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Supporting Information Text15

Distance Metric Selection. PROST represents proteins in a small, compressed embedding matrix. To find out the homology of16

two given proteins, we calculate the distance between the compressed embedding matrices. We evaluated different distance17

metrics. Table S1 shows the area under the curve scores for the prediction of PFAM (1) protein pairs that are taken from the18

max50 benchmarking dataset (2). In this test, 5x44 quantization of the 34th layer is used as a compressed representation of19

given proteins. We selected the L1 distance metric because it is cheap to calculate and gives the best result after the dynamic20

time wrapping (DTW) method (3).21

Compressed Protein Representation Optimization. There are several objectives in the choice for the protein representation:22

• Capturing the most essential information from the embeddings. Surprisingly, when no compression is applied to either23

dimension (Layer 34, N× 1280), the accuracy for the Pfam dataset given by the AUC metric is already 91.6%, only 7.4%24

lower than the selected compression scheme (Layer 26, 5 × 44 and layer 14, 3 × 85).25

• Reducing the size of the database, so it will fit into RAM memory, for faster search times. Our goal is to fit the NCBI26

non-redundant database into commodity server-grade memory.27

• A small number of columns in the protein representation matrix won’t need alignment so that the distance will be28

sufficient for searching and scoring.29

ESM1b language model has 34 output layers. Fig. S1-a shows the performance for different layers of the ESM1b. The first30

layers perform poorly. However, the best performing layer is not the last layer (34), but instead, it is layer 26. We found that31

using two different layers with two different compression levels increases the performance considerably. Next, we tried to find32

best compression ratio. Fig. S1-b shows the heatmap of AUC scores with different parameter selections with the distance33

metric. We used AUC for the PFAM dataset when the 34th layer of ESM1b is used with different compression ratios. The34

X-axis shows the number of columns we preserve in the embedding, and vice versa Y-axis shows the number of rows compressed35

embedding has. There it can be seen that as the number of columns increases, the distance metric performs poorly since we are36

nearer to a full residue representation. However, a higher row count increases the AUC score as more information is available37

for the comparisons. Nevertheless, high dimensionality increases the demand for memory, resulting in database fragmentation38

leading to substantially longer search times. DTW method is better than other distance metrics because it is similar to global39

alignment. We wanted to investigate the effects of alignment (DTW) on the compressed representations. Fig. S1-c shows the40

difference between the L1 and DTW metrics in predicting homology. We saw that when the number of columns is low (<10),41

then the difference between the two methods is negligible. However, the DTW method has O(n2) time complexity, while the42

L1 method can be computed in O(n). Due to this, we used L1 distance in the PROST pipeline. Finally, a compression scheme43

that uses layer 26 embeddings with 5 columns and 44 rows and layer 14 embeddings with 3 columns and 85 rows is the best44

option to have state-of-the-art accuracy without needing actual alignments. The memory footprint for each protein is a humble45

475 bytes resulting in easily manageable database sizes.46

While having a low column count in protein representation allows us to use the L1 metric instead of alignment, having a47

high number of rows allows us to represent proteins more completely. We tried different compression ratios and found if we use48

a 3x1280 compression ratio with layers 14 and 26, we can maximize the prediction performance, albeit at the cost of a bigger49

representation. We termed this bigger representation as PROST-L. Compared to PROST, PROST-L has 16 times bigger50

protein representation while only minimal performance increase in the max50 benchmark. Table S2 shows that PROST-L has51

99.3% AUC for PFAM pairs while PROST has 99% AUC, only a 0.3% difference. However, PROST-L performs considerably52

better than PROST in the nomax50 benchmark but not as good as PHMMER. Due to this, we selected a smaller representation53

with minimal accuracy loss to maximize the PROST pipeline’s speed and focused on detecting global homologs.54

Statistical Significance Test in PROST Pipeline. PROST generates distances for a query protein against every protein in a55

database. These distances will form a distribution. Any query protein may have hundreds of homologs (outliers with small56

distances in the distance distribution) within a database of more than half-million proteins. This makes using a z-score quite57

effective in judging similarities and differences when there are multiple protein homologs identified by PROST. Robust z-scores58

normalize the distribution by using medians instead of means and median absolute deviations (MAD) instead of standard59

deviations (4). A multiple test p-value correction should be applied because we test homologies for thousands or even millions60

of proteins. In the PROST pipeline, we use robust z-scores with Bonferroni multiple test corrections (5). Accordingly, a cut-off61

value (ex: 0.05) can be used for the expected values to find good homologs within the database.62

PROST Has Linear Runtime. PROST searches have linear time complexity that depends on the size of the target database.63

Fig. S2 shows empirical test results with different database sizes used to query a protein. Time requirements increase linearly.64

The exact search time for SwissProt (6) database is just 1.02 s ± 7.3 ms which ∼ 0.65 s of it is for the startup overhead and65

embedding the query sequence and ∼ 352 ms is the actual search time with a single-core AMD EPYC 7543.66

PROST is the Best Tool in the max50 Benchmark Dataset. Table S2 shows the AUC and AUC1000 scores of common homolog67

detection tools. PROST has the best results on all 3 datasets. PROST-L has slightly higher scores with a 16-fold more memory68

requirement.69
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PROST is a global homology detection tool. Table S3 shows that PROST only have mediocre performance on the nomax5070

dataset which focuses on the local homology detection due to the unlimited undefined regions between defined domains.71

PROST-L compared to PROST has considerably high performance but not as good as current tools. PROST performs close to72

level of NCBI-BLAST (7) and the method that only uses the mean of the last layer (ESM1bL34M (8)) performs the worst.73

Moreover, Fig. S3 shows the predicted outcome of protein pairs with the differences in sizes between query and target proteins74

in the max50 dataset. It can be seen that as the size difference increases PROST performance decreases. PROST is clearly75

better at whole protein homolog identification. To exemplify PROST performance on a big and diverse protein family, we have76

searched Human Zinc finger protein 268 (Q14587) with PROST and BLAST on the SwissProt database. BLAST found 160577

homolog while PROST only found 560 homologs. High number of homologs may not be found by outlier detection method78

PROST currently uses. Accordingly, we performed statistical significance test on PROST results by first filtering probable79

homologs by distance threshold and then calculating the mean and median for statistical significance test. With that we were80

able to find 3 more sequences, totaling to 563. This test showcases the global alignment nature of PROST and presents the81

local alignment weakness. The SwissProt database contains more than 1/2 million sequences. Accordingly, the newly purpsed82

e-value calculation doesn’t have a major impact. We compiled this result and presented at the SI dataset 1.83

Threshold Selection Based on Benchmark Results. Benchmarking results in the max50 dataset can be used to select a threshold84

for the distance metric to identify homologs and non-homologs. Using the max50 benchmarking dataset, we have calculated F185

scores for different thresholds and selected 6828.5 since it maximizes the F1 score.86

F1 = 2percision × recall
percision + recall = tp

tp + 1
2 (fp + fn)

[1]87

Distance threshold is useful in several ways. First, it can be used for single comparisons of two proteins. If the PROST88

distance of these two proteins is lower than the threshold they might be homologs. Secondly, the PROST distance is related to89

the phylogenetic distance. Accordingly, PROST distance itself is not only useful for classifying homologs but also useful for90

measuring the closeness of protein pairs.91

PROST on Unannotated Human Proteins. We used PROST on human proteins that are in the SwissProt database and have92

no GO annotation as of March 2022. There are 864 such proteins and 851 of them had Alphafold2 (9) structure predictions.93

BLAST and PROST are used with an e-value of 0.05 to find homologous proteins to these sequences. FATCAT (10), a tool that94

aligns protein structures with twists and rotations, is used to get structural similarity significance for all of the homologs that95

had Alphafold2 predictions. We find PROST results to be more informative. PROST had statistically significant structural96

hits for 73.8%, 628 of human proteins, but BLAST found for only 58%, 494 of human proteins. Sequences are aligned with the97

ProtSub (11) matrix using a gap opening 5 and a gap extension 1 penalties. We took the best structurally aligned homolog98

and made a sequence alignment. Most of these proteins were intrinsically disordered proteins. Accordingly, they have poor99

structural alignment, but the overall protein shapes are similar between query and PROST homolog. Results are given at100

mesihk.github.io/prosthuman.101
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Fig. S1. PFAM AUC Score difference between DTW and L1 metrics when different compression ratios are used. a) Overall prediction performance over the whole
benchmarking dataset when different ESM1b protein language model layers are used with only 5 × 44 quantization. Layer 26 has the best prediction capability. PROST uses
layer 14 coupled with layer 26 to get the best accuracy. b) Effect of different embedding compression ratios on PFAM AUC score. The lower column count has good prediction
capability due to not requiring alignment. A higher row count increases the score with the expense of memory footprint. c) The difference in the AUC scores between the
distance and the DTW technique (global alignment) is shown. When the column dimensionality is below 10, the differences are negligible. The distance calculation has a time
complexity advantage compared to the DTW method.
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Fig. S2. Empirical runtime requirements of PROST searches. The time complexity of performing a homology search with PROST is linear with the size of the target
database. Here we show empirical timing results of PROST with increasing database sizes. Runtime requirement increases in a linear fashion.
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Fig. S3. Prediction outcomes of max50 benchmark protein pairs shown for different protein size differences in the number of residues between two proteins
being compared. For example, if a pair of proteins have lengths of 120 and 230 residues are compared, then the difference in length will be 110. Most protein pairs in the
benchmarks have similar lengths. This figure shows the distribution of predicted results based on the homology label when a threshold of 6828.5 is used. This threshold is
based on the benchmarking dataset found by the maximized F1 score.
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Fig. S4. ROC plots for nomax50 benchmarking dataset. This dataset does not have any length constraint on undefined regions of proteins, and in order for a pair of proteins
to be acceptable homologs, they only need to have the same defined domains in consecutive order. But in between defined domains, they may have an unlimited length of
undefined amino acid sequences. Due to this, this dataset is similar to a local homology test since the undefined regions may be greater in length than the defined regions. The
plots show the overall performance of tested methods as true positive and false positive rates. We ranked each curve based on their performance on the first 10,000 false
positives measured by the AUC10000 metric. We used 10,000 false positives because this dataset contains a total of 180,566 pairs. ROC plots for each database (PFAM (a),
Gene3d (b), and Superfamily (c)) are shown separately. PROST has a mediocre performance signifying its global alignment nature. However, PROST-L has a performance
close to the state of the art. PHHMER performs the best in this benchmark.
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Table S1. Effect of different distance metrics on PFAM dataset

Method PFAM AUC

L1 97.5
L2 97.5
Inner Product 97.3
DTW (3) 97.6
Hausdorff (12) 93.7
Frobenius Norm 97.5
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Table S2. Comparison of Homolog Detection Methods in the max50 Dataset

PFAM Gene3D SUPERFAMILY
Method

AUC AUC1000 AUC AUC1000 AUC AUC1000

PROST-L 99.3 98.2 98.5 95.2 98.7 96.5
PROST 99.0 97.2 98.9 95.7 98.5 95.5
CSBLAST (13) 97.0 92.4 96.3 91.0 96.1 90.0
PHMMER (14) 96.4 92.3 96.2 90.4 95.9 90.4
HHSEARCH (15) 96.7 91.7 96.3 90.1 95.1 87.7
NCBI-BLAST (7) 95.9 90.9 94.4 87.8 93.7 85.7
USEARCH (16) 95.2 89.6 94.0 86.2 93.8 85.3
ESM1bL34M (8) 96.0 89.8 91.9 80.1 92.0 81.1
FASTA (17) 94.6 88.8 93.2 85.2 91.9 83.4
UBLAST (16) 93.2 85.6 91.0 81.6 84.2 78.5
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Table S3. Comparison of Homolog Detection Methods in the nomax50 Dataset

PFAM Gene3D SUPERFAMILY
Method

AUC AUC1000 AUC AUC1000 AUC AUC1000
PHMMER (14) 97.8 95.7 92.3 86.1 92.6 87.4
CSBLAST (13) 97.0 94.4 91.9 85.8 91.8 86.3
PROST-L 96.7 94.8 88.9 84.4 91.1 87.5
HHSEARCH (15) 96.8 94.0 90.7 83.6 91.0 84.7
NCBI-BLAST (7) 96.2 93.5 89.4 82.1 89.5 83.2
PROST 95.4 91.7 87.6 79.4 89.7 83.2
USEARCH (16) 95.2 91.3 87.8 79.0 88.6 81.2
FASTA (17) 94.6 91.1 86.5 78.1 87.1 79.9
UBLAST (16) 92.8 87.8 84.9 75.4 86.6 78.4
ESM1bL34M (8) 90.1 80.5 83.6 69.5 84.9 73.3
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SI Dataset S1 (ZyncFingerAnalysis.xlsx)102

PROST and BLAST search results on Human Zinc finger protein 268 (Q14587) showcases the global alignment nature of103

the PROST.104

References105

1. RD Finn, et al., Pfam: the protein families database. Nucleic Acids Res 42, D222–D230 (2013).106

2. GV Saripella, ELL Sonnhammer, K Forslund, Benchmarking the next generation of homology inference tools. Bioinformatics107

32, 2636–2641 (2016).108

3. S Salvador, P Chan, Toward accurate dynamic time warping in linear time and space. Intell Data Anal 11, 561–580109

(2007).110

4. B Iglewicz, D Hoaglin, Volume 16: how to detect and handle outliers. (ASQC Quality Press Milwaukee (WI, USA))111

Vol. 16, (1993).112

5. JJ Goeman, A Solari, Multiple hypothesis testing in genomics. Stat Med 33, 1946–1978 (2014).113

6. T UniProt Consortium, The universal protein resource (uniprot) 2009. Nucleic Acids Res 37, D169–D174 (2009).114

7. S Altschul, Basic local alignment search tool. J Mol Biol 215, 403–410 (1990).115

8. A Rives, et al., Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences.116

Proc Natl Acad Sci 118, e2016239118 (2021).117

9. J Jumper, et al., Highly accurate protein structure prediction with alphafold. Nature 596, 583–589 (2021).118

10. Z Li, L Jaroszewski, M Iyer, M Sedova, A Godzik, Fatcat 2.0: towards a better understanding of the structural diversity119

of proteins. Nucleic Acids Res 48, W60–W64 (2020).120

11. K Jia, RL Jernigan, New amino acid substitution matrix brings sequence alignments into agreement with structure121

matches. Proteins: Struct , Funct , Bioinf 89, 671–682 (2021).122

12. AA Taha, A Hanbury, An efficient algorithm for calculating the exact hausdorff distance. IEEE PAMI 37, 2153–2163123

(2015).124

13. A Biegert, J Soding, Sequence context-specific profiles for homology searching. Proc Natl Acad Sci 106, 3770–3775 (2009).125

14. RD Finn, J Clements, SR Eddy, Hmmer web server: interactive sequence similarity searching. Nucleic Acids Res 39,126

W29–W37 (2011).127

15. J Soding, Protein homology detection by hmm-hmm comparison. Bioinformatics 21, 951–960 (2004).128

16. RC Edgar, Search and clustering orders of magnitude faster than blast. Bioinformatics 26, 2460–2461 (2010).129

17. WR Pearson, Rapid and sensitive sequence comparison with fastp and fasta. Methods Enzym. 183, 63–98 (1990).130

Mesih Kilinc, Kejue Jia, and Robert Jernigan 11 of 11


