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S1 - Model development 16 
 In this section we use the online database COMPADRE to investigate model structure, plausible 17 
parameter values, and simulation design. R scripts to run our analysis are presented in SI github. The 18 
analysis presented below was completed in the later part of 2021 and COMPADRE is a growing database. 19 
Therefore, attempts to recreate our analysis at a later date are likely to reflect changes made to the 20 
database.  21 
 22 
S1.1 - Model structure  23 
 24 

Three distinct stages were used as the ontogenetic structure of the plant population in our model: 25 

fecund adults (𝐹), non-fecund seedlings (𝑆2), and the seed bank (𝑆1) (Fig 1). While no single ontogenetic 26 
structure can perfectly represent all plant species, three stages is a suitable baseline for the purposes of 27 
this study. First, a three-stage structure creates a tractable dimensionality in our model which allows for 28 
an in depth analysis of interdependent dynamic effects born out of interacting demographic/ecological 29 
rates. Importantly, this allows us to more clearly graphically represent the consequences and details of 30 
interacting rates which would be less apparent in higher dimensional ontogenetic formulations. Second, 31 
using the growing global database of stage-structured plant demographic data, COMPADRE42, we can see 32 
that the three stage ontogeny is well-represented in plant taxa empirically. Of all the documented plant 33 
taxa within the COMPADRE database, three-stage plant structures represent roughly 34% of families, 34 
18% of genera, and 14% of species. This includes abundant, species-rich, economically important, and 35 
geographically wide-spread plant families such as Asteraceae, Brassicaceae, Orchidaceae, Rosaceae, etc.  36 

The plant population in the model experiences density dependent restrictions on the production of 37 
seeds via the maximum function which restricts seed production to a minimum of zero in relation to the 38 
density of F. Stage transitions are also modified by density dependent pressure with limited density 39 

dependent effects from “younger” via the parameter 𝜖 (see Eq1 & Table 1). Finally, consumer pressure 40 

from the herbivore population (𝐻) can differentially focus its herbivory on either the seedling stage (𝑎2 >41 

0, 𝑎𝐹 = 0), the fecund adult stage (𝑎2 = 0, 𝑎𝐹 > 0), or both (𝑎2 > 0, 𝑎𝐹 > 0). Herbivory occurs under a 42 
Type II functional response on each stage, where consumption on each stage is affected by the handling 43 

time required to consume both stages. All stages experience a background mortality rate. Seeds (𝑆1) 44 

experience a low level amplification of background mortality linked to adult (𝐹) density under the 45 
assumption that sufficiently high populations of conspecific mature plants reduce resources for seeds 46 
(through lack of nutrients, shading, etc.)43 or increase frequencies of exploitative interactions not 47 
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explicitly unaccounted for in the model (e.g. soil pathogens)44,45. Parameters mediating all density 48 
dependent effects and trophic interactions are listed and described in Table 1.  49 
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 54 
S1.2 - Model Parameters 55 
 56 

The COMPADRE database also allows for further insight into our model. We can use the 57 
available data to inform certain model parameters. The COMPADRE reproductive and stage transition 58 
rates mirror our demographic parameters. Production of stage 1 individuals from stage 3 corresponds to 59 

seed production (𝑟𝐹). Transition from stage 1 to 2 corresponds to seed germination (𝑔12) and transition 60 
from stage 2 to 3 corresponds to seedling maturation (𝑔2𝐹). However, these rates represent data from a 61 
range of different studies using a range of experimental, natural, and agricultural plant demographic data. 62 
Additionally, these studies involve transition rates which emerge from both competition and trophic 63 
interactions. Therefore, measurable field rates are frequently emergent from environmental conditions and 64 
are not necessarily the inherent demographic rates. As such, we do not intend to use these empirical rates 65 
to determine exact values of our model’s demographic parameters. Instead, we use the ranges of each 66 
empirical rate to inform plausible ranges for their corresponding model parameter to be analyzed in 67 
parameter sweeps of model simulations.  68 

In doing so, we limited our survey of values from each parameter to those greater than 0 as the 69 
effect of setting any demographic parameter to 0 in the model is obviously a steady fall to extinction (Fig 70 
S1). Starting with rates of reproduction (Fig S1a), we see a large range of reproduction into the first stage 71 

from the third, from 0 to roughly 100. However, we limited our preliminary analysis to 𝑟𝐹 < 10 as 87% 72 
of sampled values fall within this range (Fig S1a, Insert). The rates of transition between stages are much 73 
more evenly distributed from values >0 to 1. While not a completely even distribution across the range, 74 

we take this as sufficient reason to study the full range of values, 0.1 < 𝑔12 < 0.9 and 0.1 < 𝑔2𝐹 < 0.9. 75 
With these results in mind (Fig S1), ranges for these three parameters are provided in Table 1 along with 76 
both parameter definitions and the ranges/values used for every model parameter.  77 
 78 



 79 
Fig S1: Distribution of empirically measured reproduction and stage transition rates from three-stage 80 

plant matrix models in the COMPADRE database (2021). a) Reproduction into 1st stage by 3rd stage. b) 81 
Transition rates from stage 1 to 2. Transition rates from stage 2 to 3.  82 

 83 
S1.3 - Simulation Design & Output 84 
 85 

Potentially the most important insight garnered from available data in COMPADRE, we see 86 
absolutely no correlation between any of the measured rates. There is no discernable relationship between 87 
empirical rates of reproduction and maturation from either stage 1 to 2 or 2 to 3 (visualized in Fig S2a & 88 
b). Also, we see no correlation between the stage transition rates (visualized in Fig S2c). The lack of any 89 
relationships in the values of any rate prompted a full factorial investigation of the model’s demographic 90 

rates (𝑟𝐹, 𝑔12, 𝑔2𝐹; see Table 1 for value range), without any necessary covariation in parameter values. 91 
In other words, all demographic parameter values were factorially tested against each other in a large 92 
parameter sweep without the need to change any one parameter value in concert with another. Past work 93 
also indicates interactivity between demographic rates and trophic interactions in driving model 94 
dynamics19, so we considered trophic interactions in our simulation design by including rates of herbivory 95 

(𝑎𝐹 & 𝑎2) into what becomes a five dimensional fully factorial parameter sweep. Herbivore attack rate 96 
ranges were chosen heuristically (Table 1). Herbivore attack rates on either consumed plant stage (see Fig 97 
1d-1i) vary factorially in the parameter sweep as herbivores can range from focusing their attack on either 98 
stage to splitting their consumption between stages to varying degrees.  99 

 100 

 101 
Figure S2: Scatter plots showing the lack of correlative relationships between COMPADRE (2021) 102 

three-stage reproduction and transition rates. a) Reproduction rates vs transition rates between stages 1 & 103 
2. b) Reproduction rates vs transition rates between stages 2 & 3. c) Reproduction rates between stages 1 104 

& 2 vs transition rates between stages 2 & 3. 105 
 106 
 As a mode of sensitivity testing, we implemented the five parameter factorial sweep across 107 
multiple values for both density dependent parameters and handling times. Density dependent parameters 108 



were varied because density dependence mediates stage transitions and therefore ontogenetic dynamics19. 109 
Handling time was chosen for its role in mediating the trophic connections interacting with plant 110 
ontogeny. This created eight unique instances of the full five parameter factorial sweeps (see values in 111 
Table 1), producing over 5.5 million unique simulations for analysis.  112 
 Each simulation outputs a number of initial conditions and post simulation factors detailing the 113 
results of the simulation. Initial conditions include all relevant parameter values and initial time 114 

dependent variable densities (i.e., initial population densities such as 𝐹(𝑡) at time 0). Post simulation 115 
factors include equilibria values, equilibria linear stability, eigenvalues, periodicity, oscillating 116 
populations’ peak and trough densities, and finally the effective handling time of the herbivore 117 
population. The effective handling time of the herbivore population is measured as the denominator of the 118 
consumptive interaction in the model.  119 
 120 

S2 - Analyzing Simulation Results w/ Random Forests 121 
 122 
 Due to the large simulation dataset, we first produced an initial guided analysis using the Random 123 
Forest based machine learning algorithm which can achieve high predictive power46 and has shown 124 
success in using permutation techniques to determine how much specific predictors contribute to that 125 
predictive ability (e.g., mean accuracy decrease47). In our case, our five main parameters (see Table 1) 126 
serve as our main random forest features/predictors. Random Forests can predict either categorical or 127 
continuous variables and any post simulation factor can function as the predicted variable in the random 128 
forest analysis. Our interest in trophic/demographic dynamics led us to use the simulation model’s linear 129 
stability as our predicted variables. We used a simple indicator, stable or unstable, for categorization 130 
random forest tasks and model equilibria’s eigenvalues for regression random forest tasks.  131 
 132 
S2.1 - Preparing data and training Random Forest  133 
 134 

Simulation data was split into “training” and “validation” (sometimes called test) data subsets for 135 
hold out cross validation. We first created or “trained” the random forest on the training data. In Random 136 
Forests, this process produces a series of unique categorization and regression trees that “vote” on the 137 
outcome (our simulation model’s stability) based on the values of any particular inputs (our model 138 
parameters). As a default during training, random forest parameter “mtry” was set at floor(sqrt(p)) for 139 
categorization tasks (stable vs unstable) and floor(p/3) for regression tasks (max eigenvalue) where p=# 140 
of features48. Instances where a different p produced better results are noted in the text. The parameter 141 
“ntrees” (No. of trees) was varied from 300-600 with little to no effect on performance. 142 

Once we have a trained random forest, we check its performance on the training data via the “out 143 
of the box” (OOTB) error rate. Given a sufficiently low error rate, we can begin to investigate feature 144 
importance. We measured the importance of individual features/parameters in our random forest with 145 
Mean Accuracy Decrease, which measures the loss in predictive accuracy by excluding each feature. The 146 
more the accuracy suffers, the more important the variable is for the successful classification/prediction. 147 
For a more detailed description of the mechanisms behind creating and training random forests, please see 148 
ref 14.  149 

 150 
S2.2 - Validating/Testing Trained Random Forest 151 
 152 

Sufficiently high performing trained random forests were then used to predict simulation output 153 
in our validation data subsets which our random forests had not yet been exposed to. We analyzed the 154 
predictive power of categorization tasks by comparing their predicted output with data via the Area Under 155 
Curve the Receiver Operating Characteristic curve (AUC) metric (pROC package). In our case, the AUC 156 
metric measures how well the models are able to distinguish between stable and unstable results in the 157 
validation data subset. It varies between 0 and 1 with 1 indicating better predictions. Regression tasks 158 
were judged for accuracy using RMSE on maximum eigenvalue measurements between the predicted 159 



eigenvalue output and the simulation data. All AUC and RMSE values are from validation data unless 160 
otherwise specified. 161 
 162 
S2.3 - Interpreting Feature Effects 163 
 164 

Random Forest results can also be further interpreted with the H statistic which functions as a 165 
measure of interactivity between features/predictors in driving prediction results49. This can be done for 166 
each individual predictor as a measure of general interactivity with other predictors or be done with a 167 
focus on particular predictors to study direct interactivity between specific predictor combinations. 168 
Regardless, higher numbers indicate higher interaction strengths while lower numbers indicate less 169 
interaction between predictors. While some have argued that the basic random forest measurements of 170 
variable importance (e.g., mean accuracy decrease) “capture” the outcome of interactions between 171 
features in predictions, these metrics are not designed to detect interactions per se50. Therefore, our use of 172 
the H statistic helps us hone in on key interactions, a particularly useful outcome for any researcher 173 
looking to implement our methods on a model with a larger parameter set.   174 

While the H statistic provides inference regarding which features have strong interactive effects, 175 
other methods are required to determine how features (interacting or otherwise) actually affect the 176 
predicted outcomes. To do this we used two analytical techniques in the iml package in R51. First, we used 177 
Partial Dependence plots (PD plots) to visualize the marginal effect of one or two features on the 178 
predicted outcome of our random forests52. These PD plots can show whether the relationship between the 179 
target and a feature is linear, monotonic or more complex. By focusing on two-feature partial dependence 180 
plots, we can also see how these features interact in changing model predictions (e.g., Fig 2). Second, we 181 
also used Individual Conditional Expectation (ICE) curves to uncover heterogeneous relationships by 182 
showing individual instances of changing a feature’s value at different permutations of the other 183 
features53. In using these ICE plots, we found quick evidence of the context dependent relationship of 184 
features and their effect on model predictions (Fig S3), again helping us determine where interactions 185 
matter.  186 
 187 

 188 
Figure S3: a) Example of the high degree of heterogeneity in feature effects on random forest 189 

outcome even for set attack rates (𝑎2 = 0.2 & 𝑎𝐹 = 1.0) using the g2F parameter.  190 



b) Depiction of the high degree of heterogeneity in feature effects on random forest predictions 191 
using the g2F parameter as an example.  192 

The yellow line represents the average partial dependence effect (PD plot). The black lines show 193 
an Individual Conditional Expectation (ICE) plot; instances of changing g2 in the context of differing 194 

subsets of other parameters. Both the quantitative and qualitative range of differences seen in the ICE plot 195 
indicate the fidelity lost in only examining the average effects and the need for a more fine scale look at 196 

the heterogeneity in effect per parameter. Note, the right ICE plot only shows results for 𝑎2, 𝑎𝐹 <= 1 in 197 
an effort to reduce the number of plotted lines for the sake of visibility.  198 

 199 
S2.4 – Additional 200 
 201 
 Our random forests can produce a highly accurate level of predictive power. These levels of 202 
predictive ability can induce questions of data leakage in producing and testing our models. We claim this 203 
is not the case here and detail our reasons below. First, the two easiest sources of data leakage are 204 
including the target variable as a feature in creating and training our models while the other is accidental 205 
inclusion of test/validation data in our training data during model training. Neither of these occurred due 206 
to simple due diligence in model creation. Our random forest code can be used to verify these claims. 207 
Second, we have no “give away” features which are effectively tied to our target variables. Third, results 208 
are not driven by particular outliers and are consistent across different subsets used as training and 209 
test/validation datasets. Finally, models’ variable importance changes in explanatory ways across 210 
different subsets of data (e.g., different consumption allocations) and our results are supported by our 211 
graphical analysis (Fig 2) which does not fall victim to data leakage issues. Therefore, we can have high 212 
confidence that our random forest results do not reflect data leakage.  213 

Despite the high levels of predictive power (e.g., results shown in Fig. 1), our random forests did 214 
have limits on their immediate interpretability as noted by others (e.g. ref 54). Therefore, we use our 215 
random forest models not as end points on their own, but as tools to direct our analysis across such a large 216 
amount of simulation data. By determining feature importance, effect, and interactivity, we were able to 217 
hone in specific subsections of the simulation model’s parameter space and utilize graphical analysis to 218 
expand our ecological understanding of our results.  219 
 220 

S3 - Supplementary Analysis Results 221 
 222 
S3.1 - Figures  223 

 224 
Figure S4: Maximum eigenvalue of the plant-herbivore system where the herbivore only eats the adult 225 

plant stage (𝑎𝐹 > 0, 𝑎2 = 0) across {𝑔12, 𝑔2𝐹 , 𝑟𝐹} parameter space. Maximum eigenvalue here dictates the 226 



dynamic stability of the population trajectories of both species in the interaction. Positive values indicate 227 
instability and persistent oscillations while negative values indicate damped oscillations to stable 228 

population trajectories.  229 
 230 

 231 
Figure S5: Box and whisker plots detailing range of H-statistic (y-axis) for each pair-wise 232 

interaction of demographic rates (x-axis) in random forests run with set attack rates where 𝑎2 and 233 

𝑎𝐹 vary between 0.2 and 2.0 (𝛼𝑔1=𝛼𝑔2=𝛼𝐹=0.1; ℎ2=ℎ𝐹=0.5). The H-statistic measures 234 

interactivity between our demographic rates and our results here show 𝑔12 and 𝑔2𝐹 to be the 235 

most consistently interactive. Letters over boxes indicate significantly different groupings based 236 

on the Tukey post hoc test. Boxes represent the interquartile range with the horizontal line 237 

showing the median, the lower box showing the 25 percentile, and the upper box showing the 75 238 

percentile. Upper and lower lines extending from the boxes show the most extreme values within 239 

1.5 times the 75th and 25th percentile respectively. Outliers are shown as single dots. 240 
 241 
 242 

 243 
Figure S6: Seed production effect on ecological factors with adult-only herbivores. The mean effect of 244 
raising seed production broken down to average constituent effects on ecological factors across all other 245 

simulation model parameters. Dots represent mean and error bars show standard deviation.  246 



 247 
 248 

 249 
Figure S7: Changes in 𝐹∗ ratio in relation to ecological factors 𝛾12

∗  and 𝛾2𝐹
∗ . The y axis, 𝐹∗ Ratio is the 250 

percent makeup of the adult plant stage defined as 𝐹∗ Ratio = 
𝐹∗

𝑆1
∗+𝑆2

∗+𝐹∗
. Color contrast shows constituent 251 

changes in a) simulation model parameters 𝑔12  +  𝑔2𝐹, b) simulation model parameter 𝑟𝐹, c) stability of 252 
simulation model.  253 

 254 
 255 

 256 
Figure S8: Time series of Eq1 with an adult-only herbivore. Model dynamics are shown across gradients 257 

of values for seed production (𝑟𝐹) with line color corresponding to the value of the parameters shown in 258 
the color legend. Figure displays how raising seed production lifts the minimum density in the oscillating 259 
plant population, dampening the oscillations and stabilizing the trophic interaction. Panels display time 260 

series for a) Fecund adults, 𝐹, b) Seedling, 𝑆2, and c) Seed bank, 𝑆1. Other parameters are as follows: 261 

𝑔12 = 0.34, 𝑔2𝐹 = 0.34, 𝑎2 = 0, 𝑎𝐹 = 1, 𝑟𝐹 = [1,3]. 262 
 263 
 264 



 265 
Figure S9: The effect of seed production (𝑟𝐹) on our ecological factors. Effects are expressed through the 266 

relationship, 
𝐿:𝐷 𝑅𝑎𝑡𝑖𝑜

𝛾12
∗  & 𝛾2𝐹

∗  to limit clutter of expressing each factor separately. Figure depicts how increasing 267 

seed production has a greater positive effect on consumption and consequently 𝐿: 𝐷 𝑅𝑎𝑡𝑖𝑜 when 𝑎2 = 1.0 268 

& 𝑎𝐹 = 0.2 than when 𝑎2 = 0.0 & 𝑎𝐹 = 1.0. 269 
 270 

 271 
Figure S10: Drivers of stabilization in 𝑎2 = 0.2 & 𝑎𝐹 = 1.0 herbivory allocation when 𝑔2𝐹 is high and 272 

𝑔12 is low. a) As 𝑔12 decreases and 𝑔2𝐹 increases (measured by 𝑔2𝐹 − 𝑔12) this consequentially increases 273 

seedling maturation while limiting seed germination (𝛾2𝐹 − 𝛾12), reducing the plant density held in the 274 
seedling stages. b) As the plant density in the seedling stage decreases, so does the percent consumption 275 

of seedlings, measured here by a decrease in 
𝜃2

𝜃𝐹+𝜃2
. c) Reducing the percent of seedlings in the diet of the 276 

herbivore makes the trophic interaction act more like single stage consumption. This increases the 277 
probability of dampened oscillations to stability as shown via a generalized linear model (p<<2e-16, 278 

beta=-8.003, Residual deviance: 3815.3  on 5598  degrees of freedom).  279 
 280 
 281 



 282 
Figure S11: Heatmap colors represent ecological effects on stability via coefficients from partial least 283 

squares regression of ecological factors versus maximum eigenvalue across all specific combinations of 284 
herbivory on the adult and seedling stages when ℎ2 = 0.5, ℎ𝐹 = 1 and 𝛼𝐹 , 𝛼𝑔1, 𝛼𝑔2 = 0.6. The ecological 285 

factors are a) L:D Ratio, b) 𝛾12, & c) 𝛾2𝐹. Note, the gray square when both attack rates are set to 0 286 
indicates no data given the lack of consumption. The figure depicts how a lower handling time for 287 

herbivory on seedlings versus adults can change the dynamic effect of 𝛾12 such that increased 288 
germination can dampen oscillations more consistently across different herbivory allocations.  289 

 290 

 291 
Figure S12: Generalized additive model derived representation of simulation results from (𝑎2=0, 𝑎𝐹=1) 292 

using a 3-way tensor product smooth on 𝑔1, 𝑔2, and 𝑟𝐹. a) Results from categorization task (stable as 1 293 
and unstable as 0). Producing this GAM took substantially more time to calculate than the random forest, 294 
but it does recreate our results. b) Results from regression task (maximum eigenvalue). “Hotter” colors 295 

indicate “lower” values. In the categorization task, this indicates higher probabilities of as unstable 296 
equilibrium (oscillations). In the regression task, conversely this indicates smaller eigenvalues. Overall, 297 
we can see how the GAMs can recreate the patterns found in our random forest analysis once we have 298 

developed the necessary parametric hypothesis from our random forest results.  299 
 300 

S3.2 - Description of 𝑔12 & 𝑔2𝐹 vs 𝛾12 & 𝛾2𝐹 301 
 302 

Although the 𝑔12 & 𝑔2𝐹 parameters and 𝛾12 & 𝛾2𝐹 ecological sub-functions we labeled “factors” 303 

(Table 1) are related, their relationship is not 1:1. Specifically, 𝑔12 and 𝑔2𝐹 are parameters in the model 304 
representing the per-capita germination/maturation rates of seeds/seedlings. The fixed values of these 305 



parameters are assigned for each simulation and are not dynamic. These parameters represent the rate of 306 
maturation without density dependent effects. 307 

The 𝛾12 and 𝛾2𝐹 sub-functions/components in the model represent the density of seeds/seedlings 308 
that germinate/mature to the seedling/adult stages over a timestep. The values of these sub-functions are 309 
an emergent property of the model resulting from the interaction between herbivore consumption and 310 

internal plant demography. For example, the parameter 𝑟𝐹 affects the output of 𝛾12 and 𝛾2𝐹. Unlike 𝑔12 311 

and 𝑔2𝐹, (which are fixed parameters), 𝛾12 and 𝛾2𝐹 may increase with 𝑟𝐹 as increased seed production 312 
boosts the flow of plant density through all stages. By increasing the number of plant individuals 313 
maturing, we observe a greater number of plant individuals replacing those lost to consumption. In our 314 

analysis, 𝛾12 and 𝛾2𝐹 (along with L:D ratio) are treated as explanatory variables which we label 315 
“ecological factors,” to differentiate them from other statistical inputs used in our other analyses.  316 
 317 
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