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Figure S1: A more detailed version of Figure 2, where the individuals mentioned in the text are highlighted.
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Figure S2: Scatter plots of samples on the first two result dimensions of the four multivariate analysis
methods run for this paper (rows of the plot matrix), each in two iterations for the two tested SNP sets
(columns of the plot matrix). Shape and colour according to Figure 1.
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Figure S3: Scatterplots of samples on output dimension one and three for EMU and MDS. Both in two
iterations for the two tested SNP sets: A and C with the unfiltered set, B and D for the filtered one. Samples
handled with capture and shotgun technique are distinguished via dot colour.
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Figure S4: Scatter plots with the (ancient) sample distribution on the first five output dimensions of
projected PCA. The modern reference samples used for the projection are left out for the sake of visual
clarity. For A, B and C: To stay true to a 3D perspective, the printing order of each sample dot is according
to the third dimension (the one not on the two axis) – with lower values always printed first. For A that
means for example that the dots are printed in the order of their coordinate value on C3: Samples with lower
values on C3 are printed first, so they are below samples with higher C3 values. D and E are ordered by C1.
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Figure S5: Diachronic Gaussian process regression interpolation map matrix as in Figure 3, but here for
the first five output dimensions of the projected PCA. Compare Figure S4.
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Figure S6: Interpolation-based reconstruction of the past ancestry development at the spatial position of
modern day city centres. Each ”time-path” in MDS space (see Figure 3) connects the interpolated positions
in steps of 1000 years. The individual steps are colour-coded by age and horizontal and vertical error bars
indicate the standard deviations given by the GPR model for this position. The black, semitransparent
crosses in the background are the ancient samples as in Figure 2.
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Figure S7: Plot matrix similar to Figure 4, but here just the Stuttgart sample with different retrospection
distances through time. The absolute date of a timeslice is given in parentheses.
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Figure S8: Plot matrix similar to Figure 4, but here not just for the product of two similarity search dimensions
(MDS C1*C2), but for the individual projected PCA dimensions (PCA C1-C10, on the left), and their cumulative
products (on the right). To simplify the comparison, colours were assigned to the facet labels. These feature the
sample ID, an approximate age and the retrospection distance applied.
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Figure S9: Continues Figure S8.
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Figure S10: Regional mobility curves just as in Figure 5 for the mobility estimation run with the first two MDS dimensions (MDS2). Identical
to Figure 5, but with the two additional regions Southeastern Europe and Western Pontic Steppe.
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Figure S11: Regional mobility curves for an mobility estimation run with the first five Projection PCA dimensions (PCA5). Beyond that just
as Figure S10. See Figure S34 for a direct comparison.
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Figure S12: Regional mobility curves for an mobility estimation run with the first two MDS dimensions (MDS2) and a lower retrospection
distance.
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Figure S13: Regional mobility curves for an mobility estimation run with the first two MDS dimensions (MDS2) and a higher retrospection
distance.
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Figure S15: Another view on the data in Figure S10. The same sliding window used to calculate the
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vectors smaller, in between and bigger 500, 1000 and 2000 kilometres. These fractions are displayed as region-
wise stacked area charts. No-data windows are left blank.

16



0 − 500 AD 500 − 1000 AD 1000 − 1500 AD

1500 − 1000 BC 1000 − 500 BC 500 − 0 BC

3000 − 2500 BC 2500 − 2000 BC 2000 − 1500 BC

4500 − 4000 BC 4000 − 3500 BC 3500 − 3000 BC

6000 − 5500 BC 5500 − 5000 BC 5000 − 4500 BC

7500 − 7000 BC 7000 − 6500 BC 6500 − 6000 BC

0 100 200 300 400 500
Time in time window

Figure S16: Another view on the data in Figure S10. Each subplot in the plot matrix covers a 500-year
time window, where each mobility vector is shown as a white line, connecting the sampling location (so
usually the place of death) in green with the reconstructed point of highest genetic similarity one default
retrospection distance in the past. These points are coloured by a gradient indicating sample age within the
respective 500-year time window. This is helpful to see some processes, for example in the 2500-2000BC time
window. 17



B Meta information for the Datasets S1, S2 and S331

Dataset S1: Sample context information32

Lists context information for all individuals/samples that went into the analysis.33

1. Sample ID: An identifier for the individual/sample (taken from the AADR’s ”Version ID”)34

2. Genetic Sex: Genetic sex as listed in the AADR35

3. Group Name: A ”population”/group the individual is attributed to in the AADR dataset (AADR:36

”Group ID”)37

4. Publication: Publication from which the data for the respective sample was taken. The short pub-38

lication keys are resolved on the AADR website: https://reich.hms.harvard.edu/allen-ancient-dna-39

resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data (AADR: ”Publication”). The40

publications providing the samples are also listed in section D at the end of this document41

5. Country: The modern day country where the sample was recovered (AADR: ”Country”)42

6. Region: The spatial macroregion the sample is coming from (as defined for this paper, see Figure 1)43

7. Latitude: Latitude of sample location (AADR: ”Lat.”)44

8. Longitude: Longitude of sample location (AADR: ”Long.”)45

9. Date BC AD Start: Likely starting point of the age range of the sample. Negative values indicate46

years BC, positive values years AD47

10. Date BC AD Median: Likely center point of the age range of the sample48

11. Date BC AD Stop: Likely end point of the age range of the sample49

12. Date C14: Radiocarbon dates recorded for this sample in the AADR50

13. Age Group: Millennium into which Date BC AD Median falls51

For the dating information we parsed the AADR column Full Date: One of two formats. (Format 1)52

95.4% CI calibrated radiocarbon age (Conventional Radiocarbon Age BP, Lab number) e.g. 2624-2350 cal-53

BCE (3990±40 BP, Ua-35016). (Format 2) Archaeological context range, e.g. 2500-1700 BCE. Contextual,54

archaeological age ranges are directly represented here in Date BC AD Start and Date BC AD Stop,55

with Date BC AD Median as the center point of a uniform distribution between start and end. When56

radiocarbon dates were available (listed in Date C14), we recalibrated them with the IntCal20 calibration57

curve to determine the 95.4% range and the center of the post-calibration probability density distribution for58

Date BC AD Start, Date BC AD Stop and Date BC AD Median. Multiple dates were combined59

as a simple, normalized sum of said distribution (”sum calibration”).60
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Dataset S2: Results of multivariate analysis61

Shows the result coordinates for the multivariate analysis with EMU, MDS and PCA. Sample ID is shared62

with Dataset S1. The remaining 80 columns emerge as the product of ten output dimensions (C1-C10), four63

multivariate analysis methods (EMU, MDS, PCA, Projection PCA) and two SNP sets (unfiltered ”u”, filtered64

”f ”). Each column name encodes this parameter combination as follows: {output-dimension} {multivar-65

method} {SNP-set} (e.g. C1 mds u, C3 pca proj u).66

Dataset S3: Results of the large-scale mobility estimation67

Includes summary statistics for the large mobility estimation run. See Supp. Text 3 for more details on68

this algorithm. Sample ID is shared with Dataset S1. The columns from column 5 onwards appear in69

multiple iterations for the permutations of spatiotemporal dimensions, multivariate analysis methods and70

retrospection distances. All values are rounded to full integers.71

1. Sample ID: An identifier for the individual/sample (taken from the AADR’s ”Version ID”)72

2. search x: The spatial x-axis coordinate of the (archaeological) site where a sample was found. Coor-73

dinates are rounded and given in kilometres according to EPSG:3035 (ETRS89 Lambert Azimuthal74

Equal-Area, ”European grid”) after conversion from the AADR’s WGS 84 latitude and longitude co-75

ordinates76

3. search y: The respective y-axis coordinate77

4. search z: Rounded mean age of the sample across the temporal resampling iterations The similarity78

search was repeated in many iterations with different ages drawn from the age range probability79

distributions. search z is the rounded mean of these values80

5. field [xyz] {multivar-method} {retrospection-distance}: Mean (across the temporal resampling81

iterations) spatiotemporal coordinates of the field point with highest similarity probability: The mean82

end point of the mobility vector83

6. ov [xy] {multivar-method} {retrospection-distance}: Mean (across the temporal resampling it-84

erations) length of the mobility vector in x or y direction85

7. ov dist {multivar-method} {retrospection-distance}: Mean (across the temporal resampling it-86

erations) length of the mobility vector. See Supp. Text 3 for more details on how exactly this mean is87

calculated.88

8. ov dist se {multivar-method} {retrospection-distance}: Standard error of the mean of all tem-89

poral resampling iteration mobility vector lengths90

9. ov dist sd {multivar-method} {retrospection-distance}: Standard deviation of all temporal re-91

sampling iteration mobility vector lengths92

10. ov angle deg {multivar-method} {retrospection-distance}: Direction of ov dist as an angle93

in degree (0− 360◦)94
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1 Supplementary Text: Creating a simplified genetic space95

For the analysis in this paper it was necessary to derive simplified, genetic ancestry components for each96

ancient DNA sample that should be considered in the spatiotemporal model. Each sample should be geneti-97

cally positioned with coordinates in an n-dimensional space, where n is far smaller than the several hundred98

thousand single nucleotide polymorphisms (SNPs) potentially available for it. Such dimension-reduction is a99

common application in archaeogenetics, where multivariate analyses are usually employed to make complex100

admixture patterns readily accessible for visual inspection. Among the most popular methods is principal101

component analysis (PCA) with modern reference samples, onto which ancient samples are mathematically102

projected [1].103

1.1 Finding the most suitable multivariate analysis method104

We explored different ways of dimension reduction, and different numbers of target dimensions n . We limited105

our search to n ≤ 10 and the following four methods:106

� MDS as implemented in plink v1.9 [2] using 1-IBS pairwise distances107

� PCA as implemented in the smartsnp R package v1.1 [3] with simple mean-frequency imputation of108

missing values109

� Projection PCA as implemented in smartsnp with a set of modern, Western Eurasian reference popu-110

lations extracted from the AADR dataset111

� EMU, a PCA implementation with significantly more sophisticated imputation of missing values com-112

pared to PCA. Provided by the emu command line tool v0.9 [4]113

Figure S2 shows the scatter plots of the first (C1) and the second (C2) output dimension for these114

methods. The subplots E and F already indicate that simple PCA with mean imputation is not capable115

to distinguish spatiotemporal clusters as clearly as the other methods, which we think is due to the under-116

performing imputation of missing data in ordinary PCA using mean allele frequencies. Experiments with the117

correlation and out-of-sample prediction analysis below confirmed this observation: Simple PCA performed118

worse there by a factor of 2 to 3. We therefore decided to exclude this method right away from further119

consideration.120

We also saw a clear separation of samples that were prepared via untargeted shotgun sequencing and121

samples that went through a target-enriching capture preparation step (usually for the 1240K SNP set) on122

the third output dimension of both the MDS and the EMU analysis (Figure S3). This effect was already123

highlighted by Margaryan et al. 2020 (Supplementary Note 8 - Genetic clustering) [5]. In an attempt to124

mitigate the effect of this undesired, as for our analysis irrelevant, cofactor, we applied a simple associa-125

tion analysis (plink --assoc) to identify and remove SNPs from our input dataset, that are significantly126

correlated with the shotgun vs. capture variable (p < 0.001).127

That left us with the following SNP filter workflow and two main SNP sets for the comparison analysis:128
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# of samples # of SNPs Identifier SNP set
Starting point (AADR V50.0, 1240K) 10391 1233013
- Selecting spatiotemporally relevant samples
- Removing samples below data quality threshold
(SNP count, contamination)
- Genomic range filtering according to [6, 7]
(see Materials and Methods in the main text)
- Removing SNPs below a 1% minor allele
frequency threshold

3530 963289

- Removing samples from related individuals
- Removing SNPs below a 5% maf threshold

3191 847053 unfiltered SNP set

- Removing SNPs that are associated to
shotgun vs. capture data preparation
- Removing samples now below SNP count threshold

3138 705367 f iltered SNP set

To make an informed decision about which of the remaining multivariate analysis methods (MDS, Projec-129

tion PCA or EMU), number of dimensions n, and SNP set (unfiltered or filtered) to use, we employed three130

quantitative measures that, as we argue below, are informative on the suitability of a given genetic space to131

allow for good similarity probability estimates with a spatiotemporal model as desired for this analysis:132

� Normalised mean Euclidian distance in the reduced genetic space for very low spatiotemporal distance133

pairs (the ”nugget”)134

� Correlation of pairwise (reduced) genetic and spatiotemporal distance135

� A normalized measure of true and estimated distances in the reduced genetic space (according to the136

eventually desired spatiotemporal interpolation model)137

Figure S17 summarizes the results for these metrics.138

The nugget term in S17 A is introduced in more detail below in Supp. Text 2. It is calculated inde-139

pendently for every output dimension of the respective multivariate analysis and functions as a normalized140

proxy for pairwise genetic distances of samples that are close in space and time (often even from the same141

archaeological site or burial context). For this plot the nuggets are determined not directly from the (genetic)142

output coordinates, but for the residuals of a linear model (see Supp. Text 3). As they are computed from143

pairs of samples close-by in space and time, nuggets are a direct estimate of local noise in the reduced genetic144

space. We generally observe lower nuggets for the first output dimensions compared to more derived ones,145

which indicates that the first dimensions have a higher signal to noise ratio. The increase of the nugget146

along the dimension count is not linear, though, with different growth patterns for the different multivariate147

methods.148

The measure in Figure S17 B is calculated as the correlation of pairwise ”genetic” distance (Euclidean149

distance in the multivariate output dimension space up to dimension n, so e.g. C1-C7 for C7), and pairwise150

spatiotemporal distance (Euclidean spatiotemporal distance scaled with 1 year = 1 kilometre) (e.g. Figure151

S18). We report the R2 value to summarise the output, so a higher value indicates a stronger correlation. All152

methods perform generally well, and higher-dimensional spaces seem to be linked to some degree to higher153

correlations for MDS and EMU up to C7. This does not necessarily contradict the results for the nugget154

term: Here long-distance correlation dominates the result, which is deliberately omitted in the nugget. We155

also observe, that the filtered SNP set performs consistently worse in all instances of this correlation test,156

probably because the filter is not perfect and also removes valuable information.157
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Figure S17: Various measures to compare differently calculated genetic spaces.

Figure S17 C summarises the measure we ultimately consider the most informative: The predictive158

accuracy of a spatiotemporal Gaussian process regression model in a cross-validation setup as explained in159

Supp. Text 2. Each dimension for each multivariate method is modelled independently with the ideal nugget160

and kernel parameter setting for a 9/10 training dataset. We then compare the difference of actual and161

predicted values for a 1/10 test dataset through the multivariate output dimension space (again: for example162
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C7 on the x-axis means C1-C7). The differences shown in Figure S17 C are normalised by the mean pairwise163

distance in said space to make them comparable across methods (a similar normalisation as done in the164

calculation of the nugget). Projection PCA performs best by that metric, especially for higher-dimensional165

spaces. EMU and MDS lose accuracy quickly, the former already for C1-C3, the latter after C5. Note that the166

general increase of values towards more included dimensions is expected due to the ”curse of dimensionality”.167
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Figure S18: Correlation of pairwise genetic and spatiotemporal distance with genetic distance in two- or
three-dimensional MDS space. The pairwise distances are counted in bins and plotted as a density raster.

To conclude, the observations for these three measures together do not necessarily lead to an obvious168

decision which multivariate analysis method, n, and SNP set is optimal for the spatiotemporal mobility169

estimation we want to attempt. In an iterative process we could rule out some options, though:170

The reduced, filtered SNP set performs almost always worse than its unfiltered counterpart. It clearly171

avoids some of the shotgun vs. capture bias, but there seems to be spatiotemporal information encoded172

exactly in this distinction – maybe through a complex interaction of the archaeological record, preservation173

and research history. We seem to be better off with the additional 140,000 SNPs and decided to abandon174

the filtered dataset.175

The question which multivariate method to use is harder to decide – at least for low-dimensional spaces.176

Our understanding is, that Projection PCA, EMU and MDS generally perform similarly well on C1 and C2,177

with various local optima where one method trumps the others. Here we resorted to external factors, like178

the complexity of the underlying algorithm and the amount of additional parameters necessary for a given179

method, assuming that simpler and less is generally preferable. EMU employs a relatively complex imputation180

algorithm on top of normal PCA, and Projection PCA requires a set of modern reference populations, which181

has critical influence on the genetic space it generates. We therefore decided to rely on MDS (MDS2) for the182

analysis presented in the main text. This includes the implicit assumption that the method would produce183

similar and robust results even with other pairwise distance metrics beyond the 1-IBS measure we employed.184
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A forced limitation to C1 and C2 has the additional advantage that a 2D ”genetic map” is relatively easy to185

visualize and understand – one can intuitively conclude that its structure is meaningful on the spatial and186

temporal scale of our analysis.187

For higher dimensions beyond C2, MDS and EMU can be ruled out entirely due to the extreme bias the188

shotgun vs. capture distinction introduces (Figure S3) and which we could not reliably cancel out via SNP189

filtering. Projection-based PCA has a massive advantage here, as it relies on an optimized, external data190

source to inform the structural properties of the genetic space. It is robust for all the ten dimensions we191

tested, and adding more dimensions could barely deteriorate correlation or predictive accuracy. It is unclear192

though, how many of these additional components n add value to the similarity search implemented for this193

paper. Figure S8 explores this question with a set of test individuals and search settings. Adding dimensions194

beyond C3 does not visibly change the respective probability landscapes, but the position of maxima can195

suddenly change, if there are multiple relevant peaks. It is likely that this effect would continue also beyond196

C10. Based on the observation that the estimated values for
√
θs and

√
θt seem to follow a different dynamic197

from C5 onwards for the PCA (Figure S17, D & E), which indicates some change in the setup of these198

variables, we decided to only consider C1-C5 (PCA5) for a second run of the mobility curve determination199

for Western Eurasia (beyond MDS2).200
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2 Supplementary Text: Interpolation parameter estimation201

A key component of this paper is the interpolation of a genetic ancestry field based on the output dimen-202

sions of different multidimensional analysis methods. Here, we use Gaussian process regression, which is a203

parameterised method. The following section explains the process we went through, to find an optimal set of204

parameters. For increased clarity the plots only show the results for the first two or three output dimensions205

of our MDS run with the unfiltered SNP set (see Supp. Text 1). As discovered above, the third dimension206

is highly biased by the library preparation (capture vs. shotgun) and not directly correlated to space and207

time. When we include it below, then only as a didactic reference point.208

We consider a number of individuals distributed in space and time, with a single-dimensional (scalar)209

genetic MDS (or PCA) component as dependent variable. We use the notation (xi, yi, ti, gi) to denote for210

each data point i the set of spatial coordinates (xi and yi), an age ti and the value of the genetic component211

gi.212

We intend to model our data points as a random Gaussian process, for which we are using the laGP R213

package for local approximate Gaussian process regression [8]. As a technical note, one of the assumptions214

in this package is a mean of zero in the Gaussian process, which we exactly achieve by first fitting a linear215

model to the data, and then considering the residuals instead of the original genetic values.216

In mathematical terms, the model including the linear fit can be presented as

g ∼ ax+ by + ct+ g′(x, y, t) (1)

where g′ reflects a mean-zero random field, which we model with GPR. For simplicity, and because this is a217

one-time operation, we just continue using the notation gi, now actually denoting the residuals of the linear218

model instead of the raw genetic component.219

A key ingredient for Gaussian process regression is the covariance kernel function, for which we here220

follow the standard choice of a squared exponential, which in general terms for p-dimensional input data221

and in the notation of laGP is defined as222

Cov(x, x′) = τ2

(
exp

[
−

p∑
k=1

(xk − x′
k)

2

θk

]
+ ηδ(x− x′)

)
(2)

where x and x′ are positions in p-dimensional space, and θk are lengthscale parameters for each dimension223

k. η is a dimension-less additional noise term to be added only if x = x′, using the delta-distribution, the so224

called nugget term. τ2 is a general scaling parameter.225

Specifically for the purpose of spatio-temporal modelling with isotropic space, we write this covariance226

function as227

Cov(r, u) = τ2

(
exp

[
−
(
r

ρ

)2

−
(u
α

)2]
+ ηδ(x− x′)

)
(3)

where we have changed notation slightly, and introduced the spatial kernel radius ρ and the tempo-228

ral kernel radius α, which by construction have now length- and time-dimensions (measured in years and229

kilometres, respectively).230
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Figure S19: Empirical semivariogram rasters calculated including all samples in the analysis dataset, with
one plot for each ancestry component (MDS coordinate) C1 and C2. The fill colour represents the mean
squared pairwise distance in the respective space-time bin. For some basic detrending these distances were
calculated not directly on the ancestry components, but on the residuals of a simple linear model, where the
genetic coordinates for each sample are predicted by their spatiotemporal position.

2.1 Variogram analysis231

One possibility to inspect plausible parameters for τ , η, ρ and α as defined in 3 is variogram analysis (see232

also [9], [10]).233

It is instructive to first consider variograms in the context of continuous fields, where the field value234

g(x, t) is defined at all spatial points x (which in our case are two-dimensional) and all time points t. The235

semivariogram is then defined as the mean squared difference of field values at given spatial and temporal236

distances:237

V (r, u) =
1

2
⟨(g(s, t)− g(s+ r, t+ u))2⟩s,t (4)

where the average runs over all space-time points (s, t).238

Under the assumption of constant variance ⟨g(s, t)2⟩ = ⟨g(s+ r, t+ u)2⟩ for all s, r, t, u, we can establish239

the relationship of the semivariogram and the covariance function of the Gaussian process:240
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V (r, u) =
1

2
⟨(g(s, t)− g(s+ r, t+ u))2⟩s,t

=
1

2
⟨g(s, t)2 − 2g(s, t)g(s+ r, t+ u) + g(s+ r, t+ u)2⟩

=
1

2

(
⟨g(s, t)2⟩ − 2⟨g(s, t)g(s+ r, t+ u)⟩+ ⟨g(s+ r, t+ u)2⟩

)
=

1

2
(Cov(0)− 2Cov(r, u) + Cov(0))

= Cov(0)− Cov(r, u)

(5)

with Cov(r, u) = ⟨g(x, t)g(x+ r, t+ u)⟩241

So the variogram is directly related to the covariance of the Gaussian process:242

V (r, u) = Cov(0)− Cov(r, u) (6)

Following ref. [10] (p.30), the empirical semivariogram, defined for a set of actual datapoints, can243

be computed as a binned version of the continuous semi-variogram definition employed above. Specifically,244

instead of continuous spatial and temporal ”radius” values r and u, as in the continuous version, we now245

consider bins Rk = (rk, rk+1) and Ul = (ul, ul+1), with boundaries r1 < r2 < . . . and u1 < u2 < . . .. We then246

write247

V (k, l) =
1

2N(k, l)

∑
i,j

(gi − gj)
2I

(√
(xi − xj)2 + (yi − yj)2 ∈ Rk, |ti − tj | ∈ Ul

)
(7)

where I(condition) is an indicator function that is 1 if the condition is true and zero otherwise, and the248

normalization N is249

N(k, l) =
∑
i,j

I(
√
(xi − xj)2 + (yi − yj)2 ∈ Rk, |ti − tj | ∈ Ul) (8)

Figure S19 is one way to visualize this empirical semivariogram V (k, l) as a raster plot. The bins Rk and250

Ul are here chosen such that ri − ri−1 = 100km and ul − ul−1 = 100years.251

To finally determine the kernel parameters from equation 3, one needs to fit the variogram using the252

kernel covariance function, thereby learning the four kernel parameters τ2, η, ρ and α. We realised that in253

the case of our data, this was unfortunately not possible, as we cannot co-estimate Cov(0) and the kernel254

radiuses simultaneously. Consider Figure S20, which shows only a single cut through the semivariogram. In255

this case, we aim to fit three parameters from this curve (since we consider only the temporal dimension256

now). The squared exponential form has three features that we expect to see in the semivariogram: i) An257

offset at t = 0 (the left hand side of the variogram), ii) the scale of the increase towards larger values of t, and258

iii) the height of the plateau of the semivariogram. These three features are related to the three parameter259

we seek to fit. However, the expected plateau is in our case however never reached. Instead, the covariances260

in the genetic space continue to increase towards larger values of temporal distance t. A similar effect is261

seen in one-dimensional cuts through the spatial component of the semivariogram. We believe the lack of262

an implicit scale in the semivariogram suggests the presence of many different temporal and spatial scales263

in human genetic relatedness (due to various evolutionary processes and mobility acting also on multiple264

scales), which precludes estimating a kernel width from the semivariogram directly. The degeneracy of the265
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semivariogram can be directly demonstrated by fitting two kernel models with very different parameters in266

Figure S20.267
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Figure S20: A variogram for one time slice (x ∈ [0, 100]) with two different, but equally well fitting
exponential models.

Indeed: For (r/ρ) ≪ 1 we have268

Cov0 − Cov0 ∗ exp(−(r/ρ)2) =

Cov0
(
1− exp(−(r/ρ)2)

)
≈

Cov0
(
1− (1− (r/ρ)2)

)
=

Cov0
ρ2

r2

(9)

where we have used the Taylor expansion for the exponential function: exp(x) = 1 + x + O(x2). So for269

small values of r/ρ (i.e. long before a plateau gets reached) we get an approximate squared function with a270

coefficient of Cov0/(ρ
2), which shows that the model is approximately invariant under changes of Cov0 and271

ρ2 that leave the ratio constant. This is the case in the two curves above. We don’t get into the plateau of272

the variogram, so can not fit Cov0 and ρ independently. We concluded that empirical variograms can not be273

used for kernel length estimation in this particular context, and turned to different estimation approaches274

below.275

However, the variogram at least exposes an approach to estimate the variance τ2 and nugget term η (as276

in equation 2). First, from the form of the covariance function 3 we have Cov(0, 0) = τ2(1+ η). At the same277

time, for small but non-zero values of r and u we have Cov(r → 0, u → 0) = τ2. So for the semivariogram278

we get:279

V (r → 0, u → 0) = Cov(0, 0)− Cov(r → 0, u → 0) = τ2(1 + η)− τ2 = τ2η (10)
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Figure S21: Violin- and boxplot of the detrended pairwise distance distribution for different ancestry
components in a short and narrow temporal and spatial distance window (< 50km & < 50years). The
diamond shaped dot is positioned at the mean point of the distribution.

For the nugget term we have now an estimator

η̂ =
V (r → 0, u → 0)

τ2
(11)

This can be readily derived, since the variance τ2 can be estimated as the overall sample variance of the

data, i.e.

τ̂2 =
1

N

∑
i

(gi − ḡ)2 (12)

where N is the number of data points and ḡ is the mean genetic value.280

Figure S21 shows the distribution of pairwise squared genetic distances for samples that are less then 50281

years and 50 kilometres apart. Each distance value is scaled according to the estimator defined in equation 11282

and the mean of these pairwise distances is a good default for the nugget term of a given ancestry component283

(see also Figure S17 A). So these means are what we used for the nugget terms throughout the paper. Note284

how the result for the third MDS output dimension is 2-3 times bigger than for the first two. This is certainly285

a consequence of the low spatiotemporal correlation of this variable uncovered in Supp. Text 2.286

2.2 Maximum likelihood estimation287

As a second method for kernel-width estimation, we turn to maximization of the likelihood. The laGP package288

[8] provides two different maximum likelihood estimation (MLE) algorithms for automatic kernel parameter289

exploration in anisotropic spaces: mleGPsep and jmleGPsep. According to the manual, mleGPsep uses L-290

BFGS-B optimization (a limited memory quasi-Newton approximation of the Broyden-Fletcher-Goldfarb-291

Shanno algorithm) to get an estimate of θ (ρ and α above). It allows for joint estimation of θ and the292

nugget η with a common gradient. jmleGPsep on the other hand is explicitly designed for joint inference by293
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iterating over the marginals of θ and η. laGP allows to set starting parameters and search boundaries for294

both algorithms with the helper functions darg and garg. According to the manual, these ”leverage crude295

summary statistics” over the independent and dependent input variables to define sensible defaults.296
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Figure S22: Results of the kernel parameter estimation with the laGP maximum likelihood algorithms
mleGPsep and jmleGPsep. Each dot represents the result of one run for one parameter. For each permutation
of algorithm and ancestry component 5 runs were calculated.

mleGPsep and jmleGPsep as implemented in laGP are generally not well suited for spatiotemporal data297

without inherent latitudinal or longitudinal bias, as they optimize each input dimension separately: Instead298

of one spatial kernel radius θs and one temporal kernel radius θt, they effectively yield two separate values299

for θs, one for the spatial x axis (θx), and one for the spatial y axis (θy). Despite this, we decided to apply300

the algorithms here to get a first estimate for θ and to test our previous conclusion concerning η.301

Figure S22 shows the result of multiple runs for each combination of algorithm and ancestry component.302

The estimated θ values for the three dimensions are very similar between the two algorithms (mleGPsep and303

jmleGPsep) but different for the three ancestry components modelled with the Gaussian process (C1, C2304

and C3 in MDS space). Note that we report
√
θ instead of θ, since that has the more interpretable unit305
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(kilometres and years, respectively), see equation 2. The values for the first two MDS output dimensions306

are relatively large, but seem at least generally plausible, given how far the influence of each point could307

”radiate” in a squared exponential model and how far prehistoric interaction networks may have spanned308

(see Figure S23 to get some intuition). This does not hold for the biased MDS dimension C3, where
√
θs is309

estimated to be about 20 times smaller than
√
θt.310
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Figure S23: Example curves to illustrate the behaviour of a squared exponential function Kij =

exp(
−∥xi−xj∥2

θ ) with different values of θ. The ”pairwise distance” could for example be in kilometres or
years.

One consistent observation across all three ancestry components considered here, is that θx should be311

different from θy for an optimal model. So the above mentioned anisotropy issue does indeed affect the312

outcome of the parameter estimation and poses a form of overfitting. We do not believe though that a model313

with a latitude-longitude mismatch is justified in this context.314

The estimated values for η are about one order of magnitude smaller than the ones estimated from the315

variogram. We assume this to be an effect of the implausible anisotropy. Experimental interpolation test316

runs with η < 0.04 led to overfitting in settings with fixed θx = θy and we therefore decided to keep η as317

decided above.318

laGP also provides the function mleGP to estimate θ and η in isotropic systems and we decided to employ319

this algorithm as well. To account for the anisotropic nature of the space-time relationship we introduced a320

scaling factor that manipulates the temporal axis. Starting from the default 1 (1km = 1y) we increased and321

decreased the scaling factor in a rescaling sequence from 1/10 to 2. Figure S24 documents the result: mleGP322

yields only one value for θ, which reacts to the forced temporal ”contraction” and ”inflation”. One way to323

imagine this is a rigid sphere in a changing cuboid universe: We contract or inflate the cuboids z-axis and324

estimate for each setting i) if a sphere is a good assumption for predicting observations (Figure S24 B) and325

ii) which radius the sphere should ideally have (Figure S24 A). As stated above, we used fixed values for η326

here.327

In the MDS setup shown here and for the spatiotemporally informative ancestry components C1 and328
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C2, increasing and decreasing the scaling factor, so temporal inflation and deflation, quickly deteriorates the329

model likelihood. A scaling factor of 1, so θt = θs and 1km = 1y, yields good results for both. The estimates330

for the absolute values of
√
θ are smaller, but on the same magnitude as for the anisotropic estimation above.331

For C3 the algorithm does not detect a local optimum within the search space. Just as observed above with332

the anisotropic mle algorithms, solutions with very small scaling factors, so massively contracted time and333

therefore θt ≫ θs are favoured for this component.334
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Figure S24: Results of mleGP exploration runs with variable scaling of temporal and geospatial space. mleGP
assumes an isotropic sytem.

2.3 Crossvalidation335

As a third and more independent method to estimate θ, we turned towards a simple crossvalidation approach,336

which allows to see the effect of different kernel size values on prediction accuracy and precision. We explored337

a θ grid with 15 values for the spatial kernel size
√
θs = 100, 200, 300, ..., 1300, 1400, 1500 km and 15 values338

for the temporal kernel size
√
θt = 100, 200, 300, ..., 1300, 1400, 1500 years. The nugget term η was again339

fixed as decided above. Our crossvalidation algorithm includes the following steps and was applied for each340

ancestry component and θs and θt combination separately:341

1. Randomly reorder the observations342

2. Split the observations into 10 groups343

3. Build a laGP GPR model from 9 of the 10 groups and use it to predict the 10th. Do this for all344

combinations of groups345

4. Calculate the distance between real and predicted value for each observation346

As these steps are also repeated 10 times, this crossvalidation is computationally very expensive and was347

calculated on a high performance computing cluster. The fast approximate GPR implementation in laGP348

helped substantially to make this feasible.349

Figure S25 shows the distributions of a large sample of normalized (to the range of the ancestry compo-350

nents) distance values. As expected, the distances form a distribution around zero. Most predictions are in351

a 10% margin around the observed ancestry data. That means that i) the GPR models are generally good352
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Figure S25: Distribution of 200,000 randomly drawn deviations out of all crossvalidation prediction-
observation distances. The distance values were normalized to the total range of the respective ancestry
component.

at predicting the ancestry of unknown observations and ii) there must exist multiple combinations of θs and353

θt that yield a solid GPR model.354
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Figure S26: Crossvalidation results (mean squared differences between prediction and observation) of the
first three ancestry components of MDS and projected PCA for different θs and θt combinations. The
combinations of θs and θt with the best mean predictive power are highlighted in red.
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The latter is confirmed when we look at the mean squared difference rasters in Figure S26 A and B.355

Generally, good predictions are possible in a remarkably large corridor of θs and θt value permutations. The356

red crosses in the plots mark the lengthscale parameter combination with the best predictive capabilities for357

the respective ancestry component. The figure also includes the results for the third MDS dimension (C)358

which shows how clearly it deviates in its spatiotemporal behaviour. The results for the first three dimensions359

of the projected PCA (D, E and F) are added as well, to further illustrate what we already derived from360

Figure S2 D and E in Supp. Text 1.361

We conclude that large (multiple hundred kilometers and years) kernels with θt ≈ θs have the best mean362

postdictive power for the European spatiotemporal ancestry field given the amount and distribution of the363

data and the ancestry components (MDS2, PCA5) considered for our study. This was already indicated by364

maximum likelihood estimation with the laGP functions mleGPsep and jmleGPsep, and then confirmed by365

a large scale crossvalidation. This crossvalidation yields robust and reproducible results and the analysis in366

this paper therefore relies on the kernel settings estimated through it. See the following table for the most367

important values used, or Figure S2 for a summary of all estimated parameters for each ancestry component.368

Multivariate method Dimension
√
θx

√
θy

√
θt η

MDS2 C1 900 900 800 0.0710309
MDS2 C2 900 900 600 0.0589138
PCA5 C1 1000 1000 700 0.0790766
PCA5 C2 800 800 800 0.0806609
PCA5 C3 900 900 800 0.1412002
PCA5 C4 700 700 700 0.4677798
PCA5 C5 900 900 800 0.3623957

Beyond that we also experimented with smaller kernels and kernels with θs ≪ θt and θs ≫ θt. Above369

results indicate that a rather large range of covariance functions may yield satisfying models, and for the370

mobility estimation attempted here, smaller kernels may theoretically be more useful. They could produce371

stronger and more sharply bounded signals for specific events of change. A kernel with a high θs and θt372

on the other hand may obscure phenomena of temporal change by smoothing them out and by artificially373

attributing them an earlier starting and later end time. In the end, though, our experiments left us to believe374

that the different plausible kernel choices yield rather similar patterns for the mobility estimation and we375

focused on only one, numerically optimal setting.376
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3 Supplementary Text: The similarity search algorithm377

The main question for this paper was to estimate and quantify genetic spatiotemporal similarity and therefore378

ancestry relocation through human mobility. We assume this can in principle be done because people carry379

their genetic ancestry profiles with them when they move. Mobility estimation requires i) a suitable dimension380

reduction for ”ancestry”, ii) a handle on the sparseness of genetic data and iii) an algorithm to derive a381

probabilistic measure of genetic similarity for individual samples through space and time, which considers382

aforementioned sparsity. We finally need iiii), a method to assess the similarity space to quantify meaningful383

signals of possible mobility.384

We deal with the first requirement with different multivariate methods, which assign every individual385

two or more principal components (see Supp. Text 1). For simplicity, in the following sections we will only386

assume a single principal component, called C. The second requirement can be solved by interpolation387

through Gaussian process regression, as implemented in the laGP R package [8]. With a suitable kernel (see388

Supp. Text 2), this yields an estimate of the genetic ancestry component C as a smooth function in space389

and time. ”Smooth” here means that our function C is continuous and differentiable within the focus area390

and focus time. Our solutions for the third and fourth requirement will be explained below.391

3.1 Ancestry and sample-wise similarity fields392

Consider a genetic component C as a function of a 2D spatial position x and y and time t. Then, our genetic393

component is a function C(x, y, t), like for example a temperature ”field”. Keeping y and t fixed, along x the394

theoretical field and the samples from which it is derived may look like Figure S27 A. In this example, the395

genetic component C follows a gradient with lower values on the left side (say, ”West”) and higher values396

on the right side (say, ”East”). Thanks to our probabilistic interpolation method, each point of our field397

has an uncertainty reflecting the heterogeneity and sparsity of observations around it, which we abbreviate398

σ(x, y, t). In practice, we consider a finite number of positions for which we determine the interpolation mean399

C and variance σ (Figure S27 B).400

Now, consider a focal archaeogenetic sample Sx,y,t with ancestry component Cs, a measurement of the401

ancestry component at a given point in space and time (Figure S27 C). We can write down the conditional402

probability that our individual with ancestry Cs matches our ancestry field C at location (x, y, t) using the403

normal distribution (for brevity we hide t):404

p(Cs|x, y) = N (C(x, y), σ(x, y)) =
1

σ(x, y)
√
2π

e−
1
2 (

Cs−C(x,y)
σ(x,y) )

2

From a Bayesian perspective, this is the conditional probability of observing data Cs under a model405

(x, y), where ”model” here simply refers to an unobserved similarity point. Such a conditional probability,406

where the data appears left and the model parameters right is a likelihood. We can flip this using Bayes’407

formula to obtain the posterior probability for (x, y) given data Cs, using a prior probability p(x, y):408

p(x, y|Cs) =
p(Cs|x, y)p(x, y)

Z(Cs)

where Z simply is the normalization constant that makes this expression a valid probability over x, y:409

Z(Cs) =

∫
x

∫
y

p(x, y|Cs)dxdy
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Figure S27: Schemata to explain the similarity search algorithm.

This leads to a posterior ”similarity” probability for potentially any point in space, so a similarity410

probability field. In our implementation the resolution of this field is limited by the regular, interpolated411

search grid (Figure S27 D & E).412

For real-world data this operation requires some further generalisation. Above we had a single component413

C(x, y), but actually we have multiple, typically at least C1(x, y) and C2(x, y). To combine the two, we414

simply compute probabilities p1(x, y|Cs1) based on C1(x, y) and the focal value Cs1, and p2(x, y|Cs2) based415

on C2(x, y) and the focal value Cs2. To get a combined similarity probability, we multiply the two and416

normalise again.417

Real world data is also not precisely positioned in space and – even more severely – time, e.g. through418

uncertainties in absolute dating, where most input samples informing the interpolated field are either dated419

with radiocarbon ages or through archaeological context information. For the former we can derive a complex420

post-calibration radiocarbon probability distribution, for the latter at least a uniform probability distribution421

from the potential start to the potential end point. One solution to consider this is through iterations of422
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random sampling, which leaves us with sampling iterations for C and thus p(x, y|Cs). In this case a combined423

probability field could be calculated as the mean of the individual fields, but for our large-scale mobility424

proxy (see below) we in fact computed separate mobility vectors for each temporal resampling iteration.425

3.2 Diachronic mobility proxy426

For derived applications and as a simpler summary statistic we give special consideration to the maximum427

of the posterior probability at a given time before the age of a sample of interest, so the spatial position428

of maximum genetic similarity OS in a past reconstructed similarity field (Figure S27 F). If we compute429

C for a sample Sx,y,t not at the time t, but for a previous time step t − u, then OS can be considered a430

measure of a likely point of ”origin” for the ancestry profile of S at t− u. The vector −→xS , pointing from S to431

OS then becomes a measure of ancestry relocation through time, which is a proxy for mobility: If ∆x ≈ 0,432

then no spatial mobility took place within the time u. For ∆x ≫ 0 we can assume some relocation. u is433

a free parameter and we call it the retrospection distance. The vector with length ∆x we call the mobility434

vector −→xS . It has both an informative length/magnitude and a direction. Many mobility vectors −→xS1 , ...,
−−→xSn435

from samples S1, ..., Sn can be spatially and temporally binned to compute regional and diachronic mobility436

proxies.437

3.3 Concrete steps for the mobility estimation438

For the large-scale mobility estimation performed for this paper, we additionally considered different param-439

eter permutations. Please see the following summary of the concrete steps undertaken. The interpolation440

and similarity search behind other applications in the paper are considerably more simple and require fewer441

summary operations.442

1. For each individual sample S(x, y, t) we interpolated the ancestry fields C1(x, y, t−u), ..., Cn(x, y, t−u).443

This is done for the MDS output dimensions C1 and C2 and for Projection PCA C1-C5 (MDS2 & PCA5,444

see Supp. Text 1). The spatial target cell-size for the grid is set to 100km and for the retrospection445

distance u we iterate through three settings (see Supp. Text 5). The interpolation is repeated in 25446

temporal resampling iterations and we thus get a total of 7∗3∗25 = 525 permutations of the interpolated447

field.448

2. We then calculate the respective 525 similarity probability fields p(x, y|Cs) for each sample.449

3. The 2 or 5 probability fields of the individual ancestry components C1, ..., Cn (2 for MDS and 5 for450

PCA) are then multiplied respectively to derive 2 ∗ 3 ∗ 25 = 150 combined fields for each sample, 75451

for each multivariate method.452

4. For each of these 150 fields and each sample we determine the point of maximum genetic similarity OS453

and the mobility vector −→xS .454

5. This leaves us with 150 vectors for each sample. For each of the three retrospection distances u and455

both multivariate methods, we then combine the 25 temporal resampling iterations to visualize the456

sample-wise results in the mobility figures (Figure 5 and others) with the following operations:457

(a) The length of the mobility vectors as displayed on the y-axis of Figure 5 is calculated by averaging458

the 25 distances between sample location and estimated maximum similarity point for the spatial459
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dimensions x and y separately (Ox and Oy), and then computing the average mobility distance460

d =

√
Ox

2
+Oy

2
. This type of averaging corresponds to computing a vector-wise mean first,461

before computing its length.462

(b) The error bars of the distances are computed as standard deviations of the lengths of the 25463

individual mobility vectors, in order to give an impression of their uncertainty.464

(c) The angle displayed on the colour scale is given by arctan (Oy/Ox).465

6. The actual mobility curve, so the grey line and ribbon in the background of Figure 5 is a region-wise,466

diachronic summary statistic computed for an overlapping sequence of moving time-windows combining467

the sample-wise mobility vectors as follows:468

(a) In a given region for every 400 year time window (one step every 50 years) we compute the469

length of the vector-wise average of the previously computed sample-wise mean mobility vectors.470

In Figure 5 this is shown as a grey line in the background.471

(b) The grey ribbon around that line is defined as ±2 times the standard error of the mean of the472

individual sample-wise distances in a given 400 year window.473
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4 Supplementary Text: A toy simulation to demonstrate the sim-474

ilarity search algorithm475

To explore the robustness of the search algorithm described in Supp. Text 3 we implemented a minimal476

simulation study. For the sake of a minimum of complexity and to stay focused on a basic, key question,477

we decided not to implement a spatiotemporal, agent-based model with artificial genomes or an equivalent478

substitute, but to only consider the very derived proxy of a position along a genetic component like for479

example the first MDS output coordinate. We specifically tried to answer the following question with a setup480

that is as simple as possible both in structure and parameters: How reliable is the spatial similarity search481

given varying genetic between-area distances and how do basic context parameters affect it?482
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Figure S28: Real world examples of the development of C1 mds u (see Supp. Text 1) through time for six
European regions. The three maps on top show the (arbitrary) pairs plotted with a center point and a 500km
radius. The bottom plots show C1 mds u through time, with the individual dots representing samples from
the respective 1000km circles. The smooth curves are the output of the default GPR interpolation established
for this paper at the spatial center points of the regions. The ribbons around the curves cover one standard
deviation. Note that the interpolation is also influenced by samples not in the 1000km circles and thus not
plotted in the bottom plots.

To contextualize this question, it is helpful to consider some of the real world examples reconstructed483

with the data and methodology established for this paper. Ideally a similarity search algorithm should be484

able to distinguish a minimum of two areas independent of its genomic history through time. Figure S28485

shows three pairs of regions and their respective developments along a genetic component C1 mds u (from486

now on only called C1) relevant for the analysis in this paper (see Supp. Text 1). The areas undergo different487

population-level processes, that are indirectly represented by the rough proxy of individual samples on C1.488

The area-pair in Example I expresses a funnel-like pattern, where the genetic profiles of Iberia and the489

Eastern Baltic Sea region gradually get more similar over time. Example II contrasts the relative stability490
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of C1 for Italy since the Neolithic with the rapid changes Southern Scandinavia passes through in the third491

millennium BC. In Example III, Great Britain and Ireland show a generally similar development as the492

Balkans, but lag behind on the Early Neolithic population shift (here disregarding the extreme sparsity of493

pre-Neolithic observations).494

We generally assume, that our similarity search algorithm is capable of distinguishing spatial origins,495

when the spatial distribution of specific genetic components is well accentuated. It should have no problem496

to attribute samples to either Iberia or the Baltics in the fourth millennium BC. It is less certain, though,497

how accurate the search would be in case of a higher degree of similarity, like for example between Britain498

and the Balkans from the fourth millennium onward (only considering C1!).499

4.1 Simulation setup500

For the simulation we assume a world with two spatial (x, y) and one temporal dimension (z). Each of these501

three dimensions scales between 0 and 1 and the space is fully homogeneous and featureless. Within this502

world, observations (”samples”) are randomly distributed following a uniform distribution through space503

and time. The sample size is a variable parameter of this setup to later measure the effect of sample sparsity.504

One quarter of the spatial square landscape passes through a different genetic development as the rest (see505

Figure S29), which puts it more or less apart through time. As an analogy to the real-world C1 mds u, the506

genetic component is represented by a numeric value roughly scaling between 0 and 1.507

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x

y

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x

z

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
y

z

Figure S29: One iteration of the simulated sample distribution with 4× 50 = 200 samples. The three plots
show the spatiotemporal 3D cube world from different perspectives, so the first plot can be understood as a
spatial map. The colors serve to distinguish the two focal areas with divergent genetic developments.

For the population-wise development of this ancestry proxy we consider three scenarios, that are inspired508

by the real-world observations in Figure S28: A scenario linear, where the two spatial areas are genetically509

different at the beginning (so at z = 0), but become more similar over time in a process of linear growth,510

a scenario limited with the same outset, but a faster synchronization through limited growth (reaching511

almost full identity at z = 1), and finally a scenario intertwined, where the similarity in ancestry increases512

in an oscillating pattern (Figure S30 A). Each sample Sx,y,z gets a genetic component C according to these513

time-dependent scenarios. The ”simulated” observation is sampled from a normal distribution with a fixed514

standard deviation of 0.1 and whose mean is defined by the respective scenario.515

C(Sx,y,z) ∼ N (scenario(z), 0.1)
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We rerun this whole system across the three different scenarios (linear, limited and intertwined), three516

different sample sizes (4 × 10 = 40, 4 × 50 = 200 and 4 × 100 = 400) and 100 resampling iterations, where517

both the spatiotemporal positions and the genetic values of the samples vary according to the aforementioned518

priors.519
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Figure S30: ”Genetic” development through time for the artificial simulation scenarios. A shows the three
theoretical models, B randomly sampled iterations of these scenarios with 4× 50 = 200 samples. The fitted
curves are created via the GPR interpolation (just as in Figure S28) at the spatial positions [0.25, 0.75] and
[0.75, 0.25]. The ribbons show one standard deviation of the field.
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4.2 Interpolation520

Figure S30 B shows one resampling iteration for the sample size 4× 50 = 200. The randomly drawn points521

behave according to the input scenarios on the x-axis of the plot matrix. There are three times more blue522

points as there are red points following the spatial setup introduced above (Figure S29), so the red point523

cloud is naturally more sparse.524

To get a better understanding of the Gaussian process regression algorithm employed in this paper and525

to evaluate how well the reconstructed ancestry field captures the respective input scenarios for the pseudo-526

”genetic” component in this simulation, we ran the interpolation for two spatial points within the red and527

the blue area through time and projected mean and standard deviation on to the respective point clouds in528

Figure S30 B. The positions of these points are [0.25, 0.75] for the red area and [0.75, 0.25] for the larger blue529

one (see Figure S29 for reference). So the fairly irregular curves we see in the plot only represent one central530

point within the distinguished areas and are fully dependent on the noisy samples informing the field around531

them through time. They do not capture the input scenarios perfectly and are accurate only to the degree532

the interpolated field does so at this one spatial position. Besides the available input samples, the quality533

of this reconstruction also depends to on the parameters set for the field, namely the characteristics of the534

covariance function (kernel). Here we set the nugget term to η = 0.1 (considering the deviation we set for535

the sampling process generating this artificial data) and varied the lengthscale parameter in three different536

permutations (equal for both spatial and the temporal dimension).537

Unsurprisingly we observe that smaller kernels yield more irregular, larger ones more smooth curves, but538

generally the field succeeds in reconstructing the broad strokes of the input scenarios.539

4.3 Similarity search540

As explained in Supp. Text 3, our similarity search relies on the interpolation of ancestry components and541

the search for points of maximum similarity in time slices of the ”genetic” field. To measure the accuracy542

of the similarity search algorithm in the described simulation setup we constructed the following test: We543

assume a search sample Sz with one (!) genetic component544

C(Sz) = scenario(z)

for a sequence of z = 0.1, 0.2, . . . , 0.9. We omitted x and y here, because they are without effect for the545

similarity search in this application (they would only matter if we were to assign a similarity vector), but546

for the sake of tangibility we imagine this sample to represent an individual who left the red area and is547

now found among the blue samples at [0.75, 0.25]. We now use the similarity search to determine the point548

of highest, interpolated similarity of the field in the same time slices z, given the different system parameter549

permutations.550

Figure S31 shows one run of this experiment for a sample size of 4 × 50 = 200, a kernel size of d = 0.3551

and one arbitrary resampling iteration. For each ancestry scenario nine subplots show the search outcomes552

for different time slices. The orange dot indicates the maximum similarity point, so the derived result of the553

search. Ideally we want this point to be always in the top left quarter of the search map: If it is there, then554

the search yielded an accurate result. Despite the fact we are only considering a single ancestry component555

here, for the linear scenario this is mostly the case through time, although the light blue areas of the556

similarity probability rasters show how the distinction of the red and blue areas slowly fall apart later on557

(see e.g. the field for z = 0.9), as the two populations become less well distinguished by ancestry C. This558
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Figure S31: One iteration of the simulated similarity search through time for the three different simulated
scenarios. Each search time slice (field z) is reflected by one subplot in a matrix of nine plots for each
scenario. The blue raster maps in the background of each of these plots show the similarity probability for
each pixel, with dark blue representing lower and light blue higher probabilities. The maximum likelihood
point is indicated with an orange dot. The red dot marks the (in fact irrelevant) position of the search sample
in the imaginary scenario underlying this figure.

process of deterioration is quicker and more severe for the more challenging scenario limited. Here, the correct559

attribution fails already for z = 0.4, with a high potential similarity probability almost everywhere in the560

square simulation world. For the more complex scenario intertwined, finally, the similarity search reflects the561

volatile development of the ancestry component (see Figure S30 A): For z ≤ 0.4 the model is well able to562

distinguish the areas, for z = 0.5 it fails, for z = 0.6 & z = 0.7 it works again to then finally fall apart for563

z ≥ 0.8.564

The example in Figure S31 is informative, but as a single iteration not conclusive on the behaviour of the565

search in the above established simulation setup. For that we have to consider more parameter permutations566

and a representative number of resampling iterations. Figure S32 summarises runs across three different567

samples sizes, three different ancestry scenarios and three different interpolation kernel sizes. Each of these568

combinations is resampled 100 times. For all 3 ∗ 3 ∗ 3 ∗ 100 = 2700 permutations we run the similarity search569

for the nine time slices and check for each of them, if the result point is within the spatial top left (”red”)570

quadrant of the simulation world. If this is the case, we count this run towards the number of ”correct”571

maximum similarity attributions as plotted on the y-axis. of Figure S31. If this number reaches 100, so572

includes every single one of the resampling iterations, then the search algorithm managed to detect the573

correct origin area in 100% of the random spatiotemporal sample distributions. If this proxy goes down to574

25, then it does not perform better than a random coordinate generator, which would place approximately575

25 of 100 runs in the correct quarter of the simulation world.576

A closer look at this figure reveals a number of important observations: The three different ancestry577

scenarios yield vastly different results. linear is simple and keeps the two areas apart just until the very578

end. Irrespective of sample- or kernel size the similarity search accuracy is high. It is slightly lower, though,579

at the end of the time sequence (so when the two areas are becoming more similar, see Figure S30), if580

either the sample or the kernel size is too small. For the limited scenario the observed accuracy is much581
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linear limited intertwined
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Figure S32: Results of the permutation analysis for similarity search accuracy given different parameter
settings. Each of the 27 subplots for one of the three scenarios, one of the three population sizes and one of
the three kernel sizes, summarises 900 runs of the search in the artificial simulation setup: 100 for each of the
9 time slices. The time slices are distinguished on the x-axis, and the y-axis thus encodes how many of the 100
searches per slice yielded an accurate search result. The horizontal line at y = 25 is the random-attribution
baseline, which hints at a fully failing similarity search if undercut.

lower. Especially for very low sample sizes a distinction of the two source areas is barely possible for later582

time slices. Increasing the kernel size helps to smooth out sampling gaps and keeps the accuracy above the583

random-threshold. The intertwined scenario highlights how quickly the similarity search can fall apart, but584

also recover again in case of opposing and overlapping genetic developments for the two focal areas. It fails585

dramatically for z = 0.5 no matter the model parameter settings.586

4.4 Conclusion587

The purpose of this simulation exercise was to get a better understanding the robustness of the similarity588

search algorithm in different scenarios. From our analysis we conclude, that said robustness is high and589

should generally be suitable for real-world data on the orders of magnitude relevant for this paper. There590

are, of course scenarios, where the algorithm fails to yield meaningful output. These are notably significant591

bi-directional genetic turnover, so when two regions swap their genetic make-up, and extensive cross-regional592

synchronization. The former can be considered unlikely or at least rare, but the latter is a defining property593

of the Western Eurasian archaeogenetic record for various regions after the Bronze Age, which happens to594

be a focal research context for this study.595

We considered this setup in the artificial limited scenario of this simulation and learned that large sample596

sizes and large kernel sizes improve the accuracy of the search considerably. Larger kernels allow the past597

to inform the present, which is a reasonably safe default for the similarity search application. For the large598

scale mobility estimation attempted in this study, we even emphasised this effect through the introduction599

of the retrospection distance parameter.600

We finally highlight two more features of our similarity search algorithm that mitigate undesired effects:601

1.) By picking not just one, but two or more ancestry components, we render it less likely that two regions602
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become fully similar in their ancestry profile. Two or more dimensions are less likely to be spuriously similar.603

2.) Our algorithm is probabilistic, and reveals for each sample a probability distribution through space, which604

captures the full uncertainty of our search. So in cases of ambiguity, we expect the probability distribution605

to reflect this ambiguity and make it transparent to a user of our method.606
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5 Supplementary Text: Mobility curve exploration607

5.1 Two additional regions: Southeastern Europe and Western Pontic Steppe608

For conciseness we decided to only discuss four mobility analysis regions in the main text: Britain and Ireland,609

Central Europe, Iberia and Italy. We ran the mobility estimation for all samples, though, and defined two610

additional regions to be considered here now: Southeastern Europe and the Western Pontic Steppe (see611

Figure S10).612

Southeastern Europe stands out in our analysis, because we could include a high number of compara-613

tively early samples from the Mesolithic, e.g. M96 [11]. All of them are from the small and extraordinary614

Iron Gates area in Serbia and Romania, where the Danube passes between the Balkan Mountains and the615

Southern Carpathian Mountains range. During the 6th millennium BC, correlating well with the beginning616

of the Neolithisation in the region [12], we observe the emergence of non-locality signals: The ancestry pro-617

file of Early Neolithic individuals like e.g. I3948 [13] from the Adriatic coast points to Western Anatolia.618

Surprisingly, for the individual I2534 [13, 14], we observe a long mobility vector to the North, even after619

the onset of the Neolithic. This individual might not necessarily have been (personally or through their620

immediate ancestors) part of any permanent long-range mobility: they lived at a time and place where new621

ancestry was arriving with the Neolithic package – rapidly changing the local ancestry landscape – and their622

genetic ”displacement” thus becomes an indirect proxy of the major mobility event surrounding them. The623

unexpected peak with northwestern direction in the 5th millennium is carried by chalcolithic individuals624

from Bulgaria (all from ref. [13]), whose mobility vectors point to Central Europe. Unlike other European625

regions, the arrival of Steppe ancestry in Southeastern Europe is more gradual, beginning earlier and less626

abruptly [13]. Few individuals show a clear mobility signal pointing to the far Northeast – e.g. I4175 [13].627

For later periods, finally, we observe some remarkable outliers with strong mobility signals: For example628

the Hungarian Bell Beaker I2787 [15], the Iron Age Scythian DA197 [16] or the Migration Period Hunnic629

individual HUN001 [17].630

Even further to the East, in the Western Pontic steppe (including the area north of the Greater Caucasus631

mountain range), we see a quite varied account of ancestry influx. For the Ukrainian samples from the sixth632

millennium and before, Mathieson et al. 2018 [13] report ancestry on a cline between Eastern-, Scandinavian633

Mesolithic- and later Western Hunter-Gatherers. This genetic affinity is reflected in the first increase of634

signal we observe mainly from the Northwest during the sixth millennium, confirming previously described635

similarities in the developments in Eastern and Northeastern Europe [18]. Only at the beginning of the636

fifth millennium one extraordinary individual (I3719) stands out with ”entirely northwestern-Anatolian-637

Neolithic-related ancestry” [13] and thus long-distance affinity to the West and Southwest. Most data for638

the Neolithic and the Bronze Age is from the Caucasus region and documents a complex, though relatively639

local mobility history [19]. Within this time frame, multiple Globular Amphora context individuals (e.g.640

ILK003 [13]) from present-day Ukraine show a strong mobility signal from the West. During the Iron Age,641

more individuals with a relatively long-distance mobility signal appear, for example cim359 [20] and MJ-13642

[21]. Their mobility vectors point to the opposite ends of Europe, possibly illustrating the region’s position643

as a bridge between Europe and Central Eurasia, housing different equestrian steppe nomad populations –644

e.g. Cimmerians, Scythians, and Sarmatians. This generally holds true into historical times, including the645

Migration- [16] and Medieval Periods (e.g. VK542 [5]).646

46



5.2 Comparing different mobility curves647

The mobility estimation presented in this paper depends on a large number of parameters. For many of them648

there is no naturally optimal choice, so we had to make multiple intuitive or empirically informed decisions.649

Supp. Text 1 explains how we selected the simplified genetic space to interpolate for our ancestry field and650

how we settled on a 2D MDS and a 5D projection-based PCA. Supp. Text 2 explains how we determined651

the parameters for the Gaussian process regression interpolation. As explained in Supp. Text 3, another key652

parameter arises from the retrospection distance that should be used for the similarity search algorithm in653

our large scale mobility estimation.654
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Figure S33: Retrospection distance settings for the different runs.

Figure S33 shows that we eventually decided to consider three values for the retrospection distance,655

informed by an assumed temporal kernel size of
√
θt = 800: An intermediate one based on the point of656

Cov(x, x′) = 0.5 (default), a low one at Cov(x, x′) = 0.8 (low) and a high one at Cov(x, x′) = 0.2 (high).657

For each of these settings we reran the mobility estimation and produced the curve plots Figure S10, S12658

and S13. An additional version in Figure S11 shows the PCA5 result, again with the default retrospection659

distance. Figure S34 is finally an attempt to visualise the major differences between these iterations.660

The curves for all three experimental settings (Figure S11, S12, S13) are generally similar to the default661

(S10). The main peaks and depressions generally overlap and seem to be detected robustly. A number of662

differences emerge, though: A lower retrospection distance generally causes shorter mean mobility vectors,663

whereas a higher one causes the peak similarity to be further away. This is a strong signal, but not surprising:664

It is plausible that the further one goes back in time, the further away ones ancestors might have lived665

originally. Especially the main long-distance events during the Early and Late Neolithic get exaggerated by666

this effect (see e.g. the timeseries for the Stuttgart sample in Figure S7) and only few contexts and individuals667
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seem to deviate from this general pattern entirely.668
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Figure S34: Comparison of different mobility estimation runs in a plot matrix. Each row of the plot matrix
covers one analysis region, each column one of the three additional run configurations. The dots show the
length of the summarized mobility vectors of one sample, just as in Figure 5. Vertical lines connect the
results for the given run and the MDS2 run with default retrospection distance as in Figure 5 and Figure
S10. The diverging colour scheme of these lines highlight when, where and to which degree the runs yield
different mean mobility vector lengths.

The difference between the MDS2 and the PCA5 run are less systematic. For various regions and time669

periods, e.g. Britain and Ireland before 3000BC, Central Europe in the Late Neolithic and the Early Bronze670

Age, Iberia after AD and Italy between 2500 and 500BC, the PCA5-based search finds some markedly longer671

vectors. For Britain and Ireland after 3000BC and most notably Iberia before 2500BC the opposite is the672

case. A look at the outlier or peak-mobility individuals highlighted in the main text and above points towards673
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more conservative estimates for the PCA5 run: Outliers in the MDS2 run with default retrospection distance674

usually also emerge as outliers when the retrospection distance is modified, but often don’t with PCA5. This675

applies especially for individuals from the Western Pontic Steppe, Iberia and Italy.676
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[20] Maja Krzewińska et al. “Ancient genomes suggest the eastern Pontic-Caspian steppe as the source of723

western Iron Age nomads”. In: Science Advances 4.10 (Oct. 2018), eaat4457. doi: 10.1126/sciadv.724

aat4457.725

[21] Mari Järve et al. “Shifts in the genetic landscape of the Western Eurasian steppe associated with the726

beginning and end of the Scythian dominance”. In: Curr. Biol. 29.14 (July 2019), 2430–2441.e10. doi:727

10.1016/j.cub.2019.06.019.728

51

https://doi.org/10.1126/sciadv.abe4414
https://doi.org/10.1126/sciadv.abe4414
https://doi.org/10.1126/sciadv.abe4414
https://doi.org/10.1016/j.cub.2016.12.060
https://doi.org/10.1016/j.cub.2016.12.060
https://doi.org/10.1016/j.cub.2016.12.060
https://doi.org/10.1038/s41467-018-08220-8
https://doi.org/10.1038/s41467-018-08220-8
https://doi.org/10.1038/s41467-018-08220-8
https://doi.org/10.1126/sciadv.aat4457
https://doi.org/10.1126/sciadv.aat4457
https://doi.org/10.1126/sciadv.aat4457
https://doi.org/10.1016/j.cub.2019.06.019


D Bibliography: AADR Dataset729

[1] Cristina Gamba et al. “Genome flux and stasis in a five millennium transect of European prehistory”.730

In: Nat Commun 5.1 (Oct. 2014). doi: 10.1038/ncomms6257.731
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[6] Iñigo Olalde et al. “A Common Genetic Origin for Early Farmers from Mediterranean Cardial and740

Central European LBK Cultures”. In: Mol Biol Evol (Sept. 2015), msv181. doi: 10.1093/molbev/741

msv181.742

[7] Iain Mathieson et al. “Genome-wide patterns of selection in 230 ancient Eurasians”. In: Nature 528.7583743

(Nov. 2015), pp. 499–503. doi: 10.1038/nature16152.744

[8] Lara M. Cassidy et al. “Neolithic and Bronze Age migration to Ireland and establishment of the745

insular Atlantic genome”. In: Proc. Natl. Acad. Sci. U.S.A. 113.2 (Dec. 2015), pp. 368–373. doi:746

10.1073/pnas.1518445113.747

[9] Morten E. Allentoft et al. “Population genomics of Bronze Age Eurasia”. In: Nature 522.7555 (June748

2015), pp. 167–172. doi: 10.1038/nature14507.749

[10] Torsten Günther et al. “Ancient genomes link early farmers from Atapuerca in Spain to modern-day750

Basques”. In: Proc. Natl. Acad. Sci. U.S.A. 112.38 (Sept. 2015), pp. 11917–11922. doi: 10.1073/pnas.751

1509851112.752

[11] Wolfgang Haak et al. “Massive migration from the steppe was a source for Indo-European languages753

in Europe”. In: Nature 522.7555 (Mar. 2015), pp. 207–211. doi: 10.1038/nature14317.754

[12] Ayça Omrak et al. “Genomic Evidence Establishes Anatolia as the Source of the European Neolithic755

Gene Pool”. In: Current Biology 26.2 (Jan. 2016), pp. 270–275. doi: 10.1016/j.cub.2015.12.019.756

[13] Farnaz Broushaki et al. “Early Neolithic genomes from the eastern Fertile Crescent”. In: Science757

353.6298 (July 2016), pp. 499–503. doi: 10.1126/science.aaf7943.758
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[51] G. González-Fortes et al. “A western route of prehistoric human migration from Africa into the Iberian845

Peninsula”. In: Proc. R. Soc. B. 286.1895 (Jan. 2019), p. 20182288. doi: 10.1098/rspb.2018.2288.846

54

https://doi.org/10.1038/s41598-018-33067-w
https://doi.org/10.1038/nature25738
https://doi.org/10.1038/nature25778
https://doi.org/10.1073/pnas.1719880115
https://doi.org/10.1016/j.cub.2018.06.053
https://doi.org/10.1016/j.cub.2018.06.053
https://doi.org/10.1016/j.cub.2018.06.053
https://doi.org/10.1126/sciadv.aat4457
https://doi.org/10.1126/sciadv.aao1262
https://doi.org/10.1038/s41586-018-0094-2
https://doi.org/10.1126/science.aar7711
https://doi.org/10.1038/s41598-018-35667-y
https://doi.org/10.1038/s41467-018-07483-5
https://doi.org/10.1371/journal.pbio.2003703
https://doi.org/10.1126/science.aax6219
https://doi.org/10.1080/03014460.2019.1623912
https://doi.org/10.1080/03014460.2019.1623912
https://doi.org/10.1080/03014460.2019.1623912
https://doi.org/10.1038/s41467-018-08220-8
https://doi.org/10.1038/s41467-018-08220-8
https://doi.org/10.1038/s41467-018-08220-8
https://doi.org/10.1073/pnas.1818037116
https://doi.org/10.1098/rspb.2018.2288


[52] Hannes Schroeder et al. “Unraveling ancestry, kinship, and violence in a Late Neolithic mass grave”. In:847

Proc. Natl. Acad. Sci. U.S.A. 116.22 (May 2019), pp. 10705–10710. doi: 10.1073/pnas.1820210116.848

[53] Helena Malmström et al. “The genomic ancestry of the Scandinavian Battle Axe Culture people849

and their relation to the broader Corded Ware horizon”. In: Proc. R. Soc. B. 286.1912 (Oct. 2019),850

p. 20191528. doi: 10.1098/rspb.2019.1528.851
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