed point amplitudes κ∗ and decay speeds β. As in main text Fig. 3D, the performance of each
network was assessed by its average inference accuracy over different HD observation information rates, weighted by a prior over these information rates (see Methods for
simulation details and parameters). Each panel shows this performance, relative to the best performance of a noise-free network, for a grid over values of κ∗ and β. As can be
seen, the optimal κ∗ and β that maximizes relative performance changes with σnn (purple dot), and differs from the best κ∗ and β for the noise-free network (light blue dot).
In particular, larger noise requires re-tuning the network to use a larger κ∗ and β.
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Fig. S5. Visualizing the HD tracking perfomance measure. To provide a better intuition for the used HD tracking performance measure we here show how a specific
distribution of HD tracking errors (horizontal axis, in degrees) relates to this performance measure. In particular, we drew 10000 samples from a von Mises distribution
µT − ϕT ∼ VM(0, κ), where each drawn sample simulates one single deviation of the estimated HD (i.e., the mean of the filter posterior, µT ) from the actual, true HD, ϕT .
The different panels show the histogram of simulated errors for different κ’s (see panel headings). Our filtering performance measure, that is, the absolute value of the first
circular average of the samples, can be computed for the von Mises distribution via |m1| = I1(κ)

I0(κ) (23). We confirmed numerically that this analytical expression matches
the circular average empirically determined from these simulated errors. Simulating HD tracking errors by draws from a von Mises distribution was here only performed for
convenience. The HD tracking errors arising in simulations of the filtering algorithms do not necessarily follow such a distribution.
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