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Appendix Figure S1. Metabolic network showing carbon and nitrogen metabolism.
Pathways show the last bifurcated step of the arginine biosynthesis, according to the genome-
scale metabolic model SMTB2.0 (L6pez-Agudelo et al, 2020). Citrulline is aminated either by
free nitrogen to form arginine (arginine deiminase, ARCA), or aspartate is acting as nitrogen
donor and arginine is formed via a two-step reaction with the intermediate argininosuccinate
(argininosuccinate synthase (ARGG) and argininosuccinate lyase (ARGH)). Because the
carbon backbone is the same for both branches, 13C labelling alone is not able to resolve the
fluxes of either of these pathways.
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Appendix Figure S2. 13C'®N co-labelling of BCG in a chemostat.

(A) Substrate concentration during the steady state growth of BCG.

(B) Metabolic steady state. Cultures were grown in [**Cs]glycerol and [**Ni]NH4CI isotopic
substrates at a growth rate of 0.03h™. Cultures were harvested for dry cell weight and ODeoo
measurement over the labelling feed period of 7 days.

(C) Isotopic steady state. Average *C+%°N incorporation (%) in 10 amino acids was measured using
GC-MS and was compared between the combinations of (Day 3, Day 4), (Day 4, Day 5), (Day 5,
Day 6) using unpaired, parametric two-tailed t test with Welch’s correction; ***, p < 0.0005; ns,
not significant. Multiple t-tests comparing the CN % in each amino acids over four day labelling
period showed significantly different measurements of ala (alanine), gly (glycine), ser (serine), thr
(threonine), valine (val), leu (leucine), isoleucine (ile), asp/n (aspartate/asparagine), glu/n
(glutamate/glutamine) and phe (phenylalanine) in day 3 vs. Day 4. Measurements in Day 3 were
significantly different to Day 4, indicating non-steady state isotopic labelling period. Measurements
from Day 4 through to Day 6 were no significantly different, indicting steady-state isotopic
labelling.

Data information: Values are mean + s.d. of two independent chemostat cultures and 3-8 replicate
measurements.
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Appendix Figure S3. Marginal posterior probability density distributions of intracellular

net fluxes.

Dashed lines indicate upper and lower bounds of the 95% credible intervals, and the vertical
solid line the expected value. Flux values are given in mmol g biomass™ h™1. Colors are chosen

according to the pathway colorings in Figures 1, 3 and 4 in the main text.
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Appendix Figure S4. Comparison of net carbon fluxes derived with 3C>N-MFA (BMA,
this work) and 3C-MFA (Beste et al., 2011).
95% credible intervals (Crl) derived using **C**N-MFA of central carbon fluxes are shown in
shaded bars. Best-fit carbon fluxes derived using **C-MFA (indicated by the symbol “x”) and
their associated 95% confidence intervals (Col, Fisherian standard deviations) are shown in
solid bars. Notice that in the study of Beste et al. (2011) several fluxes were either fixed to their
best-fit value prior statistical analysis, therewith lacking Cols, or were lumped, making a direct
comparison impossible. For the previously fixed fluxes the stochiometric bounds are shown in
lighter shade (pgi, fpb, fba, gnd, tkt1, tkt2, tal, pck). Colors are chosen according to the pathway
colorings in Figures 1, 3, and 4 in the main text. Differences in profiles occur in fluxes of lower
glycolysis (gapA, eno, pyk, pdh). Differences in fluxes of pdh are explained by the uptake of
oleic acid in Beste et al. (2011).
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Appendix Figure S5. Marginal 1D and 2D posterior probabilities and modes of fluxes of
the anaplerotic node.

Metabolic network of the anaplerotic node. Diagonal entries represent 1D posterior probability
distributions, off- diagonal entries represent pairwise 2D posterior probability distributions.
The 2D posterior distributions can be grouped into three categories: (1) strong linear correlation
for mez vs mdh and pck vs pyk; (2) a dual positive coupling for the flux pairs mez vs pck, mez
vs pyk, pca vs pck, pca vs pyk, pck vs mdh and mdh vs pyk); and (3) a dual negative coupling
for mez vs pca and pca vs mdh. Fluxes are given in mmol g biomass™ h. To better understand
the complex coupling of the anaplerotic fluxes, we picked three different likely operational
modes, indicated by the symbols (+, (1, [1). The corresponding flux maps are shown on the
right. Roughly, case “+”consists of two parts: the blue arrows show a futile cycle involving
pyk, pca and pck, whereas the red arrows show a bypass of mdh via mez (against the nominal
direction) and pca. Case “[1” represents a futile cycle consisting of pyk, mez, mdh and pck as
indicated by the blue arrows. Finally, case “[1” as indicated by the green arrows consists of two
parts, both bypassing pyk, either by pca and pck (both against their nominal direction), or via
pca, mdh and mez (all against their nominal direction).
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Appendix Figure S6. Pool sizes of protein-derived amino acids in BCG chemostat cultures.

Values are = s.d. (n

12 measurements; 4 biological replicates, 3 technical replicate each).

Statistical differences were identified using one way ANOVA and tukey's multiple

comparisons test with a < 0.05; **** p <0.0001.
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Appendix Figure S7. Probability of reactions to be bidirectional.

Bars represent the mean value of 10 independent chains. Standard deviations were derived from
10 replicate chains.
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Appendix Figure S8. Mass isotopomer distributions for amino acids alanine, serine,
arginine, and histidine obtained from 3C-glycerol (condition 1), 15N-ammonium chloride
(condition 2) and 3C-glycerol + >N-ammonium chloride (condition 3) labelling. Datasets
show the comparisons between the three labelling conditions. *3C-glycerol (condition 1)
labelling experiment provides only Carbon (C) data. *®*N-ammonium chloride (condition 2)
labelling experiment provides only nitrogen (N) data. 3C-glycerol + **N-ammonium chloride
(condition 3) labelling experiment provides both C and N (C + N) data. C1, C2, C3...C6 are
carbon isotopomers; N1, N2, N3 are nitrogen isotopomers and C1+NI1.....C6+N1, C6+N2,
C6+N3 are carbon + nitrogen isotopomers. Values are mean = S.D. (n=3).
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Appendix Figure S9. 3C®N labelling of alanine in M. bovis BCG chemostat cultures
measured using orbitrap MS.

Seven mass isotopomers marked in the spectrum shows *C and *°N incorporation in alanine.
Mass isotopomers m/z 90.0554: CONO (unlabelled carbon and nitrogen); m/z 91.0587: C1NO
(one C and unlabelled nitrogen); m/z 91.0523: C2NO (two *3C and unlabelled nitrogen); m/z
92.060: C3NO (three *3C and unlabelled nitrogen); m/z 93.0653: CON1 (unlabelled carbon and
one ®N); m/z 94.0624: C1IN1 (one *C and one *N); m/z 93.0549: C3N1 (three *C and one
5N). Values are + s.d. (n=3-4 measurements each from two independent chemostats).
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Appendix Figure S10. Mixing plots of the free net fluxes (one representative replicate).
The MCMC algorithm is run for 1.5.107 iterations. The first 5-10° samples were treated as
burn-in and were, therefore, discarded. Of the following 107 samples, each 2,000" sample was
saved (thinning). This leads to 5,000 samples per MCMC replicate. The trace plots indicate
proper mixing of the Markov chain in the flux space.
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Appendix Figure S11. Mixing plots in model space (all replicates).

To certify that the replicates did not get stuck in different regions of model space, all replicates
are shown. Per replicate, the number of bidirectionalities was quantified. Each subplot
represents one independent MCMC run. The plots show that the sampler mixes well in the
model space and that the mixing is very reproducible for all 10 replicate chains.
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Appendix Figure S12. Simulated mass isotopomer distributions.

Mass isotopomers were simulated for amino acids alanine, serine, arginine and histidine
obtained by sampling posterior distributions obtained from BMA-based *C®N-MFA at
metabolic and isotopic stationarity for conditions (a) 12% [**Cs] glycerol + 0% [**Ni]
ammonium chloride, (b) 0% [*Cs] glycerol + 12% [**N1] ammonium chloride, and (c) 12%
[°Cs] glycerol + 12% [**N1] ammonium chloride. The value given represents the expected
fractional enrichment, the error bars represent the 95% credible intervals. For the co-labelling
strategy, observed data are given in addition.
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