SUPPLEMENTARY FILE FOR

Transcriptional organization and regulation of the *Pseudomonas putida* K1 Type VI secretion system gene cluster

Patricia Bernal^{1,2,3*}, Cristina Civantos¹, Daniel Pacheco-Sánchez¹, José M. Quesada¹, Alain Filloux^{2,4*} and María A. Llamas^{1*}

¹Department of Environmental Protection, Estación Experimental del Zaidín (CSIC), Granada, Spain ²MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences,

Imperial College London, London, UK

³Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain

⁴Singapore Centre for Environmental Life Sciences Engineering. Nanyang Technological University, Singapore

*Correspondence:

P. Bernal, Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain. E-mail: <u>pbernal@us.es</u>
Alain Filloux, MRC Centre for Molecular Bacteriology and Infection, Department of Life

Sciences, Imperial College London, London, UK. E-mail: <u>a.filloux@imperial.ac.uk</u>

María A. Llamas, Department of Environmental Protection, Estación Experimental del Zaidín (CSIC), Granada, Spain. E-mail: <u>marian.llamas@eez.csic.es</u>

This file includes:

Figure S1 and S2 Supplementary Tables 1, 2, 3 and 4 Supplementary references Figure S1

Α

Figure S1. (A) Transcriptional organisation of the K1-T6SS cluster. The genes are located in a 44-kb chromosomal region, which includes the T6SS genes organised in 2 operons and an intermediate region. The primer pairs used to perform RT-PCR are shown in blue and the sequence can be found below in Table 3. (B) PCR analysis with gDNA of *P. putida* KT2440 as control for primer pairs used in RT-PCR analysis shown in Figure 2 to define the transcriptional units of the K1-T6SS cluster. Primer pairs from P11 to P28 were used to amplify gDNA from the structural operon and primer pairs from P29 to P34 were used to amplify gDNA of the *vgrG* operon. Primer pair P35-P36 was used as a negative control in RT-PCR analysis from a non-transcribed region. The band amplified from gDNA confirmed

the functionality of the primer pair used in this assay. (C) Primer extension analysis of total RNA of *P. putida* with primers for P_v to map the transcription start site. The DNA sequence patterned using the DNA Cycle Sequencing kit based on the Sanger method is included in the urea-polyacrylamide sequencing gel.

Figure S2

Figure S2. Expression of the K1-T6SS structural genes. β -galactosidase activity, in stationary phase, of the *P. putida* wild-type and the *rpoS* mutant MR193 strains bearing the pMP220-derivated plasmid containing the P_s transcriptional fusion to the *lacZ* gene. Strains were grown in LB until stationary phase. Data are means \pm SD of three replicates, each one including two technical replicates. P values were calculated by *t*-test analysis as described in Methods.

SUPPLEMENTARY INFORMATION TABLES

Name	Description	Source		
Escherichia coli				
DH5a	F^- endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG purB20 φ80dlacZΔM15 Δ(lacZYA- argF)U169 hsdR17($r_K^-m_K^+$) λ^-	[1]		
Pseudomonas putida				
KT2440R	Rif ^R	[2]		
KT2440R gacS	<i>gacS</i> ::Tn5, Kan ^R	[3]		
KT2440R <i>retS</i>	<i>retS</i> ::Tn5, Kan ^R	[3]		
KT2440R <i>fleQ</i>	<i>fleQ</i> ::Tn5, Kan ^R	[4]		
KT2440 <i>rpoS</i>	Markerless mutant	[5]		
KT2440R <i>rpoN</i>	<i>rpoN</i> :: <i>aphA</i> , Kan ^R	[6]		
KT2442 <i>turA</i>	<i>turA::aphA</i> , Kan ^R Rif ^R	[7]		
KT2442 <i>rpoS</i> (MRB193)	Cm^{R} , Rif ^R	F. Govantes		

 Table S1. Bacterial strains used in this study.

Source Name Description Broad host range, low copy number promoterpMP220 probe vector based on the *lacZ* reporter gene [8] ('lacZ), Tet^R *P. putida* P_{hcp1} promoter region cloned into transcriptional pMPhcp1 pMP220 as a fusion, This study P_{hcp1} ::lacZ, Tet^R P. putida PtagB1 promoter cloned into pMP220 This study pMPtagB1 as a transcriptional fusion, P_{tagBI} :: lacZ, Tet^R P. putida P_{vrgG1} promoter cloned into pMP220 pMPvgrG1 This study as a transcriptional fusion, P_{vrgGI} ::*lacZ*, Tet^R *P. putida* P_{PP3084} promoter cloned into pMPPP3084 pMP220 as a transcriptional This study fusion, P_{PP3084}::lacZ, Tet^R IncQ broad-host range plasmid, *lacIq*; Ap^R pMMB67EH [9] pMMB67EH carrying the P. putida PP3086 pMMBPP3086 This study gene and promoter region; Ap^R

Table S2. Plasmids used in this study.

Table S3. Oligonucleotide primers used in this study. The "Brief description" column provides basic information on the primer design (restriction enzyme used for cloning, encoded protein, forward or reverse orientation of the primer (F or R); QRT stands for qRT-PCR primers, PE stands for Primer Extension primers and RACE stands for Rapid Amplification of cDNA Ends primers) after the / symbol it is indicated the vector where the PCR product have been cloned.

Number	Brief description	Sequence (5'-3')
P1	<i>hcp1</i> .EcoRI.F / pMP220	GGCCGCgaattcACCATCACGCTGGAATCCG
P2	hcp1.KpnI.R / pMP220	GGTATAggtaccGTAAAGGGTTGCTCATGCGC
P3	tagB1.EcoRI.F / pMP220	CCGGgaattcGCGCACAAAATGAGAAC
P4	tagB1.KpnI.R / pMP220	CCTAggtaccATGTGCCTGCTTGATCGT
P5	<i>PP3104</i> .EcoRI.F / pMP220	GCTAgaattcACACCTGCCAGGCAGAT
P6	<i>PP3104</i> .PstI.R / pMP220	ATATctgcagTGGGGTCGGCTGCGGTA
P7	<i>PP3084</i> .EcoRI.F / pMP220	ATATgaattcCGCTACTGGGTAACTGTGG
P8	<i>PP3084</i> .XbaI.R / pMP220	TATAtctagaTGTGGGTGCAGAAATGAAGGTTC
Р9	<i>PP3086</i> .EcoRI.F / pMMB67EH	AATTgaattcGGTCAGTGGCACGCCGCAG
P10	<i>PP3086</i> .HindIII.R / pMMB67EH	AATTaagettGCCGCTTCGCCCAGGATCAG
P11	uvrA-tssA1. F	GAACGCCAACGAGGACTT
P12	<i>uvrA-tssA1</i> .R	GGCAACATGCCGTTGGAA
P13	tssA1-tagP1.F	CCAGCGAGAGGTCATTGAGA
P14	tssA1-tagP1.R	CAACCGCGAACGCAGTTGAT
P15	tagP1-tssM1.F	CCAGGAAGATCGCCAGGAAG
P16	tagP1-tssM1.R	CTTGTCGTGCGCAACTTCGG
P17	tssM1-tssK1.F	CAATGGCAGCAGCAACCAGA
P18	tssM1-tssK1.R	CAGGCCATCTGCTTCTATGC
P19	tssK1-clpV1.F	ACATGCCTTCCGACCACATC
P20	tssK1-clpV1.R	CGCAACATCGACAACATCCT
P21	clpV1-tssF1.F	GACCACTTCTTCGGCCAGTA
P22	clpV1-tssF1.R	TCAGGCCAGGTTCACAAGGCGACC
P23	tssF1-tssC1.F	AAGCGCAGGTGCGACAGTTC
P24	tssF1-tssC1.R	AAGGCCGTGACCTACTTGCG
P25	tssC1-tssB1.F	CATCTGCTCGGAGAGCATCG
P26	tssC1-tssB1.R	AATTGCTCGCACTGGAGAAC
P27	tssB1-tagB1.F	ATGTCCACGTCGTAGGTGAT
P28	tssB1-tagB1.R	ATGGACGATGCACCAATGAC
P29	PP3104-vgrG1.F	CCGGCTATAGTCGTGATTGC
P30	PP3104-vgrG1.R	GCAAGGCCAGATCGAATTCA
P31	vgrG1-tke2.F	TCGGCAGCATCCAGATTCC

P32	vgrG1-tke2.R	CTCCTGTTCCGAAGCCATCGAGCATGC
P33	tke2-tki2.F	ATGCGTTATGTCACTCAGGACC
P34	tke2-tki2.R	CCCAAGACCTGTCAACTTGAT
P35	tagB1-PP3101.3.F	TGCTGCGCTGTGCGCCTTGCAGGTATTC
P36	tagB1-PP3101.3.R	CGATGGTCGTTGAGTTGGAT
P37	<i>hcp1</i> .QRT.F	CCAGGCGAAGTACTGGATGA
P38	<i>hcp1</i> .QRT.R	GCCTTGCGGATCTTGAAGTC
P39	<i>tssB1</i> .QRT.F	AATTGCTCGCACTGGAGAAC
P40	<i>tssB1</i> .QRT.R	ATGTCCACGTCGTAGGTGAT
P41	<i>PP3084</i> .QRT.F	AGCCGTACCGCTTGCCTTTG
P42	<i>PP3084</i> .QRT.R	AAAGCGCGCCAGTACATCGG
P43	16SrRNA.QRT.F	AAAGCCTGATCCAGCCAT
P44	16SrRNA.QRT.R	GAAATTCCACCACCCTCTACC
P45	tagB1.PE	GCCTGCTTGATCGTCCTGAA
P46	tagB1.RACE	TGCTGCGCTGTGCGCCTTGCAGGTATTC
P47	<i>PP3104</i> .RACE	CGTAGGTTCTGGCTGCTACAACACTTGG

Table S4. The K1-T6SS genomic region. The table compiles information of the loci conforming the K1-T6SS clusters previously identified (Bernal et. al., 2017). Most genes in the intermediate region and downstream *tki2* are partial genes (~200 bps) and are not take into consideration in this study.

*Nucleotides between continuous genes

**Overlapping nucleotides

Locus name	Gene name	Genomic location	Continuous genes	*	**
Structural operon					
PP5562	tagB1	3496832 - 3497596 (- strand)			
PP3100	tssB1	3496228 - 3496803 (- strand)	tagB1-tssB1	28	
PP3099	tssC1	3494711 - 3496213 (- strand)	tssB1-tssC1	14	
PP3098	tssE1	3494202 - 3494684 (- strand)	tssC1-tssE1	26	
PP3097	tssF1	3492382 - 3494202 (- strand)	tssE1-tssF1		1
PP3096	tssG1	3491348 - 3492418 (- strand)	tssF1-tssG1		37
PP3095	tssH1/clpV1	3488754 - 3491390 (- strand)	tssG1-clpV1		43
PP3094	tssJ1	3488007 - 3488729 (- strand)	clpV1-tssJ1	24	
PP3093	tssK1	3486667 - 3488010 (- strand)	tssJ1-tssK1		4
PP3092	tssL1	3485954 - 3486670 (- strand)	tssK1-tssL1		4
PP3091	tssM1	3482120 - 3485923 (- strand)	tssL1-tssM1	30	
PP5561	tagF1	3481215 - 3482123 (- strand)	tssM1-tagF1		4
PP3090	tagP1	3478723 - 3481218 (- strand)	tagF1-tagP1		4
PP3089	tssD1/hcp1	3478061 - 3478603 (- strand)	tagP1-hcp1	119	
PP3088	tssAl	3476880 - 3477965 (- strand)	hcp1-tssA1	95	
	Intermediate region				
PP5563		3498302 - 3498853 (- strand)			
PP3101	ADP- ribosyl glycohydrol ase	3498998 - 3499780 (+ strand)			
PP5565		3500053 - 3500325 (- strand)			
PP5566		3500542 - 3500781 (- strand)			
PP5567		3501267 - 3501458 (+ strand)			
PP5568		3501614 - 3502312 (+ strand)			
PP5569		3502346 - 3502549 (+ strand)			
PP5571		3502704 - 3503015 (- strand)			
PP5572		3503024 - 3503305 (- strand)			
PP5573		3504009 - 3504185 (- strand)			
PP3103	tkel	3504568 - 3505641 (- strand)			
PP3102	tki l	3504275 - 3504571 (- strand)	tke1-tki1		4
PP5574					

	VgrG1 operc	on			
PP3104		3506683 - 3507651 (+ strand)			
PP3105		3507652 - 3508347 (+ strand)	PP3104-PP3105	0	
PP3106	tssI1/vgrG1	3508373 - 3510229 (+ strand)	PP3105-vgrG1	25	
PP5575	eagR1a	3510240 - 3510824 (+ strand)	vgrG1- eagR1a	10	
PP3107	eagR1b	3510805 - 3511326 (+ strand)	eagR1a- eagR1b		20
PP3108	tke2	3511333 - 3515490 (+ strand)	eagR1b-tke2	6	
PP5576	tki2	3515484 - 3515960 (+ strand)	tke2-tki2		7
PP5577		3516296 - 3516919 (+ strand)			
PP5578		3517095 - 3517625 (+ strand)			
PP3109		3517884 - 3518315 (+ strand)			
PP5579		3518374 - 3518853 (+ strand)			
PP5580		3519154 - 3519381 (+ strand)			
PP3109.4	tke3	3520128 - 3520717 (+ strand)			
PP5582	tki3	3520261 - 3520728 (+ strand)	tke3-tki3	11	
PP5583		3521488 - 3521847 (+ strand)			
PP3110		3521807 - 3522019 (+ strand)			
PP3111		3522028 - 3522213 (+ strand)			

SUPPLEMENTARY REFERENCES

- 1. **Hanahan D**. Techniques for transformation of E. coli. In: Glover DM (editor). *DNA Cloning: A Practical Approach*. Virginia; 1985. p. 109.
- 2. **Espinosa-Urgel M, Salido A, Ramos J-L**. Genetic Analysis of Functions Involved in Adhesion of Pseudomonas putida to Seeds. *Journal of Bacteriology* 2000;182:2363–2369.
- 3. **Molina-Henares MA, de la Torre J, García-Salamanca A, Molina-Henares AJ, Herrera MC, et al.** Identification of conditionally essential genes for growth of Pseudomonas putida KT2440 on minimal medium through the screening of a genomewide mutant library. *Environmental Microbiology* 2010;12:1468–1485.
- 4. Yousef-Coronado F, Travieso ML, Espinosa-Urgel M. Different, overlapping mechanisms for colonization of abiotic and plant surfaces by Pseudomonas putida. *FEMS Microbiology Letters* 2008;288:118–124.
- 5. **Ramos-González MI, Molin S**. Cloning, sequencing, and phenotypic characterization of the rpoS gene from Pseudomonas putida KT2440. *Journal of Bacteriology* 1998;180:3421–3431.
- 6. **Köhler T, Harayama S, Ramos JL, Timmis KN**. Involvement of Pseudomonas putida RpoN sigma factor in regulation of various metabolic functions. *Journal of Bacteriology* 1989;171:4326–4333.
- 7. **Renzi F, Rescalli E, Galli E, Bertoni G**. Identification of genes regulated by the MvaT-like paralogues TurA and TurB of Pseudomonas putida KT2440. *Environmental Microbiology* 2010;12:254–263.
- 8. **Spaink HP, Okker RJH, Wijffelman CA, Pees E, Lugtenberg BJJ**. Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1JI. *Plant Molecular Biology* 1987;9:27–39.
- 9. **Fürste JP, Pansegrau W, Frank R, Blöcker H, Scholz P, et al.** Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. *Gene* 1986;48:119–131.