
Supplemental Information

1 Post-order Traversal Likelihood Calculations

We seek to compute p(Y |L,Λ,F ) in O(NPK2 +NK3) by adapting the methods devel-

oped by Bastide et al. (2018), Mitov et al. (2020) and Hassler et al. (2020). Let Yobs =(
yobs
1 , . . . ,yobs

N

)t
be the N × P matrix of observed data, where all missing measurements in

Y have been replaced with 0’s. This post-order algorithm requires that one can compute

the partial mean mi, precision Pi and remainder ri such that

p
(
yobs
i

∣∣ fi,L,Λ) = riθ̂(fi;mi,Pi) , where

θ̂(x;µ,P) = (2π)−rank(P)/2 d̂et(P)1/2 exp

(
−1

2
(x− µ)t P (x− µ)

)
,

(1)

rank(P) is the number of non-zero singular values of P and d̂et(P) is the product of the

non-zero singular values of P. We also define the indicator matrices δi = diag[δi1, . . . , δiP ]

where δij = 1 if yij is observed and δij = 0 if it is missing. Finally, we define P obs
i =

∑P
j=1 δij

as the number of observed traits for taxon i.

In the context of PFA, we calculate

log p
(
yobs
i

∣∣ fi,L,Λ) = −rank(δiΛδi)

2
log 2π +

1

2
log d̂et(δiΛδi)

− 1

2

(
yobs
i − Ltfi

)t
δiΛδi

(
yobs
i − Ltfi

)
= log ri + log θ̂(fi;mi,Pi) , where

(2)

the precision Pi = LδiΛδiL
t, the mean mi is a solution to Pimi = LtδiΛδiy

obs
i and

log ri = −P obs
i − rank(Pi)

2
log 2π +

1

2

(
P∑

j=1

δij log λj − log d̂et(Pi)

)

− 1

2

[
yobs
i

t
δiΛδiy

obs
i −mt

iPimi

]
.

(3)

See SI Section 1.1 for detailed calculations. AsΛ is diagonal, computing allPi has complexity

O(NPK2), which dominates the computation time for these operations.

After computing mi, Pi and ri, the Hassler et al. (2020) algorithm requires minor modifi-

cation to compute the likelihood p
(
Yobs

∣∣L,Λ,F
)
in O(NK3) additional time. Specifically,

Pi may not be invertible via the special inverse defined in Hassler et al. (2020). SI Section 1.2
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offers an alternative approach that avoids this inversion via the continuously rediscovered

identity (A+B)−1 = A−1 − A−1 (I +BA−1)
−1

BA−1 for conformable square matrices A

and B (Henderson et al., 1959; Henderson and Searle, 1981). We also utilize a more numer-

ically stable modification of this post-order algorithm proposed by Bastide et al. (2021).

1.1 Partial Likelihood Calculations Under the Latent Factor Model

We present the detailed calculations from SI Equation 2.

log p
(
yobs
i

∣∣ fi,L,Λ) = −rank(δiΛδi)

2
log 2π +

1

2
log d̂et(δiΛδi)

− 1

2

(
yobs
i − Ltfi

)t
δiΛδi

(
yobs
i − Ltfi

)
= −P obs

i

2
log 2π +

1

2

P∑
j=1

δij log λj

− 1

2

[
ftiL

tδiΛδiL
tfi − 2ftiL

tδiΛδiy
obs
i + yobs

i

t
δiΛδiy

obs
i

]
= −P obs

i

2
log 2π +

1

2

P∑
j=1

δij log λj

− 1

2

[
(fi −mi)

t Pi (fi −mi)
]
− 1

2

[
yobs
i

t
δiΛδiy

obs
i −mt

iPimi

]
= log ri −

rank(Pi)

2
log 2π +

1

2
log d̂et(Pi)

− 1

2

[
(fi −mi)

t Pi (fi −mi)
]

= log ri + log θ̂(fi;mi,Pi) , where

(4)

the partial precision Pi = LδiΛδiL
t, the partial mean mi is a (not necessarily unique)

solution to Pimi = LtδiΛδiy
obs
i and the remainder

log ri = −P obs
i − rank(Pi)

2
log 2π +

1

2

(
P∑

j=1

δij log λj − log d̂et(Pi)

)

− 1

2

[
yobs
i

t
δiΛδiy

obs
i −mt

iPimi

]
.

(5)

1.2 Special Inverse Calculations

One challenge that the PFA model poses to this approach is that the partial precisions at the

tips Pi for i = 1, . . . , N may not be invertible via the pseudoinverse used by Hassler et al.

(2020). The post-order traversal algorithm requires that for each internal node νj for j =
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N +1, . . . , 2N − 1 in F , we must compute P∗
j such that p

(
Y⌊j⌋

∣∣ fpa(j) ) = rj θ̂
(
fpa(j);mj,P

∗
j

)
,

where Y⌊j⌋ represents the trait values of all terminal descendants of node νj. In the PFA

model, this results in P∗
j =

(
P−1

j + tjIK
)−1

. However, it is possible that the initial partial

precisions Pi at the tip nodes ν1, . . . , νN may be rank-deficient. This situation arises, for

example, when the number of non-missing traits P obs
i at taxon i is less than the number

of factors K. To avoid this inversion, we use an algebraic slight-of-hand to compute P∗
j in

terms of Pj directly (rather than its non-existing inverse). Specifically we use an identity for

the inverse of the sum of two square matrices that has been discovered and forgotten several

times (see, for example, Henderson et al., 1959; Henderson and Searle, 1981)

(A+B)−1 = A−1 −A−1
(
I +BA−1

)−1
BA−1. (6)

Applying this to our equation for P∗
j , we get

P∗
j = Pj − tjPj (Ik + tjPj)

−1Pj. (7)

Note that the matrix IK + tjPj is the sum of the positive semi-definite matrix tjPj with

the positive definite matrix IK and is therefore invertible. As such, computing P∗
j is indeed

possible and the Hassler et al. (2020) algorithm can proceed to compute the likelihood.

2 Sampling from the Loadings L via Data Augmenta-

tion

To employ the Gibbs sampler of Tolkoff et al. (2017) to sample from the loading L, we follow

the procedure below:

1. Sample from F
∣∣Yobs,L,Λ,F via the pre-order algorithm of Hassler et al. (2020)

2. Sample from L
∣∣Yobs,F,Λ via the methods discussed in Lopes and West (2004)

2.1 Pre-Order Data Augmentation Algorithm

We seek to sample from F
∣∣Yobs,L,Λ,F via the pre-order algorithm of Hassler et al. (2020).

This procedure relies on first computing the statistics mi and Pi such that

p
(
Yobs

⌊i⌋
∣∣ fi,L,Λ,F

)
∝ θ̂(fi;mi,Pi) (8)
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for i = 1, . . . , 2N−1 (i.e. all nodes in the tree), where Yobs
⌊i⌋ is the subset of Yobs restricted to

the descendants of node νi. We compute these statistics at the tips as described in Section

2.1.1 and at internal nodes as described in Section 2.1.2 of Hassler et al. (2020).

Once we have computed these statistics, we draw the factors at the root from their full

conditional distribution f2N−1

∣∣Yobs,L,Λ,F ,µ0, κ0 as described by Equation 13 in Has-

sler et al. (2020). After sampling the factors f2N−1 at the root node ν2N−1 from their

full conditional distribution, we perform a pre-order traversal of the tree sampling from

fi

∣∣∣ fpa(i),Yobs
⌊i⌋ ,L,Λ,F for j = 1, . . . , 2N − 2 as described in Section 2.2.1 of Hassler et al.

(2020). After we have completed this pre-order traversal, we have sampled from the full

conditional distribution of F = (f1, . . . , fN)
t.

2.2 Conjugate Gibbs Sampler on the Loadings L

Here we describe our procedure for sampling from L
∣∣Yobs,F,Λ via the conjugate Gibbs

sampler developed by Lopes and West (2004) and Tolkoff et al. (2017). Let us first introduce

notation related to both structured sparsity in the loadings and missing data. Let the K-

dimensional vector ℓj and N -dimensional vector y′
j be the j

th column of L andY respectively

for j = 1, . . . , P . Let xj ⊆ {1, . . . , K} be the indices corresponding to the unconstrained

elements of ℓj (i.e. those that are not fixed at 0), and let zj ⊆ {1, . . . , N} be the indices

of the observed (non-missing) elements of y′
j. Finally let the sub-vectors ℓj,xj

and fi,xj
be

the elements of ℓj and fi, respectively, restricted to the indices in xj, and let y′
j,zj

be the

elements of y′
j restricted to the elements in zj for i = 1, . . . , N and j = 1, . . . , P . Note that

conditional on the latent factors, the full conditional distributions of each column of the

loadings are independent. Additionally, the full conditional of ℓj depends only on y′
j, and

does not depend on the other columns of the data matrix Y (Lopes and West, 2004). As

such, we draw from ℓj,xj

∣∣∣F,y′
j,zj

,Λ as follows:

p
(
ℓj,xj

∣∣∣y′
j,zj

,F, λj

)
∝ p
(
y′
j,zj

∣∣∣ ℓj,xj
,L, λj

)
p
(
ℓj,xj

)
=
∏
i∈zj

p
(
yij
∣∣ fi, ℓj,xj

, λj

)
p
(
ℓj,xj

)
=
∏
i∈zj

θ
(
yij; ℓ

t
j,xj

fi,xj
, λj

)
θ
(
ℓj,xj

;0,Λj

)
= θ
(
ℓj,xj

;ηj,Γj

)
(9)
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where

Λj =
1

σ2
I|xj |,

Γj = Λj + λj

∑
i∈zj

fi,xj
fti,xj

,

ηj = Γ−1
j

Λj0+ λj

∑
i∈zj

yijfi,xj


(10)

and θ(x;µ,P) is the multivariate normal density function with argument x, mean µ and

precision P.

Computing Γj has computational complexity O(NK2), so computing all P precisions

has overall complexity O(NPK2). Once the precisions have been computed, computing

the means has complexity O(NPK + PK3), which contributes relatively little to overall

computation time as N >> K for most problems. Note that if the data are completely

observed and there is no structured sparsity in the loadings, then Γj = Λj + λjF
tF. In that

case, we only need to compute FtF once (not P times), which brings the overall complexity

down to O(NPK) (as we still need to compute the means for al P columns of L). Drawing

all ℓj for j = 1, . . . , P results in a complete sample from the full conditional distribution of

L.

3 Loadings Gradient Calculation

We calculate the gradient of the likelihood with respect to each column of the loadings ℓj

individually to accommodate variation in the missing data structure across traits. Note that

in the calculations below, we omit explicit dependence on the residual precision Λ and tree

F in the interest of notational simplicity.

∇ℓj log p
(
Yobs

∣∣L) = 1

p(Yobs |L)
∇ℓjp

(
Yobs

∣∣L)
=

1

p(Yobs |L)
∇ℓj

[∫
p
(
Yobs

∣∣F,L)p(F)dF]
=

1

p(Yobs |L)

∫
p(F)∇ℓjp

(
Yobs

∣∣F,L)dF.
(11)
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Based on the fact that the elements of Yobs are independent conditional on the loadings and

factors, we have:

p
(
Yobs

∣∣F,L) = N∏
i=1

P∏
k=1

p(yij | fi,L)δik

=
N∏
i=1

P∏
k=1

(2πλk)
−δik/2 exp

(
−1

2
λkδik

(
yik − ftiℓk

)2)

= c exp

(
−1

2

N∑
i=1

P∑
k=1

λkδik
(
yik − ftiℓk

)2)
,

(12)

where δij is an indicator that equals 1 if yij is observed and 0 if it is missing, and c is a

normalization constant that does not depend on the loadings L. Therefore,

∇ℓjp
(
Yobs

∣∣F,L) = ∇ℓj

[
c exp

(
−1

2

N∑
i=1

P∑
k=1

λkδik
(
yik − ftiℓk

)2)]

= c exp

(
−1

2

N∑
i=1

P∑
k=1

λkδik
(
yik − ftiℓk

)2)

×∇ℓj

[
−1

2

N∑
i=1

P∑
k=1

λkδik
(
yik − ftiℓk

)2]

= p
(
Yobs

∣∣F,L)×∇ℓj

[
−1

2

N∑
i=1

P∑
k=1

λkδik
(
yik − ftiℓk

)2]

= p
(
Yobs

∣∣F,L)×−1

2
λj

N∑
i=1

δij∇ℓj

[(
yij − ftiℓj

)2]
= p
(
Yobs

∣∣F,L)λj

N∑
i=1

δijfi
(
yij − ftiℓj

)
= p
(
Yobs

∣∣F,L)λj

(
Ftδ′

jy
obs
j

′ − Ftδ′
jFℓj

)

(13)
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where yobs
j

′
is the jth column of Yobs and δ′

j = diag[δ1j, . . . , δNj] is a diagonal matrix of

observed-data indicators. Using this result in SI Equation 11, we calculate

∇ℓj log p
(
Yobs

∣∣L) = ∫ p(F)p
(
Yobs

∣∣F,L)
p(Yobs |L)

λj

(
Ftδ′

jy
obs
j

′ − Ftδ′
jFℓj

)
dF

=

∫
p
(
F
∣∣Yobs,L

)
λj

(
Ftδ′

jy
obs
j

′ − Ftδ′
jFℓj

)
dF

= E
[
λj

(
Ftδ′

jy
obs
j

′ − Ftδ′
jFℓj

) ∣∣∣Yobs,L
]

= λjE
[
Ft
∣∣Yobs,L

]
δ′
jy

obs
j

′ − λjE
[
Ftδ′

jF
∣∣Yobs,L

]
ℓj.

(14)

Note that

E
[
Ftδ′

jF
∣∣Yobs,L

]
=

N∑
i=1

δijE
[
fif

t
i

∣∣Yobs,L
]

=
N∑
i=1

δijV
[
fi
∣∣Yobs,L

]
+ δijE

[
fi
∣∣Yobs,L

]
E
[
fi
∣∣Yobs,L

]t
.

(15)

We compute E
[
fi
∣∣Yobs,L

]
and V

[
fi
∣∣Yobs,L

]
for i = 1, . . . , N in O(NPK2 +NK3) via

a post-order likelihood calculation algorithm (see SI Section 1) followed by the pre-order

algorithms independently developed by Bastide et al. (2018) and Fisher et al. (2020).

For the case where there is no missing data, we can simplify SI Equation 13 to be

∇Lp(Y |F,L) = p(Y |F,L)
[
FtYΛ− FtFLΛ

]
. (16)

4 Post-Processing Procedure

We employ singular value decomposition (SVD) to enforce the orthogonality constraint on

the loadings via post-processing. In practice, we sample from the orthogonally-constrained

loadings as follows. Let L(n) be a sample from the posterior distribution L |Y at the nth

state in the MCMC chain. For each L(n), we compute the SVD L(n) = U(n)Σ(n)V(n) where

U(n) is a K×K orthonormal matrix and Σ(n) and V(n) retain their constraints from Section

2.2.2 (i.e. Σ(n) is diagonal with descending positive entries and V(n)V(n)t = IK). While the

parameter U is not identifiable, Σ and V are (Holbrook et al., 2016). As such, we then treat

L⊥(n)
= Σ(n)V(n) as (now identifiable) samples from the posterior of the loadings. If we also

sample the factors F, we rotate the factors to sample from F⊥(n)
= F(n)U(n) to ensure that

F⊥(n)
L⊥(n)

= F(n)U(n)Σ(n)V(n) = F(n)L(n).
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5 Sampling from Σ

We define the K-vector σ such that Σ = diag[σ] and sample σ as follows (see SI Section 5.1

for derivation):

σ
∣∣Yobs,F,V,Λ ∼ MVN

(
µσ ,P

−1
σ

)
, where

Pσ = diag[τ ] +
P∑

j=1

λj diag[vj]F
tδ′

jF diag[vj],

µσ = P−1
σ

(
P∑

j=1

λj diag[vj]F
tδ′

jy
obs
j

′
)
,

(17)

τ = (τ1, . . . , τK) and vj is the jth column of V.

While the prior encourages the elements of σ to have descending absolute value, it does

not enforce this constraint strictly. As discussed in Section 2.2.2, for some problems a strict

ordering with forced spacing may be necessary in practice for full identifiability. In these

cases we employ a rejection sampler where we draw from the full conditional distribution

of σ using the unrestricted multivariate normal distribution and reject any samples that do

not conform to the particular constraint. As the unconstrained prior already induces a soft

ordering, we find that this rejection sampler typically has high acceptance probability.
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5.1 Loadings Scale Full Conditional Distribution

We detail our derivation of SI Equation 17 below. Recall that we define the K-vector σ such

that Σ = diag[σ], and note that all proportional symbols imply log-proportional:

logp
(
σ
∣∣Yobs,F,V,Λ

)
∝ logp

(
Yobs

∣∣σ,F,V,Λ
)
+ logp(σ)

=
P∑

j=1

logp
(
yobs
j

′
∣∣∣σ,F,vj, λj

)
+ logp(σ)

∝ −1

2

P∑
j=1

λj

(
FΣvj − yobs

j

′
)t

δ′
j

(
FΣvj − yobs

j

′
)
+ logp(σ)

∝ −1

2

P∑
j=1

λj

(
vt
jΣFtδ′

jFΣvj − 2vt
jΣFtδ′

jy
obs
j

′
)
+ logp(σ)

∝ −1

2

P∑
j=1

λj

(
σt diag[vj]F

tδ′
jF diag[vj]σ − 2σt diag[vj]F

tδ′
jy

obs
j

′
)
+ logp(σ)

∝ −1

2
σt

(
P∑

j=1

λj diag[vj]F
tδ′

jF diag[vj]

)
σ

− σt

(
P∑

j=1

λj diag[vj]F
tδ′

jy
obs
j

′
)

+ logp(σ)

∝ −1

2
σt

(
diag[τ ] +

P∑
j=1

λj diag[vj]F
tδ′

jF diag[vj]

)
σ

− σt

(
P∑

j=1

λj diag[vj]F
tδ′

jy
obs
j

′
)

∝ −1

2

(
σ − µσ

)t
Pσ

(
σ − µσ

)
,

(18)

where

Pσ = diag[τ ] +
P∑

j=1

λj diag[vj]F
tδ′

jF diag[vj] and

µσ = P−1
σ

(
P∑

j=1

λj diag[vj]F
tδ′

jy
obs
j

′
) (19)

This implies

logp
(
σ
∣∣Yobs,F,V,Λ

)
= θ
(
σ;µσ ,Pσ

)
. (20)

9



6 Sign Constraint on the Loadings

Regardless of which prior (i.i.d. vs shrinkage) or constraint (sparsity vs orthogonality) we

choose, we must enforce a sign constraint on a single element in each row of L for full

identifiability. Let γk ∈ {1, . . . , P} be the index of the Kth row of L with the sign constraint

(i.e. require ℓγkk ≥ 0). If the sample ℓ
(n)
kγk

< 0, then we simply multiply row k of L(n) by −1

to ensure ℓ
(n)
kγk

≥ 0. These K sign-constrained elements are not required to be in the same

row of L, and we choose these rows in a way that maximizes the posterior identifiability of

L. In practice, we apply a simple heuristic where for k = 1, . . . , K

γk = argmax
j∈1,...,P

 ℓ̄
abs
jk√∑M

n=1

(∣∣∣ℓ(n)jk

∣∣∣− ℓ̄
abs
jk

)2
 and ℓ̄

abs
jk =

1

M

M∑
n=1

∣∣∣ℓ(n)jk

∣∣∣ . (21)

In the absence of sign constraints, the marginal posteriors of many elements of L are bimodal

and symmetric across zero. Our heuristic aims to find an index in each column of L with

low mass near 0 and simply chose the positive mode.

7 Sampling from Λ

Regardless of the prior on the loadings, we sample from Λ
∣∣F,Yobs,L using the same con-

jugate Gibbs sampler as Tolkoff et al. (2017) in conjunction with the data augmentation

algorithm from Section 3.1.1. The Gamma(aΛ, bΛ) (shape, rate parameterization) prior on

the diagonal elements of Λ results in a simple expression for the full conditional distribution

of λj for j = 1, . . . , P conditional on the factors F. Specifically, each λj is distributed as

λj

∣∣Yobs,F,L ∼ Gamma

(
aΛ +

Nobs
j

2
, bΛ +

1

2

N∑
i=1

δij
(
yij − ℓtjfi

)2)
. (22)

This computation only requires run time O(NPK) and, in our experience, time spent esti-

mating Λ does not contribute significantly to the overall run time of the MCMC chain.

Note that as with the loadings in Section 3.1.2, we also derive a strategy for sampling

from these precisions without conditioning on F via HMC. As we are satisfied with the

Tolkoff et al. (2017) procedure, we have not implemented this strategy, but the derivation

can be found below. Naturally, this HMC sampler requires we compute the gradient of the
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likelihood with respect to the loadings as follows:

∂ log p
(
Yobs

∣∣Λ)
∂λj

=
1

p(Yobs |Λ)

∫
p(F)

∂p
(
Yobs

∣∣F,Λ)
∂λj

dF

=
1

p(Yobs |Λ)

∫
p(F)p

(
Yobs

∣∣F,Λ)
×

(
Nobs

j

2
λ−1
j − 1

2

(
Fℓj − yobs

j

′
)t

δ′
j

(
Fℓj − yobs

j

′
))

dF

= E

[
Nobs

j

2
λ−1
j − 1

2

(
Fℓj − yobs

j

′
)t

δ′
j

(
Fℓj − yobs

j

′
) ∣∣∣∣∣Yobs,Λ

]

=
Nobs

j

2
λ−1
j − 1

2
ℓtjE
[
Ftδ′

jF
∣∣Yobs,Λ

]
ℓj + ℓtjE

[
Ft
∣∣Yobs,Λ

]
δ′
jy

obs
j

′

− 1

2
yobs
j

′t
δ′
jy

obs
j

′

(23)

The conditional expectations of the latent factors are the same as in Section 3.1.2. Note

that we restrict Λ to be diagonal, so we only consider the diagonal elements of the gradient.

Once we have computed this gradient, we employ it in standard HMC to sample from the

full conditional of Λ.

8 Timing

8.1 Simulation Details

To simulate each data set for the timing comparison, we generate a random coalescent tree

with N tips (Kingman, 1982). We then simulate the factors F according to K independent

Brownian diffusion processes on the tree and subsequently re-scale the factors so that each

column has unit variance. We draw V from a uniform distribution on the Stiefel manifold.

To avoid identifiability challenges associated with values of Σ having similar magnitudes, we

set σk = 2−k
√
P for k = 1, . . . , K. Note that we multiply by

√
P so that the expectations

of ℓ2kj = σ2
kv

2
kj remain the same regardless of P . We sample the residual variances λ−1

j

independently from Gamma(2, 4) for j = 1, . . . , P , which keeps the contribution of the

residual variance to the total variance similar to that of the latent factors. Finally, we draw

ϵ ∼ MN
(
0, IN ,Λ

−1
)
and compute Y = FΣV+ϵ. As all methods rely on the same principles

for handling missing data, we do not remove any observations from the simulated data sets.

When performing inference, we assume the tree is fixed to its true value used to simulate

the factors F. We use the orthogonality constraint on the loadings and employ the post-

processing regime discussed in Section 3.1.3 to rotate results from each sampler (except the
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one associated with the orthogonal shrinkage prior) to enforce this constraint. For the model

with the orthogonal shrinkage prior, we assume both forced ordering and spacing (α = 0.9).

8.2 Effective Sample Size Calculations

To understand the relative performance of each inference regime, we compare the effective

sample size (ESS) per second of the loadings across all four samplers. Draws from an MCMC

simulation are often auto-correlated, and the total number of steps in the chain is rarely a

direct proxy for our confidence in the posterior estimates. ESS approximates the number of

independent samples from the chain. As researchers typically set a minimum ESS threshold

to determine the length of MCMC simulations, we compare the minimum ESS per unit time.

Let ESS
(m)
kj be the effective sample size for ℓkj in replicate m and ESS

(m)
min = mink,j ESS

(m)
kj for

m = 1, . . . , 3. We compute ESSmin = 1
3

∑3
m=1 ESS

(m)
min/t

(m) for all models, where t(m) is the

time required for the mth MCMC simulation. Actual ESS values were calculated using the

Julia package MCMCDiagnostics.jl. We compare these values in Figure 1 and SI Table 1.
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N P K
minimum ESS per minute speed increase over sampled

Sampled Gibbs HMC orthogonal Gibbs HMC orthogonal

50

10
1 530 5100 5700 2000 9.8× 11.0× 3.8×
2 500 3900 2500 810 7.8× 4.9× 1.6×
4 680 2200 1400 450 3.3× 2.0× 0.7×

100
1 190 1400 1700 170 7.6× 9.1× 0.89×
2 150 1000 870 130 7.1× 5.9× 0.89×
4 52 550 250 20 11× 4.7× 0.39×

1000
1 34 460 250 5.2 14× 7.4× 0.15×
2 27 390 85 0.87 14× 3.1× 0.032×
4 23 320 23 0.51 14× 1.0× 0.022×

100

10
1 270 4100 3000 1100 15× 11× 4.0×
2 160 2100 2000 400 13× 12× 2.5×
4 51 680 500 110 13× 9.9× 2.1×

100
1 33 360 480 94 11× 14× 2.9×
2 18 240 290 35 13× 16× 1.9×
4 17 200 83 38 12× 4.8× 2.2×

1000
1 3.9 54 53 2.9 14× 14× 0.75×
2 2.5 82 15 0.98 33× 5.8× 0.39×
4 2.0 99 5.3 0.19 49× 2.6× 0.092×

500

10
1 5.0 740 460 170 150× 92× 33×
2 3.4 260 280 59 77× 83× 17×
4 1.7 160 170 30 93× 98× 18×

100
1 0.77 95 110 25 120× 140× 32×
2 0.37 20 28 5.4 56× 77× 15×
4 0.46 18 12 3.7 40× 25× 8.1×

1000
1 0.02 1.8 0.71 0.68 90× 35× 34×
2 0.018 2.4 0.65 0.11 130× 36× 6.1×
4 0.011 1.5 0.16 0.032 140× 15× 2.9×

1000

10
1 1.1 170 290 58 160× 270× 54×
2 0.54 84 190 28 160× 350× 52×
4 0.24 49 80 10 210× 340× 44×

100
1 0.098 35 38 9.2 350× 390× 94×
2 0.064 15 12 2.8 230× 180× 44×
4 0.065 7.6 5.8 1.0 120× 90× 15×

1000
1 0.0017 0.5 0.25 0.3 300× 150× 180×
2 0.0015 0.67 0.15 0.085 450× 100× 57×
4 0.0015 0.4 0.06 0.02 270× 40× 14×

Table 1: Comparison of computational efficiency. Effective sample size computed using the
Julia package MCMCDiagnostics.jl.
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9 Identifying Label Switching

As discussed in Section 5.2, the post-processing algorithm used to induce orthogonality when

sampling under the i.i.d. prior can result in label switching. This phenomenon occurs when

elements of the scale parameter σ have significantly overlapping posterior distributions.

As the post-processing algorithm orders the factors based on the magnitude of the scale

parameters, it will swap two factors when their scales switch in order. Because of this, the

estimated posterior distribution of the loadings and factor values associated with two factors

undergoing label-switching will be a mixture of some (unknown) underlying distributions

that we are trying to estimate. This mixing can obscure signals in our data.

Consider SI Figure 1 as a toy example where we know the true underlying distributions.

In practice, we do not know these distributions (if we did we wouldn’t need to infer them).

We assume a 3-factor model where the posterior of scales σ1 and σ2 are slightly overlapping.

If we then order the rows of the loadings according to the the scales σ, the estimated rows

of the loadings clearly switch at the places where the true σ1 < σ2. We see evidence of

this occurring in the plot of the loadings where samples from the posterior of ℓ11, which are

normally greater than 1, occasionally have unusually low values near 0. At the same points

in the chain samples from ℓ21, which are normally near 0, have unusually high values near

1. It appears that the estimated samples from the posterior of ℓ11 and ℓ21 are occasionally

switching between the two.

Label switching is not always as obvious as the simple example depicted here in SI

Figure 1. In Figure 2, all elements of σ appear close to each other and there is likely a higher

degree of overlap between pairs of factors. Rather than obvious switching, the posteriors

of the loadings under the i.i.d. prior appear to blend into each other. While it is possible

that the posteriors of the loadings really are overlapping, the apparently overlapping scale

parameters and skewed tails of the each of loadings posterior densities toward the mean of

the other distribution suggests label switching. Repeating the analysis with the orthogonal

shrinkage prior reveals distinct posterior distributions in the relevant parameters of the

loadings, confirming that label switching is occurring under first analysis (i.i.d. prior with

post processing).

14



tr
ut

h

(u
nk

no
w

n)

0.6

0.9

1.2

0 25 50 75 100

pa
ra

m
et

er
 v

al
u

e

-0.5

0.0

0.5

1.0

1.5

0 25 50 75 100

pa
ra

m
et

er
 v

al
u

e

es
tim

at
ed

(w
ith

 la
b

el
 s

w
itc

hi
ng

)

0.6

0.9

1.2

0 25 50 75 100

state

pa
ra

m
et

er
 v

al
u

e

-0.5

0.0

0.5

1.0

1.5

0 25 50 75 100

state

pa
ra

m
et

er
 v

al
u

e

parameter
σ1σ2σ3

scale parameter σ loadings elements

112131

Supplementary Figure 1: Example of label switching. The top trace plots are samples from a
known distribution. Note that in practice, we to not know the true underlying distribution.
The bottom plot demonstrates how ordering the scale parameters can induce label switching
between rows of the loadings. Here, there is label switching between the first two factors,
but not the third. The switching in the estimated parameters occurs at the MCMC states
where the “true” σ1 < σ2 (normally the reverse is true).

10 Cross Validation

Our model selection strategy seeks to identify the shrinkage strength (when using the shrink-

age prior) or number of factors (when using the i.i.d. prior) that provides optimal predictive

performance via cross-validation. To this end, we posit M sub-models characterized by the

meta-parameters Ω1, . . . ,ΩM . Under the i.i.d. prior, Ωi = K [i] is the number of factors in

model i. For example, our default for the i.i.d. prior assumes Kmax = 5 and M = 5 models

with (K [1], . . . , K [M ]) = (1, 2, 3, 4, 5). Under the shrinkage prior, let Ωi = {a[i],b[i]} be the

shapes and rates, respectively, of the gamma priors on the shrinkage multipliers ν1, . . . , νK

for model i. We typically retainKmax = 5 and define the 5 sub-models as a[i] = 10(i+1)/21Kmax
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and b[i] = 1Kmax for i = 1, . . . , 5.

We evaluate the predictive performance of each model on R replicate data sets via R-fold

cross-validation. For each replicate j = 1, . . . , R, we randomly partition the observed data

Yobs into a training set Ytr
j containing (100 − 100

R
)% of the data and a validation set Yval

j

with the remaining 100
R
% such that each observation occurs in exactly one validation set.

Let Θ = {L,Λ} be the model parameters relevant to the likelihood. We first approx-

imate p
(
Θ
∣∣Ytr

j ,Ωi

)
for i = 1, . . . ,M , j = 1, . . . , R via MCMC simulation as described

in Section 3. We then compute the expected log predictive density (Gelman et al., 2013)

πij = E
[
logp

(
Yval

j

∣∣Ytr
j ,Θij

)]
for i = 1, . . . ,M , j = 1, . . . , R, where Θij is a random variable

with density p
(
Θ
∣∣Ytr

j ,Ωi

)
. We select Ωm, where m = argmaxi

1
R

∑
j πij, as the optimal

model and approximate p
(
L,Λ

∣∣Yobs,Ωm

)
as the final step in the analysis plan.

11 Phylogenetic Latent Liability Model

In the case of binary traits, we assume the latent liability model of Cybis et al. (2015).

Specifically, rather than assuming the observations Y = FL+ ϵ, we introduce an additional

latent variable Z = {zij} for i = 1, . . . , N , j = 1, . . . , P and assume Z = FL + ϵ. These

latent liabilities zij are connected to the observations yij via the link function yij = gj(zij)

where gj(x) = x if trait j is continuous, gj(x) = 1{x ≤ 0} if j is binary.

Under this model, the full conditional distributions of the latent liabilities are independent

truncated Gaussian distributions with densities

p
(
zij
∣∣ yij, fi, ℓj, λj, tj

)
∼ θ
(
zij; f

t
iℓj, λj

)
1{gj(zij) = yij} . (24)

As these full conditional distributions are independent, we can sample from them efficiently

via a simple rejection sampler. Specifically, we first draw from F |Z,Λ,F as in Section 3.1.1.

We then sample the proposal zij ∼ N
(
ftiℓj, 1/λj

)
that we accept if gj(zij) = yij and reject

otherwise. Note that for each discrete trait j, we must also fix λj = 1 to ensure the variance

of the latent traits j are identifiable (see Tolkoff et al., 2017).

12 Phylogenetic Tree Inference

12.1 Yeast

For they yeast analysis, we first infer a phylogenetic tree for the 154 phenotyped strains

using the 2.8 megabase DNA sequence alignment of Gallone et al. (2016) (see subsection
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Phylogenetic Tree for the Sequenced Collection inMethods of Gallone et al. (2016) for details).

Our phylogenetic tree model includes an uncorrelated relaxed clock model (Drummond et al.,

2006), an HKY+G substitution model (Hasegawa et al., 1985; Yang, 1994) and a constant-

population coalescent prior on the tree (Kingman, 1982).

We perform MCMC simulation via BEAST (Suchard et al., 2018) to approximate the

posterior distribution of the phylogenetic tree. We run the MCMC chain for 10 million

states, sampling the tree and related parameters every thousand states and the factor related

parameters every 10 thousand states. Inspection of relevant trace plots indicated the the

MCMC chain had achieved stationarity by 1 million states, and we exclude the first million

states as burn-in. We compute the maximum clade credibility (MCC) tree as a point estimate

of the phylogenetic tree using TreeAnnotator (Rambaut and Drummond, 2015).

12.2 New World Monkeys

We simultaneously infer the NWM tree structure with the latent factor model using DNA

sequence alignments of Aristide et al. (2015). To infer the tree structure, we partition the taxa

into four monophyletic clades consisting of the 1) Atelidae, 2) Aotidae and Callitrichidae, 3)

Cebidae and 4) Pitheciidae respectively and place zero prior probability on tree topologies

that do not maintain these clades. Otherwise, we use the same phylogenetic tree model and

inference procedure as described in SI Section 12.1.

13 Additional Results

We present the full results of our yeast analysis below.
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Supplementary Figure 2: Posterior summary of loadings of 5-factor PFA on yeast data set.
The first factor primarily captures differences associated with tolerance to environment and
nutrient stress as well as reproductive ability. Dots represent posterior means while bars cover
the 95% highest posterior density (HPD) interval. Colors represent the posterior probability
that the parameter is greater than 0.
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