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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
X] A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

XX X

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection No software was used for data collection. Neuroimaging and behavioral data were from existing, open-source datasets (ABCD, UKB, HCP)
whose acquisition's are presented in detail in previous work. The ABCD Study data were collected between 2016-2018. The HCP data were
collected between 2010-2016.

Data analysis MRI data analysis code can be found here: https://github.com/ABCD-STUDY/nda-abcd-collection-3165
ABCD and UKB MRI data processing code can be found here https://github.com/DCAN-Labs/abcd-hcp-pipeline
Manuscript analysis code can be found here https://gitlab.com/DosenbachGreene/bwas_response
FIRMM software: https://firmm.readthedocs.io/en/latest/release_notes/. ABCD uses version 3.0.14.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy
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Participant level data from all datasets (ABCD & HCP) is openly available pursuant to individual, consortia-level data access rules. The ABCD data repository grows
and changes over time. The ABCD data used in this report came from ABCD collection 3165 and the Annual Release 2.0, DOI 10.15154/1503209.




Data were provided, in part, by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil;
1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems
Neuroscience at Washington University. Some data used in the present study are available for download from the Human Connectome Project
(www.humanconnectome.org). Users must agree to data use terms for the HCP before being allowed access to the data and ConnectomeDB, details are provided at
https://www.humanconnectome.org/study/hcp-young-adult/data-use-terms.

No new data were collected for this manuscript. Across the ABCD, and HCP we downloaded data between 01/2019 - 10/2021. We did not use any specific software
for downloading the data. For details on data collection in ABCD (baseline data), see Casey et al., 2018; in HCP (1200 release) see Van Essen et al., 2013).

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
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Life sciences X| Behavioural & social sciences Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Quantitative analyses of the magnitude and reproducibility of cross-sectional associations between neuroimaging measures and
psychological/psychiatric phenotypes.

Research sample Our main focus was to replicate work from Spisak et al in both the dataset used in their paper (HCP) and to further test
generalizability of their models. Therefore, we also tested their models on the larger ABCD dataset.

Sampling strategy All samples were recruited from the community (ABCD & HCP from the USA). Individual samples (ABCD, HCP) used unique sample
size calculations and sampling strategies which are discussed in prior work with these open source datasets (Casey et al., 2018, Van
Essen et al., 2013, respectively).

Data collection All data were from existing data repositories and were downloaded between 01/2019 - 10/2021. Data used in the manuscript were
from existing large consortia datasets (ABCD: see Casey et al., 2018 & Barch et al., 2018; HCP: We used data from the 1200 subjects
data release (van Essen et al., 2013). Because we did not personally collect any of the data used in this manuscript, all data were from
existing data repositories and researchers were therefore not blind to the source of the data.

Timing ABCD: see Casey et al.,, 2018
HCP: see van Essen et al., 2013

Data exclusions In ABCD, we used strict inclusion criteria with regard to head motion. Specifically, inclusion criteria for the current project consisted
of at least 600 frames (8 minutes) of low-motion (filtered FD<0.08) resting state functional connectivity data. Our final dataset
consisted of data from a total of N=3,928 youth across the discovery (N=1,964) and replication (N=1,964) sets. The final discovery
and replication sets did not differ in mean FD (AM=0.002 , t=0.60, p=0.55) or total frames included (AM=6.4 , t =0.94, p=0.35). The
subject lists for ARMS samples and our associated matrices will be released in the ABCD-BIDS Community Collection (ABCD collection
3165) for community use.

For HCP data, we used similar data quantity inclusion, as well as an FD < 0.20 (unfiltered FD). This resulted in the inclusion of N=900
individuals (N=877 across all NIH Toolbox subscales).

Non-participation N/A

Randomization All three samples were observational studies and no randomization was used.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

Involved in the study n/a | Involved in the study

|:| Antibodies |Z |:| ChiIP-seq

|:| Eukaryotic cell lines |:| Flow cytometry

|:| Palaeontology and archaeology |:| MRI-based neuroimaging

|:| Animals and other organisms
Human research participants
|:| Clinical data

[ ] pual use research of concern
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Human research participants

Policy information about studies involving human research participants
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Population characteristics See above.
Recruitment See above.
Ethics oversight The ABCD Study obtained centralized institutional review board approval from the University of California, San Diego, and

each of the 21 study sites obtained local institutional review board approval. Ethical regulations were followed during data
collection and analysis. Parents or caregivers provided written informed consent, and children gave written assent.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging

Experimental design

Design type resting-state fMRI, task-based fMRI; structural (cortical thickness) MRI

Design specifications ABCD resting state: 4, 5 min runs, eyes open
HCP resting state: 4, 15 min runs, eyes open

Behavioral performance measures Primary analyses use cognitive assessments from the NIH Toolbox and psychopathology assessment Child Behavior
Checklist (see manuscript for individual subscales, total of 41 ) included in standard data releases and discussed in detail
perviously (Barch et al., 2018)

Acquisition
Imaging type(s) Resting-state fMRI, task-fMRI, structural (cortical thickness) MRI
Field strength 3 Tesla
Sequence & imaging parameters Primary analyses use open-source distributed fMRI and MR data that adhere to consortia guidelines (see Casey et al.,
2018 and Van Essen et al., 2013, for ABCD and HCP, respectively).
Area of acquisition Whole brain
Diffusion MRI [ ] used Not used

Preprocessing

Preprocessing software Preprocessing of ABCD was done using a suite of tools. All code can be found here: https://github.com/ABCD-STUDY/nda-
abcd-collection-3165. Individual datasets (ABCD, HCP) and individual study sites (e.g., ABCD site 1 versus site 2) used unique
sequence and imaging parameters which are discussed in prior work introducing these open-source datasets.

Normalization 1) PreFreesurfer normalizes anatomical data. This normalization entails brain extraction, denoising, and then bias field
correction on anatomical T1 and/or T2 weighted data. The ABCD-HCP pipeline includes two additional modifications to
improve output image quality. ANTs 65 Denoiselmage models scanner noise as a Rician distribution and attempts to remove
such noise from the T1 and T2 anatomical images. Additionally, ANTs N4BiasFieldCorrection attempts to smooth relative
image histograms in different parts of the brain and improves bias field correction. 2) FreeSurfer 1 constructs cortical
surfaces from the normalized anatomical data. This stage performs anatomical segmentation, white/grey and grey/CSF
cortical surface construction, and surface registration to a standard surface template. Surfaces are refined using the T2
weighted anatomical data. Mid-thickness surfaces, which represent the average of white/grey and grey/CSF surfaces, are
generated here. 3) PostFreesurfer converts prior outputs into an HCP-compatible format (i.e. CIFTIs) and transforms the
volumes to a standard volume template space using ANTs nonlinear registration, and the surfaces to the standard surface
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space via spherical registration.

Normalization template The “Vol” stage corrects for functional distortions via reverse-phase encoding spin-echo images. All resting state runs
underwent intensity normalization to a whole brain mode value of 1000, within run correction for head movement, and
functional data registration to the standard template (MNI). Atlas transformation was computed by registering the mean
intensity image from each BOLD session to the high resolution T1 image, and then applying the anatomical registration to the
BOLD image. This atlas transformation, mean field distortion correction, and resampling to 3-mm isotropic atlas space were
combined into a single interpolation using FSL's 66 applywarp tool. The “Surf” stage projects the normalized functional data
onto the template surfaces.

Noise and artifact removal Additional BOLD preprocessing steps were executed to reduce spurious variance unlikely to reflect neuronal activity 46. First,
a respiratory filter was used to improve FD estimates calculated in the volume (“vol”) stage68. Second, temporal masks were
created to flag motion-contaminated frames using the improved FD estimates 63. Frames with a filtered FD>0.3mm were
flagged as motion-contaminated for nuisance regression only. After computing the temporal masks for high motion frame
censoring, the data were processed with the following steps: (i) demeaning and detrending, (ii) interpolation across censored
frames using least squares spectral estimation of the values at censored frames so that continuous data can be (iii) denoised
via a GLM with whole brain, ventricular, and white matter signal regressors, as well as their derivatives. Denoised data were
then passed through (iv) a band-pass filter (0.008 Hz<f<0.10 Hz) without re-introducing nuisance signals 69 or contaminating
frames near high motion frames.
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Volume censoring Yes, ABCD data were censored at a filtered frame-wise displacement of < 0.08mm and HCP data were filtered using a non-
filtered framewise displacement of <0.20mm.

Statistical modeling & inference

Model type and settings Mass univariate and multivariate (support vector regression, canonical correlation analysis). Multiple parameterizations of
each of these models were explored with the stated goal being to determine field-wide reproducibility in brain-phenotype
association studies (see manuscript).

Effect(s) tested As the primary aim of the paper was to determine the general reproducibility of brain-phenotype effects, multiple scales and
combinations of effects were examined. Owing to the cross-sectional, nature of these studies, all effects are between-person
associations.

Specify type of analysis: [ | Whole brain [ | ROI-based Both

Anatomical location(s) Parcel-level and network-level analyses utilized the field-standard Gordon et al., 2016, Cerebral Cortex,
and Seitzman et al., 2020, Neurolmage. Vertex-wise and voxel-wise data were extracted from Ciftis.

Statistic type for inference Multiple levels of neuroanatomical scale were used, including voxels, regions of interest, and networks.
(See Eklund et al. 2016)

Correction As the primary aim of the paper was to determine the general reproducibility of brain-phenotype effects, multiple levels of
significance values and correction were used, ranging from uncorrected to bonferroni (FWER) correction.

Models & analysis

n/a | Involved in the study
D Functional and/or effective connectivity

|:| Graph analysis

D Multivariate modeling or predictive analysis
Functional and/or effective connectivity Pearson correlation

Multivariate modeling and predictive analysis  Two supervised regression models were used: a Ridge Regression model (a = 1.0), as proposed by Spisak et
al. and a combined Principal Component Analysis (PCA) and Support Vector Regression (SVR) model,
whereby half of the principal components (retaining 50% of the variance) generated from the PCA were
passed as features into the SVR, as in the original work by Marek, Tervo-Clemmens et al. Both models were
implemented using scikit-learn 5 in Python 3.

For both HCP and ABCD datasets, both methods (ridge regression; PCA+SVR) and using three different
neuroimaging feature sets (RSFC: full correlation, partial correlation; cortical thickness), the same analyses
were conducted using code directly from Spisak et al. (https://gitlab.com/DosenbachGreene/
bwas_response). For each behavioural phenotype and neuroimaging feature set combination, in each
dataset, a complete cases sub-dataset was compiled, removing participants with missing behavioural
phenotypes or neuroimaging data. For each of these complete cases (per Spisak et al.) neuroimaging feature
set behavioural phenotype sub-datasets, 100 bootstraps were run for each model. Within each bootstrap,
the sub-dataset was equally and randomly split into a discovery and replication set based on a given sample
size. Here, sample size is defined as the size of a sole discovery/training set (identical in size to the replication
set), such that given a sample size n, the total number of participants/samples of the combined discovery
and replication sets is 2n.

Lcoz Yooy

Following Spisak et al. (method and code), the discovery set was divided again into 10 cross-validation folds.
However, unlike the nested cross-validation which was explored in our original manuscript and shown to not
substantively change results (Marek, Tervo-Clemmens et al. 1: Supplemental Fig. S11, S12), this procedure




utilised by Spisak et al., and repeated here, did not use the additional cross-validation step for
hyperparameter tuning. Rather an additional out-of-sample test was applied to the discovery dataset.
TThe analyses and Figures (Fig. 1, 2) in this work use combinations of Spisak et al.’s methodological
suggestions and those from our original work to replicate, expand, and clarify Spisak et al.’s Matters Arising

commentary and to provide a more comprehensive perspective on out-of-sample multivariate BWAS effects.

Rationale and additional details for specific analyses are provided in the relevant “Main Text” and “Figure
Captions”. In all cases, out-of-sample associations were evaluated as the correlation between the predicted
phenotype score and the true score in the out-of-sample data. In-sample (training) associations were
evaluated as the correlation between the true score and the predicted score from the model developed in
the discovery set (that is, the data in the sample used to develop the model (Fig. 1).

Successful out-of-sample replication was defined as in Spisak et al.: 80% of bootstrapped iterations for a
given behavioural phenotype-brain feature set (“BWAS”) that were significant (via permutation test) in the
first cross-validation test are significant in the second, split half test. We note this definition of replication by
Spisak et al. thus does not consider all bootstrap iterations (n = 100) run when determining replication
success/failure. That is, the denominator of a replication percentage is set by the number of bootstrap
iterations that are significant in the first cross-validation test. Therefore, to ensure this measure of 80%
replication represented a true percentage, replication here also required that more than one bootstrap
iteration (out of the total 100) replicated (as defined above). Without this criteria, the impact of sampling
variability and the performance of a single bootstrap iteration ensured that a small number of BWAS would
appear to intermittently have replication successes followed by replication failure for the very smallest
sample sizes. Reproducibility estimates following Spisak et al. guidelines were highly consistent with those
from our original work.
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