nature ecology & evolution

Article

https://doi.org/10.1038/s41559-022-01975-w

Genetic assimilation of ancestral plasticity during parallel adaptation to zinc contamination in *Silene uniflora*

In the format provided by the authors and unedited

 1
 2

 2
 This PDF file includes:

 3
 Supplementary Methods

 5
 Legends for Supplementary Files 1-7

 6
 Supplementary Tables 1-5

 7
 Supplementary References

 8
 9

 9
 Other supplementary materials for this manuscript include the following:

 10
 Supplementary Files 1-8

 12
 13

 14
 15

16 Supplementary Methods17

18

19 **1. Plant materials and experimental procedure**

Seeds from each of the four populations were collected as described in Papadopulos *et al.*¹. 20 21 Populations T1, S1, T2 and S2 correspond to populations WWA-M, WWA-C, ENG-M and 22 ENG-C in Papadopulos et al.¹. In October 2019 wild-collected seeds (three seeds per 23 population, collected from different individuals) were germinated in Erin Traditional 24 Multipurpose Compost in 80ml cells and grown in a greenhouse (16/8 hour day/night cycle; 25 temperature controlled 18/12 °C, supplementary lighting automatically switched on if light levels fell below 120 µmol m⁻² s⁻¹ during the day) before being transplanted to 1.5L pots 26 27 filled with compost and 14.7g MiracleGro Slow Release Fertiliser after five weeks. When 28 the plants were ten weeks old at least six 6-8cm cuttings per plant were taken per plant and 29 suspended in a foam discs (1 disc per individual) in a 40 Site X-Stream Aeroponic 30 Propagator filled with 12L Ultrapure deioinised water (Barnstead D4642-33 e-pure ultra 31 water purification system). After 2.5 weeks the propagator was refreshed with 1.92g 32 Hoaglands No. 2 Basalt Salt Solution (Merck) dissolved in 12L ultrapure water once a 33 week for a further three weeks to encourage root growth. This second round of root 34 development, after being grown from seed in common benign conditions, should reduce 35 any maternal effects from differences in resource allocation to seeds between populations. 36 The rooted cuttings were then transferred to six hydroponics tanks. For each tank,

1.28g Hoaglands No. 2 Basal Salt Solution was dissolved in 0.8L deionised water (Fluid
Science) and adjusted to pH 5.5 using 0.1M Potassium Hydroxide. This was added to an
18L opaque tank (48 x 39 x 20cm) and topped up to 8L using deionised water. Tanks were
aerated using an airstone and pump. Individual cuttings in foam discs were added to 5x4

polystyrene floats, with 18-19 cuttings per tank, with cuttings from each individual present
at least once in each tank and approximately equal representation of each population in
each tank.

44 After one week of acclimation, the hydroponic solution was replaced. For three of 45 the six tanks, fresh hydroponics solution prepared as previously described was added 46 (control treatment). For the remaining three tanks, 1.28g of Hoaglands No2 Basal Salt 47 solution and 2.4mL 2.0M ZnSO₄ solution (Sigma) were dissolved in 0.798 ml deioinised water, and adjusted to pH 5.5 as above. This was then topped up to 8L with deioinised 48 49 water, giving a final ZnSO₄ concentration of 600µM (zinc treatment). Eight days after 50 media replacement, the roots from each individual cutting were flash frozen in liquid 51 nitrogen and stored on dry ice before being transferred to a -80°C freezer. From each 52 individual within a treatment, one cutting's roots from each of the three tanks (which were of approximately equal size) were pooled. This resulted in each of the three individuals per 53 54 population being represented by a pooled sample of three cuttings (one from each of the 55 three replicate tanks), for both the control and the zinc treatment. This approach reduced 56 technical variation from between-cutting and between-tank differences, and allowed 57 between-individual variation to be accounted for when comparing within populations 58 between the two treatments.

- 59
- 60 2. RNA extraction and sequencing

Roots from each sample were homogenised on dry ice using a pestle to evenly distribute
material from each of the three replicate cuttings. From this, a volume of approximately
150µL of material was added to 2.0mL Safe-Lock Tube (Eppendorf) along with a 5mm

64 stainless steel bead (Qiagen). Samples were homogenised using a TissueLyser LT (Qiagen), the adapter of which had been chilled in a -80°C freezer for at least 2 hours, for 1 minute 65 at 50Hz. RNA was extracted using a Qiagen RNeasy Plant Mini Kit (Qiagen) using the 66 67 standard protocol, including the optional DNase digestion step, with two 50µL elutions in 68 RNase free water. RNA quantity and quality were checked using electrophoresis on a 1% 69 agarose gel, a Nanodrop v2 and Qubit BR RNA Assay Kit (Thermo Fisher) using a Qubit 70 v3. Samples were shipped on dry ice to the Beijing Genomics Institute in Hong Kong and 71 RNA integrity measured using an Aligent Technologies 2100 Bioanalyser, with RIN 72 ranging from 8.2-10.0 (Supplementary File 7). RNA-seq libraries were prepared according 73 to the BGISEQ-500 RNA-Seq Library Preparation Protocol (Document NO: SOP-SS-027) 74 with mRNA enrichment using oligo(dT)-attached magnetic beads. Libraries were 75 sequenced on a BGISEQ500 with 100bp paired-end reads with an average insert size of 76 161bp. This produced 25.1-26.0M read pairs per sample (Supplementary File 7).

77

78 **3.** Data pre-processing, transcriptome assembly and transcript quantification.

Read quality was inspected using FastQC² v0.11.8. The IlluQC.pl script from NGSQCToolkit³ v2.3.3 was used to keep reads with at least 70% of the sequence having a PHRED score >20. Trimmomatic⁴ v0.39 was used with settings LEADING:10 TRAILING:10 SLIDINGWINDOW:4:15 MINLEN:70 to remove leading and trailing lowquality bases with a length cut-off of 70bp. Trimmed reads were inspected for quality and adapter contamination using FastQC.

De novo transcriptome assembly was performed using Trinity⁵ v2.10.0 using min_kmer_cov=2 and default settings for all other parameters. The reads from control and 87 zinc from the individual in each population with the highest total number of reads were 88 used to construct the transcriptome (Supplementary File 7). This resulted in a transcriptome 89 of 502,579 transcripts from 270,649 trinity "genes" (henceforth referred to as genes). Transdecoder⁵ v.5.5.0 was used to predict open reading frames (ORFs) and transcripts 90 91 lacking an ORF at least 100 amino acids long, which are likely to mostly be assembly 92 artefacts, were discarded. 237,424 transcripts from 121,009 genes were retained. Reads 93 were mapped to these transcripts using the align and estimate abundance.pl utility in 94 Trinity, using kallisto⁶ v0.46.1.

95 To examine whether short-read transcriptome assembly may present difficulties in 96 accurately reconstructing transcripts, we calculated Ex90N50 using the trinity 97 contig ExN50 statistic.pl utility, giving a value of 2,316bp. This indicates that the N50 of 98 the most highly expressed 90% of the transcriptome is 2,316. An iso-seq transcriptome, 99 which uses longer PacBio reads for de novo assembly, was recently published from Silene 100 *noctiflora*⁷. This had an N50 value of 1,857, suggesting our transcriptome assembly is of 101 comparable contiguity to one constructed using long-read sequencing technology. Transcriptome completeness was assessed using BUSCO⁸ v.4.0.5 using the Eudicot 102 103 dataset. For these highly conserved single copy genes our transcriptome assembly is 72.2% 104 single copy, 2.8% duplicated, 8.4% fragmented and 16.6% missing. This is a level of completeness comparable to the S. uniflora genome assembly¹, indicating a low percentage 105 106 of BUSCO transcripts being inappropriately fragmented or deleted. These results indicate 107 little inappropriate fragmentation or duplication of genes in our assembly.

Individual de novo assemblies may reduce the chances of genetically divergent
 homologous transcripts being resolved into separate genes, but reducing the amount of data

110 per assembly may also reduce the number of transcripts that can be assembled. To evaluate 111 the impact of multiple vs individual assemblies, the individuals used in the joint 112 transcriptome assembly were assembled individually and completeness/duplication 113 assessed using BUSCO. These results (Supplementary Table 4) indicate that a smaller 114 proportion of BUSCOs are assembled in the individual de novo assemblies, and the 115 combined assembly does not contain substantially more duplicated BUSCOs than the 116 individual assemblies. It is possible that polymorphic genes may be assembled into different isoforms within a single gene. However, we use tximport to summarise expression 117 118 values of all isoforms to the gene level, so even if reads from some individuals map to 119 different isoforms within a gene, this will not affect the expression level of the genes. We 120 therefore conclude that our combined assembly is best placed to accurately identify 121 expression levels of the most genes.

To identify and remove transcripts potentially representing microorganism 122 123 contaminants from the hydroponic media, for each gene the longest transcript was mapped to the Silene uniflora genome (NCBI: ASM1898310v1)¹ using BLAT⁹ v35, with the 124 125 database translated into six frames to protein and query three frames into protein using the 126 arguments -q=RNAX -t=DNAX. Genes with a match >200bp and >90% sequence identity 127 were retained. To avoid discarding genes with homologs in unassembled regions of the S. 128 *uniflora* genome, the translated protein sequences of the transcripts were searched against the SwissProt/UniProt¹⁰ database [version 290; using BLASTP v2.10.0¹¹]. Genes with a 129 130 top hit to an Embryophyte with match length >200bp and >70% sequence identity were 131 also retained. This resulted in the retention of 27,970 genes for use in downstream analysis.

132

134 To identify how many recently duplicated genes may be collapsed into a single 135 contig in our assembly, we took BLAT matches from our filtered transcriptome that 136 matched the *S. uniflora* genome with >200bp length and >90% sequence ID. So that locus 137 to contig relationships could be unambiguously identified, we chose regions that had a 138 single contig mapped; 940 contigs mapped to these regions. Of these, 86 had a hit on a 139 different scaffold of which 77 had a match length >95% of the length of the first match; 140 these contigs could represent expression products of these multiple loci being collapsed. 141 This suggests that a small proportion of contigs (<10%) may result from gene expression 142 of multiple loci.

143 Merging multiple genes that have expression differences between conditions may 144 cause those differences to be dampened or cancel each other out, but would not result in 145 increased signal. We do not think that contigs consisting of duplicated genes should be 146 excluded either - changes in gene copy number has been shown as a driver of gene expression change (e.g., Stranger et al. 2007¹²) including in metal tolerance (e.g., Craciun 147 et al. 2012¹³). We would also note that genes with highly similar sequences may be hard to 148 149 resolve during genome assembly, and unambiguously mapping reads to one vs. another 150 copy of a gene would be comparably challenging to a reference genome assembly as it 151 would be to a de novo transcriptome."

To annotate the transcriptome, ORFs > 100 amino acids were searched against the Pfam-A¹⁴ v33.0 database using hmmer¹⁵ v3.3 to identify protein domains. These results along with the blastp results described above were loaded into an SQLite database using trinotate¹⁶ v3.2.1.

157 4. Defining genes as having undergone substantial PC and EC

158 Only genes having "substantial" PC and EC were investigated for their subsequent 159 response to ancestral plasticity, to avoid spurious classification into these categories for 160 genes with very small expression shifts. There are a number of possible approaches to define this. 1. Ghalambor et al.¹⁷ and other studies in the field have used a fixed cutoff of 161 $0.2 \text{ x } L_0$ for the magnitude of both EC and PC. However, genes with high expression 162 163 variability may have average expression values distorted by a single outlier individual. 2. 164 Using a cutoff of 0.2 x L_o for the magnitude of EC and PC, and additionally statistically 165 significant expression shifts for both S1 and S2 between conditions (PC) and S1 and T1, 166 and S2 and T2, in the zinc (EC). This approach results in a much larger proportion of genes 167 being discarded (Supplementary Table 3). Too stringent an approach may risk distorting 168 the results; overshooting in particular is characterised by a relatively small expression shift in EC compared to PC. Expression shifts in adaptive genes (Fig. 3B, 3C) are relatively 169 170 small and may be particularly sensitive to such an approach. 3. Defining substantial PC as 171 a significant expression shift in both S1 and S2, combining data across both populations 172 (using a model ~Ecotype + Ecotype:Individual plant + Ecotype:Condition), and defining 173 EC as a significant expression shift from susceptible to tolerant individuals in the zinc 174 (using a model with a single combined term for Ecotype and Condition). This approach 175 increases the power to detect small shifts in expression by combining replicates whilst 176 avoiding the problem of highly variable genes distorting the mean. Whilst this approach may be problematic for genes with different behaviours between geographic pairs, the CEC 177 178 and DP gene sets were defined as those showing highly similar behaviours across both 179 populations pairs. The third method was used in the main text; all three approaches are compared in Supplementary Table 3. The second method gives a relatively high proportions of genes undergoing reinforcement and overshooting; whereas the third gives many more genes undergoing reversion in all comparisons, with the first method giving an intermediate number of reinforcements and overshooting. All three methods show a substantial enrichment in genes undergoing reversion in CEC genes, and a smaller enrichment of genes undergoing overshooting in DP genes.

186

187 **5.** Parametric bootstrapping for classifying responses to ancestral plasticity

188 Parametric bootstrapping was implemented in R following the method of Ho & Zhang¹⁸; for each gene normal distributions were generated with means L_o, L_p and L_a and sd the 189 190 standard error of L_o, L_p and L_a as estimated from the data (i.e. from across the 6 individuals 191 used to generate each parameter). Values were randomly drawn from each distribution and 192 from these the gene was classified as reversal, overshooting or reinforcement. This was 193 repeated 100 times per gene and genes which did not show one classification in 95 or more 194 repeats were excluded from the analysis. The results of this analysis for the entire 195 transcriptome, CEC and DP genes are shown in Supplementary Table 1.

196

197 4. Genotyping and phylogenetic inference

For genotyping, cleaned reads from each individual were mapped to the longest isoforms of each Trinity gene using HISAT2¹⁹ v2.2.1, with reads with MAPQ <20 removed using samtools²⁰ v1.7. Genotypes were called using bcftools v1.10.2²¹. Indels were removed, and at least 2 genotyped individuals per population were required for a site to be included, with a minimum read depth of 6 for a sample to be genotyped. Per-population vcfs were merged and sites with QUAL<20 removed. Only sites in the filtered genes used in the gene expression analysis were included. A phylogenetic tree was constructed using SNPhylo²² v20180901 using default settings, which removes sites with linkage disequilibrium >0.1, missing rate >0.1 and minor allele frequency <0.1, and constructs a maximum-likelihood tree. This resulted in a tree generated from 15,285 SNPs, with 100 non-parametric bootstrap replicates performed to assess branch support. All inter-population branches had bootstrap support >= 99%. (Figure 1A).

210

211 5. Models and contrasts used for differential gene expression

To identify sets of differentially expressed genes, models were fit to the entire dataset in DESeq2 using the ~design() function. Contrasts were then used to identify sets of differentially expressed genes within subsets of the dataset using the results() function. Sections 5.1-5.4 show levels of each factor assigned to each individual, how these were combined into a model, and the subsequent contrasts used to define sets of differentially expressed genes. Subsets, unions or intersections of these genes form the CEC, DP and other sets of genes described in the main text.

219 To identify genes differentially expressed between populations within each condition, 220 a model with a single factor representing all the combinations of population and condition 221 was fitted (Pop_Cond) and the relevant contrasts identified as recommended in the 222 Interactions section of the DESeq2 user guide (Section 5.1 below). For between-conditions 223 comparisons, the paired pools of clones between conditions (i.e. individual i1 of population 224 S1 was present in both C and Z) allowed us to fit a model that accounted for differences 225 due to individual genotypes (Section 5.2) below, as specified in the "group-specific 226 condition effects, individuals nested within groups" section of the DESeq2 user guide.

227 Analagous models were fit, using an ecotype term (S vs. T) rather than population (S1, S2, 228 T1, T2) to identify genes with substantial |PC| and |EC| (see Section 4 above for 229 justification; Sections 5.3 and 5.4 below for models and contrasts used). The impact of not 230 including a genotype specific term was assessed by identifying between-condition changes 231 using contrasts from the ~Pop_Cond and ~Eco_Cond models, using the contrasts T1C vs. 232 T1Z, T2C vs. T2|, S1C vs. S1Z, S2C vs. S2Z at the population level and TC vs.TZ, SC vs. 233 SZ at the ecotype level respectively, which do not include the effect of genotype. The 234 results of this are displayed in Supplementary Table 5; fewer genes with between-condition 235 changes are identified, but this has minimal impact on our estimates of evolutionary 236 responses to ancestral plasticity across different gene sets.

237

238 **5.1 Within-condition comparisons (population level):**

- 239 Individual assignments:
- 240

Sample	Pop_Cond
T1_i1_C	T1C
T1_i1_Z	T1Z
T1_i2_C	T1C
T1_i2_Z	T1Z
T1_i3_C	T1C
T1_i3_Z	T1Z
S1_i1_C	S1C
S1_i1_Z	S1Z
S1_i2_C	S1C
S1_i2_Z	S1Z
S1_i3_C	S1C
S1_i3_Z	S1Z
T2_i1_C	T2C
T2_i1_Z	T2Z
T2_i2_C	T2C
T2_i2_Z	T2Z
T2_i3_C	T2C
T2_i3_Z	T2Z
S2_i1_C	S2C

S2_i1_Z	S2Z
S2_i2_C	S2C
S2_i2_Z	S2Z
S2_i3_C	S2C
S2_i3_Z	S2Z

- 242 Design matrix:
- 244 ~Pop_Cond
- 246 Contrasts:

Contrast	Genes	Gene set
S1C vs. S2C	S1 vs. S2 in control	a (Extended Data Fig. 3)
S1C vs. T1C	S1 vs. T1 in control	b (Extended Data Fig. 3)
S2C vs. T2C	S2 vs. T2 in control	c (Extended Data Fig. 3)
T1C vs. T2C	T1 vs. T2 in control	d (Extended Data Fig. 3)
S1Z vs. S2Z	S1 vs. S2 in zinc	i (Extended Data Fig. 3)
S1Z vs. T1Z	S1 vs. T1 in zinc	j (Extended Data Fig. 3)
S2Z vs. T2Z	S2 vs. T2 in zinc	k (Extended Data Fig. 3)
T1Z vs. T2Z	T1 vs. T2 in zinc	1 (Extended Data Fig. 3)

5.2 Between-condition comparisons (population level)

- 253 Individual assignments:

Sample	Рор	Cond	Ind
T1_i1_C	T1	С	1
T1_i1_Z	T1	Ζ	1
T1_i2_C	T1	С	2
T1_i2_Z	T1	Ζ	2
T1_i3_C	T1	С	3
T1_i3_Z	T1	Ζ	3
S1_i1_C	S1	С	1
S1_i1_Z	S 1	Ζ	1
S1_i2_C	S 1	С	2
S1_i2_Z	S 1	Ζ	2
S1_i3_C	S 1	С	3
S1_i3_Z	S 1	Ζ	3
T2_i1_C	T2	С	1
T2_i1_Z	T2	Ζ	1
T2_i2_C	T2	С	2

T2_i2_Z	T2	Ζ	2
T2_i3_C	T2	С	3
T2_i3_Z	T2	Ζ	3
S2_i1_C	S2	С	1
S2_i1_Z	S2	Ζ	1
S2_i2_C	S2	С	2
S2_i2_Z	S2	Ζ	2
S2_i3_C	S2	С	3
S2_i3_Z	S2	Ζ	3

256 Design matrix:

257

258 ~Pop + Pop:Ind + Pop:Cond

259

260 Contrasts:

261

Contrast	Genes	Gene set
PopT1.CondZ	T1 in control vs. T1 in	g (Extended Data Fig. 3)
	zinc	
PopS1.CondZ	S1 in control vs. S1 in	e (Extended Data Fig. 3)
	zinc	
PopT2.CondZ	T2 in control vs. T2 in	h (Extended Data Fig. 3)
_	zinc	
PopS2.CondZ	S2 in control vs. S2 in	f (Extended Data Fig. 3)
_	zinc	

262

263 5.3 Within-condition comparisons (ecotype level):

264 Individual assignments:

Sample	Eco_Cond
T1_i1_C	TC
T1_i1_Z	TZ
T1_i2_C	TC
T1_i2_Z	TZ
T1_i3_C	TC
T1_i3_Z	TZ
S1_i1_C	SC
S1_i1_Z	SZ
S1_i2_C	SC
S1_i2_Z	SZ
S1_i3_C	SC
S1_i3_Z	SZ
T2_i1_C	TC
T2_i1_Z	TZ
T2_i2_C	TC

T2_i2_Z	TZ
T2_i3_C	TC
T2_i3_Z	TZ
S2_i1_C	SC
S2_i1_Z	SZ
S2_i2_C	SC
S2_i2_Z	SZ
S2_i3_C	SC
S2 i3 Z	SZ

267 Design matrix:

~Eco_Cond

271 <u>Contrasts:</u>

Contrast	Genes	Gene Set
SZ vs.TZ	S vs. T in	Substantial EC
	zinc	

5.4 Between-condition comparisons (ecotype level)

275 Individual assignments:

Sample	Ecotype	Cond	Ind
T1_i1_C	Т	С	1
T1_i1_Z	Т	Ζ	1
T1_i2_C	Т	С	2
T1_i2_Z	Т	Ζ	2
T1_i3_C	Т	С	3
T1_i3_Z	Т	Ζ	3
S1_i1_C	S	С	1
S1_i1_Z	S	Ζ	1
S1_i2_C	S	С	2
S1_i2_Z	S	Ζ	2
S1_i3_C	S	С	3
S1_i3_Z	S	Ζ	3
T2_i1_C	Т	С	4
T2_i1_Z	Т	Ζ	4
T2_i2_C	Т	С	5
T2_i2_Z	Т	Ζ	5
T2_i3_C	Т	С	6
T2_i3_Z	Т	Ζ	6
S2_i1_C	S	С	4
S2 i1 Z	S	Ζ	4

S2_i2_C	S	С	5
S2_i2_Z	S	Ζ	5
S2_i3_C	S	С	6
S2_i3_Z	S	Ζ	6

278 Design matrix:

279

- 280 ~Ecotype + Ecotype:Ind + Ecotype:Cond
- 281
- 282 <u>Contrasts:</u>

283

Contrast	Genes	Gene set
EcotypeS.CondZ	Susceptible	Substantial PC
	individuals control	
	vs. zinc	

284

- 285
- 286

Supplementary File 1 (File_S1.csv): Overrepresented Gene Ontology (GO) terms for genes upregulated in the zinc in S1 and S2.

For genes upregulated from control to zinc in both S1 and S2 in the same direction, table

290 outlining enriched GO terms. Each row indicates a GO ID with columns indicating: i) the

291 GO_ID; ii) overrepresented p-value; iii) underrepresented p-value; iv) the number of genes

in the background set; v) the number of genes in the query set; vi) the GO term; vii) the

293 GO ontology; viii) the over-represented false discovery rate; and ix) the GO term.

294

Supplementary File 2 (File_S2.csv): Overrepresented Gene Ontology (GO) terms for
genes differentially expressed between S1 and T1, and S2 and T2, in the zinc
treatment.

298 For genes differentially expressed between T1 and S1, and T2 and S2, in the zinc treatment,

299 in the same direction, table outlining enriched GO terms. Each row indicates a GO ID with

300 columns indicating: i) the GO_ID; ii) overrepresented p-value; iii) underrepresented p-

value; iv) the number of genes in the background set; v) the number of genes in the query
set; vi) the GO term; vii) the GO ontology; viii) the overrepresented false discovery rate;
and ix) the GO term.

304

305 Supplementary File 3 (File S3.csv): Overrepresented Gene Ontology (GO) terms for 306 derived plasticity (DP) genes with ancestral plasticity. For genes displaying the DP 307 expression pattern (see main text for definition), which also showed differential expression 308 between treatments in S1 and S2, table outlining enriched GO terms. Each row indicates a 309 GO ID with columns indicating: i) the GO ID; ii) overrepresented p-value; iii) 310 underrepresented p-value; iv) the number of genes in the background set; v) the number of 311 genes in the query set; vi) the GO term; vii) the GO ontology; viii) the overrepresented 312 false discovery rate; and ix) the GO term.

313

314 Supplementary File 4 (File S4.csv): Overrepresented Gene Ontology (GO) terms for 315 derived plasticity (DP) genes without ancestral plasticity. For genes displaying the DP 316 expression pattern (see main text for definition), but which did not show differential 317 expression between treatments in S1 and S2, table outlining enriched GO terms. Each row 318 indicates a GO ID with columns indicating: i) the GO ID; ii) overrepresented p-value; iii) 319 underrepresented p-value; iv) the number of genes in the background set; v) the number of 320 genes in the query set; vi) the GO term; vii) the GO ontology; viii) the overrepresented 321 false discovery rate; and ix) the GO term.

323 Supplementary File 5 (File S5.csv): Overrepresented Gene Ontology (GO) terms for

constitutive expression change (CEC) genes. For genes displaying the CEC expression
pattern (see main text for definition), table outlining enriched GO terms. Each row indicates
a GO ID with columns indicating: i) the GO_ID; ii) overrepresented p-value; iii)
underrepresented p-value; iv) the number of genes in the background set; v) the number of
genes in the query set; vi) the GO term; vii) the GO ontology; viii) the overrepresented
false discovery rate; and ix) the GO term.

330

Supplementary File 6 (File_S6.csv): Overrepresented Gene Ontology (GO) terms for derived plasticity (DP) genes. For genes displaying the DP expression pattern (see main text for definition), table outlining enriched GO terms. Each row indicates a GO ID with columns indicating: i) the GO_ID; ii) overrepresented p-value; iii) underrepresented pvalue; iv) the number of genes in the background set; v) the number of genes in the query set; vi) the GO term; vii) the GO ontology; viii) the overrepresented false discovery rate; and ix) the GO term.

338

Supplementary File 7 (File_S7.csv): Data for individual RNA samples. For each individual sequenced, table outlining i) the sample ID, ii) the date of extraction, iii) the Plant ID, iv) the population ID, v) RNA concentration measured on a Nanodrop 3000, vi) the 260/280nm absorbance ratio, vii) the 260/230 absorbance ratio, viii) RNA concentration measured on a Qubit, ix) the elution volume (first + second elution), x) the extraction batch, xi) the RNA integrity number (RIN), xii) the number of raw reads, xiii)

- 345 the number of clean reads produced per sample, and xiv) whether that sample was used in
- 346 *de novo* transcriptome construction.
- 347
- 348 Supplementary File 8 (File_S8.phylip.txt): Phylip format file of sites used to construct
- the phylogenetic tree in Figure 1A.

2	5	1
Э	J	T

352 Supplementary Table 1: Impact of parametric bootstrapping on response to ancestral 353 plasticity classification.

355 Classifications of genes showing substantial ancestral plasticity and evolutionary change

356 from i) the entire transcriptome, ii) genes showing derived plasticity DP genes), iii) genes

357 showing constitutive expression changes (CEC) by their evolutionary response to ancestral

358 plasticity; reversion, overshooting or reinforcement. Listed either without parametric

bootstrapping or after parametric bootstrapping (the % of genes followed by the number

able to be classified).

Gene set	Class	No bootstrapping	Bootstrapping
Entire transcriptome	Reversion	95.2% (12,070)	98.5% (8,952)
	Overshooting	3.7% (465)	0.7% (67)
	Reinforcement	1.1% (144)	0.8% (72)
DP Genes	Reversion	79.6% (90)	91.5% (86)
	Overshooting	16.8% (19)	5.3% (5)
	Reinforcement	3.5% (4)	3.2% (3)
CEC Genes	Reversion	68.4% (154)	74.9% (128)
	Overshooting	3.6% (8)	1.8% (3)
	Reinforcement	28.0% (63)	23.4% (40)

372 Supplementary Table 2: Classification of evolutionary response to ancestral plasticity 373 in geographic pairs.

374 Table outlining for genes in i) the entire transcriptome, ii) DP genes, iii) genes with derived 375 plasticity in only one of T1 or T2, iii) CEC genes, iv) CEC genes and v) genes with 376 constitutive expression changes in only one of T1 or T2, evolutionary responses to 377 ancestral plasticity. For each gene set, the percentage of genes that could be classified (that 378 showed substantial ancestral plasticity and evolutionary change; see Methods) and the 379 proportions assigned to overshooting, reversions and reinforcement are given. The values 380 are either calculated based on values of L_o, L_p and L_a calculated from a) T1 and S1 only 381 (i.e. L_p is average of S1 expression in zinc; L_a is expression of T1 in the zinc etc.), b) T2 382 and S2 only (i.e. L_p is average of S2 expression in zinc; L_a is expression of T2 in the zinc 383 etc.) and c) the combined values (i.e. L_p is average of S1 and S2 expression in zinc; L_a is 384 expression of T1 and T2 in the zinc etc.; see Methods); note that these are the values used 385 in the text unless otherwise stated.

386

	T1/S1	T2/S2	Combined
% of whole transcriptome classified	36.1%	37.1%	45.3%
Whole transcriptome classifications:			
Overshooting	12.3%	7.7%	3.7%
Reversion	83.8%	87.3%	95.2%
Reinforcement	3.9%	5.1%	1.1%
% of DP genes classified	81.0%	81.0%	82.5%
DP gene classifications:			
Overshooting	12.6%	16.2%	16.8%
Reversion	82.8%	81.1%%	79.6%
Reinforcement	4.5%	2.7%	3.5%%
% of genes with derived plasticity in only	73.1%	71.8%	NA
one of T1 or T2 classified			

Genes with derived plasticity in only one of			
T1 or T2 classifications			
Overshooting	15.8%	11.1%	NA
Reversion	76.3%	84.2%	NA
Reinforcement	7.9%	4.6%	NA
% of CEC genes classified	44.0%	42.0%	56.2%
CEC gene classifications:			
Overshooting	5.11%	3.6%	3.6%%
Reversion	74.4%	79.2%	68.4%
Reinforcement	20.5%	17.3%	28.0%
% of genes with constitutive expression	37.5%	35.3%	NA
changes in only one of T1 or T2 classified			
Genes with constitutive expression changes			
in only one of T1 or T2 classifications			
Overshooting	13.5%	11.2%	NA
Reversion	74.9%	80.5%	NA
Reinforcement	11.6%	8.3%	NA

389

390

391 Supplementary Table 3: Evolutionary responses to ancestral plasticity using different 392 criteria for defining "substantial" ancestral plasticity (PC) and evolutionary change 393 (EC). Table outlining evolutionary responses to ancestral plasticity (metrics outlined in 394 table rows), using genes with "substantial" EC and PC defined using each of the three 395 methods outlined in the Supplementary Methods. i) a significance threshold for gene 396 expression changes in susceptible populations between conditions (PC) and between 397 susceptible and tolerant populations in zinc (EC), ii) the magnitude of PC and EC being 398 greater than 20% of the average expression level of the gene in ancestral populations in 399 control conditions (L_o), iii) significant differential expression between conditions in both 400 S1 and S2, and between S1 and T1 and S2 and T2 in the zinc, in addition to the criteria 401 outlined in (ii). Method (i) is used in the main text.

Result	Significance	EC and PC >	EC and PC >
	threshold for EC and	0.2*Lo	0.2*Lo, differentially
	PC (main text; See		expressed in both
	Methods)		susceptible
			populations between
			treatments,
			differentially
			expressed between
			both tolerant and
			sensitive populations
Duon oution of	45 20/	75 60/	
Proportion of	43.3%	/ 3.0%	29.5%
transprinter			
"substantial			
EC and PC"			
threshold			
Whole	Reversion=05.2%	Reversion=8/1.8%	Reversion=96.0%
transcriptome	Overshooting=3.7%	Overshooting=9.5%	$\frac{1}{1} \frac{1}{1} \frac{1}$
response to	Reinforcement=1 1%	Reinforcement=5.7%	Reinforcement=0.6%
ancestral			
plasticity			
Proportion of	82.5%	86.9%	76.7%
DP genes	02.370	00.970	10.170
nassing			
"substantial			
EC and PC			
threshold"			
DP gene	Reversion=79.6%,	Reversion=79.8%,	Reversion=81.9%,
response to	Overshooting=16.8%,	Overshooting=12.6%,	Overshooting=14.3%,
ancestral	Reinforcement=3.5%	Reinforcement=7.6%	Reinforcement=3.8%
plasticity			
Proportion of	56.2%	74.5%	38.0%
CEC genes			
passing			
"substantial			
EC and PC			
threshold"			
CEC gene	Reversion=68.4%,	Reversion=63.8%,	Reversion=85.5%%,
response to	Overshooting=3.6%,	Overshooting=3.0%,	Overshooting=0.7%,
ancestral	Reinforcement=28.0%	Reinforcement=33.2%	Reinforcement=13.8%
plasticity	· • • • • • • • • • • • • • • • • • • •	· • • • • • • • • • • • • • • • • • • •	·
p-value for	$1 = <2.2 \times 10^{-10}$	$1 = <2.2 \times 10^{-10}$	$1 = 3.9 \times 10^{-7}$
CEC genes	$11 = <2.2 \times 10^{-10}$	$11 = <2.2 \times 10^{-10}$	$11 = 2.2 \times 10^{-10}$
showing more			

reinforcement than i) DP genes and ii) whole transcriptome Proportion of genes with CEC expression pattern in only i) T1 or ii) T2 showing reversion. Proportion of genes with DP expression pattern in only i) T1 or ii) T2 showing reversion pattern in only i) T1 or ii) T2 showing reversion pattern in only i) T1 or ii) T2 showing reversion p-value for genes showing ancestral plasticity vs. no ancestral plasticity having different $ FC $ similarity in T1 vs. T2 in the zine in i) DP genes and ii) CEC genes Percent of i = 71.7% ii = 46.4% ii = 46.4% ii = 82.8% ii = 0.82 ii = 0.82 ii = 0.64				
Idam 1) DP genes and ii) whole transcriptomei = 74.9% i = 74.9% ii = 80.5%i = 77.2% ii = 82.8%Proportion of genes with ii) T1 or ii) T2 showing reversion.i = 76.3% ii = 80.5%i = 80.5% ii = 80.5%i = 80.5% ii = 80.5%Proportion of genes with only i) T1 or ii) T2 showing reversioni = 76.3% ii = 84.2%i = 80.5% ii = 86.1%i = 80.5% ii = 86.1%Proportion of outly i) T1 or ii) T2 showing reversioni = 0.18 ii = 0.98 ii = 0.88i = 0.82 ii = 0.64Powing reversioni = 0.18 ii = 0.86i = 0.98 ii = 0.88i = 0.64Polaticity vs. no ancestral plasticity having different FC similarity in T1 vs. T2 in the zine in i) DP genes and ii) CEC genesi = 71.7% ii = 46.4%i = 82.8%Percent of Percent ofi = 71.7% i = 71.7%i = 46.4% ii = 46.4%i = 82.8%	reinforcement			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	than 1) DP			
transcriptomei = 74.9%i = 77.2%i = 77.2%genes with CEC expression pattern in only i) T1 or ii) T2 showing reversion.i = 80.5%ii = 82.8%ii = 82.8%Proportion of genes with only ii = 84.2%i = 80.5%i = 80.5%ii = 80.5%Proportion of genes with ii = 84.2%i = 80.5%ii = 86.1%Proportion of pattern in only i) T1 or ii) T2 showing reversioni = 80.5%ii = 86.1%Proportion of genes with ii = 84.2%ii = 86.1%ii = 86.1%DP expression pattern in only i) T1 or ii) T2 showing reversioni = 0.18ii = 0.98p-value for genes showing ancestral 	whole			
Proportion of genes with CEC expression pattern in only i) T1 or ii) T2 showing reversion.i = 70.2% ii = 80.5%i = 77.2% ii = 82.8%Proportion of genes with DP expression pattern in only i) T1 or ii) T2 showing reversioni = 76.3% ii = 84.2%i = 80.5% ii = 80.5%i = 80.5% ii = 80.6%Proportion of only i) T1 or ii) T2 showing reversioni = 76.3% ii = 84.2%i = 80.5% ii = 86.1%i = 80.5% ii = 86.1%Proportion of pattern in only i) T1 or ii) T2 showing reversioni = 0.18 ii = 0.86i = 0.98 ii = 0.88i = 0.82 ii = 0.64p-value for genes ancestral plasticity vs. no ancestral plasticity having different [FC] similarity in T1 vs. T2 in the zinc in i) DP genes and ii) CEC genesi = 71.7% i = 71.7%i = 46.4% i = 82.8%	transcriptome			
genes with CEC expression pattern in only i) T1 or ii) T2 showing reversion.ii = 80.5%ii = 82.8%ii = 82.8%Proportion of genes with DP expression pattern in only i) T1 or ii) T2 showing reversioni = 76.3% ii = 84.2%i = 80.5% ii = 86.1%i = 80.5% ii = 86.1%DP expression pattern in only i) T1 or ii) T2 showing reversioni = 0.18 ii = 0.86i = 0.98 ii = 0.88i = 0.82 ii = 0.64p-value for genes showing ancestral plasticity having different FC similarity in T1 vs. T2 in the zinc in i) DP genes and ii) CEC genesi = 71.7% ii = 46.4%i = 82.8%	Proportion of	i = 74.9%	i = 77.2%	i = 77.2%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	genes with	ii = 80.5%	ii = 82.8%	ii = 82.8%
expression pattern in only i) T1 or ii) T2 showing reversion.i = 76.3% i = 80.5% ii = 80.5% ii = 80.5% ii = 86.1%i = 80.5% ii = 86.1%Proportion of genes with pattern in only i) T1 or ii) T2 showing reversioni = 0.18 ii = 0.18 ii = 0.86i = 0.98 ii = 0.88i = 0.82 ii = 0.64p-value for genes showing ancestral plasticity vs. no ancestral plasticity having different [FC] similarity in T1 vs. T2 in the zinc in i) DP genes and ii) CEC genesi = 71.7% i = 71.7%i = 46.4% i = 82.8%	CEC			
pattern in only i) T1 or ii) T2 showing reversion.i = 76.3% i = 80.5%i = 80.5% ii = 80.5%Proportion of genes with DP expression pattern in only i) T1 or ii) T2 showing reversioni = 0.3% ii = 86.1%i = 80.5% ii = 86.1%p-value for genes showing reversioni = 0.18 ii = 0.86i = 0.98 ii = 0.88i = 0.82 ii = 0.64p-value for genes showing ancestral plasticity having different [FC] similarity in T1 vs. T2 in the zinc in i) DP genes and ii) CEC genesi = 71.7%i = 46.4% ii = 46.4%i = 82.8%	expression			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	pattern in			
11) 12 showing reversion.1112 showing ii = 76.3% ii = 80.5% ii = 80.5% ii = 80.5% ii = 80.5% ii = 86.1%i = 80.5% ii = 86.1%DP expression pattern in only i) T1 or ii) T2 showing reversioni = 0.18 ii = 0.18 ii = 0.86i = 0.98 ii = 0.88i = 0.82 ii = 0.64p-value for genes showing ancestral plasticity vs. no ancestral plasticity having different FC similarity in T1 vs. T2 in the zinc in i) DP genes and ii) CEC genesi = 71.7% i = 71.7%i = 46.4% i = 46.4%i = 82.8%	only 1) TT or			
showing reversion.i = 76.3% ii = 84.2%i = 80.5% ii = 86.1%i = 80.5% ii = 86.1%DP expression pattern in only i) T1 or ii) T2 showing reversioni = 0.18 ii = 0.18 ii = 0.86i = 0.98 ii = 0.82 ii = 0.88i = 0.82 ii = 0.64p-value for genes showing ancestral plasticity vs. no ancestral plasticity having different FC similarity in T1 vs. T2 in the zinc in i) DP genes and ii) CEC genesi = 71.7% i = 71.7%i = 46.4% i = 82.8%	11) 1 <i>2</i>			
Iterationi = 76.3%i = 80.5%i = 80.5%genes with DP expression pattern in only i) T1 or ii) T2 showing reversioni = 86.1%ii = 86.1%p-value for genes showing ancestral plasticity vs. no ancestral plasticity having different FC similarity in T1 vs. T2 in the zinc in i) DP genes and ii) CEC genesi = 71.7%iii = 71.7%i = 46.4%i = 82.8%	snowing			
Interpretation of i $i = 70.5\%$ $i = 80.5\%$ $i = -30.5\%$ genes with DP expression pattern in only i) T1 or ii) T2 showing reversion $i = 86.1\%$ $i = 86.1\%$ p-value for genes showing ancestral plasticity vs. no ancestral plasticity having different FC similarity in T1 vs. T2 in the zinc in i) DP genes and ii) CEC genes $i = 0.1.7\%$ $i = 0.98$ ii = 0.82 iii = 0.86 $i = 0.98$ $i = 0.64$ iii = 0.86 $i = 0.88$ $i = 0.64$ similarity in T1 vs. T2 in the zinc in i) DP genes and ii) CEC genes $i = 71.7\%$ $i = 46.4\%$ Percent of ii = 71.7% $i = 46.4\%$ $i = 82.8\%$	Proportion of	i = 76.3%	i = 80.5%	i = 80.5%
$\begin{array}{c ccccc} \begin{array}{c} 1 & 0 & 12.5 \\ \hline DP \\ expression \\ pattern in \\ only i) T1 or \\ ii) T2 \\ showing \\ reversion \\ \hline p-value for \\ genes \\ showing \\ ancestral \\ plasticity vs. \\ no ancestral \\ plasticity \\ having \\ different FC \\ similarity in \\ T1 vs. T2 in \\ the zinc in i) \\ DP genes and \\ ii) CEC genes \\ \hline Percent of \\ i = 71.7\% \\ \hline i = 46.4\% \\ i = 46.4\% \\ i = 82.8\% \\ \hline i = $	genes with	ii = 84.2%	ii = 86.1%	ii = 86.1%
expression pattern in only i) T1 or ii) T2 showing reversioni = 0.18 ii = 0.18 ii = 0.98 ii = 0.86i = 0.98 ii = 0.82 ii = 0.64p-value for genes showing ancestral plasticity vs. no ancestral plasticity having different FC similarity in T1 vs. T2 in the zinc in i) DP genes and ii) CEC genesi = 71.7\% i = 46.4\%i = 82.8\%	DP	11 01.270	1 00.170	1 00.170
pattern in only i) T1 or ii) T2 showing reversioni = 0.18 ii = 0.18 ii = 0.86i = 0.98 ii = 0.82 ii = 0.88i = 0.82 ii = 0.64p-value for genes showing ancestral plasticity vs. no ancestral plasticity having different FC similarity in T1 vs. T2 in the zinc in i) DP genes and ii) CEC genesi = 0.7% ti = 71.7%i = 46.4% ti = 46.4%i = 82.8%	expression			
only i) T1 or ii) T2 showing reversioni = 0.18 i = 0.18 ii = 0.98 ii = 0.86i = 0.92 ii = 0.82 ii = 0.64p-value for genes showing ancestral plasticity vs. no ancestral plasticity having different $ FC $ similarity in T1 vs. T2 in the zinc in i) DP genes and ii) CEC genesi = 0.18 ii = 0.98 ii = 0.88i = 0.82 ii = 0.64Percent of ii) CEC genesi = 71.7% ii = 46.4%i = 82.8%	pattern in			
ii) T2 showing reversioni = 0.18 i = 0.18 ii = 0.86i = 0.98 ii = 0.88i = 0.82 ii = 0.64p-value for genesi = 0.86 ii = 0.86ii = 0.88ii = 0.64showing ancestral plasticity vs. no ancestral plasticity having different FC similarity in T1 vs. T2 in the zinc in i) DP genes and ii) CEC genesi = 71.7%i = 46.4%Percent of iii = 71.7%i = 46.4%i = 82.8%	only i) T1 or			
showing reversioni = 0.18i = 0.98i = 0.82genesii = 0.86ii = 0.88ii = 0.64showing ancestral plasticity vs. no ancestral plasticity having different FC similarity in T1 vs. T2 in the zinc in i) DP genes and ii) CEC genesi = 71.7%Percent of ii = 71.7%i = 46.4%i = 82.8%	ii) T2			
reversioni = 0.18i = 0.98i = 0.82genesii = 0.86ii = 0.88ii = 0.64showing ancestral plasticity vs. no ancestral plasticity having different $ FC $ similarity in T1 vs. T2 in the zinc in i) DP genes and ii) CEC genesi = 71.7%Percent ofi = 71.7%i = 46.4%i = 82.8%	showing			
p-value for genes $i = 0.18$ $i = 0.98$ $i = 0.82$ $ii = 0.86$ $ii = 0.88$ $ii = 0.64$ $showingancestralplasticity vs.no ancestralplasticityhavingdifferent FC similarity inT1 vs. T2 inthe zinc in i)DP genes andii) CEC genesi = 0.88i = 0.64Percent ofi = 71.7%i = 46.4\%i = 82.8\%$	reversion			
genes $n = 0.86$ $n = 0.88$ $n = 0.64$ showing ancestral plasticity vs. no ancestral plasticity having different FC similarity in T1 vs. T2 in the zinc in i) DP genes and ii) CEC genes $n = 0.88$ $n = 0.64$ Percent of i = 71.7% $i = 46.4\%$ $i = 82.8\%$	p-value for	i = 0.18	i = 0.98	i = 0.82
showing ancestral plasticity vs. no ancestral plasticity having different $ FC $ similarity in T1 vs. T2 in the zinc in i) DP genes and ii) CEC genesi = 46.4%i = 82.8%	genes	11 = 0.86	11 = 0.88	11 = 0.64
ancestral plasticity vs. no ancestral plasticity having different $ FC $ similarity in T1 vs. T2 in the zinc in i) DP genes and ii) CEC genesi = 46.4%i = 82.8%	showing			
plasticity vs.ino ancestralplasticityplasticityplasticityhavingdifferent $ FC $ similarity inrT1 vs. T2 inrthe zinc in i)penes andDP genes andiii) CEC genesi = 46.4%Percent ofi = 71.7%ii = 46.4%i = 82.8%	ancestral			
no alleestialplasticityhavingdifferent $ FC $ similarity inT1 vs. T2 inthe zinc in i)DP genes andii) CEC genesPercent of $i = 71.7\%$ $i = 46.4\%$ $i = 82.8\%$	plasticity vs.			
phastery having different $ FC $ similarity in T1 vs. T2 in the zinc in i) DP genes and ii) CEC genesi = 46.4%i = 82.8%Percent ofi = 71.7%i = 46.4%i = 82.8%	nlasticity			
Interneg different $ FC $ similarity in T1 vs. T2 in the zinc in i) DP genes and ii) CEC genesi = 46.4%i = 82.8%Percent ofi = 71.7%i = 46.4%i = 82.8%	having			
similarity in T1 vs. T2 in the zinc in i) DP genes and ii) CEC genesi = 71.7% i = 46.4% i = 82.8% Percent ofi = 71.7% i = 46.4% i = 82.8%	different FC			
T1 vs. T2 in the zinc in i) DP genes and ii) CEC genesi = 71.7% i = 46.4% i = 82.8% Percent ofi = 71.7% i = 46.4% i = 82.8%	similarity in			
the zinc in i) DP genes and ii) CEC genesi = 71.7% i = 46.4% i = 82.8% Percent ofi = 71.7% i = 46.4% i = 82.8%	T1 vs. T2 in			
DP genes and ii) CEC genes $i = 71.7\%$ $i = 46.4\%$ $i = 82.8\%$ Percent of $i = 71.7\%$ $i = 46.4\%$ $i = 82.8\%$	the zinc in i)			
ii) CEC genesi = 46.4%Percent ofi = 71.7%ii = 46.4%ii = 82.8%iii = 0.10%ii = 0.10%	DP genes and			
Percent of $i = 71.7\%$ $i = 46.4\%$ $i = 82.8\%$	ii) CEC genes			
	Percent of	i = 71.7%	i = 46.4%	i = 82.8%
originally $11 = 83.2\%$ $11 = 77.3\%$ $11 = 84.8\%$ 1 55.0% 50.0%	originally	11 = 83.2%	11 = 77.3%	11 = 84.8%
$\begin{bmatrix} \text{classified} \\ \text{const} \end{bmatrix} 111 = /6.0\% \\ 111 = 55.0\% \\ 111 = 85.5\%$	classified	111 = /6.0%	111 = 55.0%	111 = 85.5%
classified	genes			
after	after			
nermitation	nermitation			
for i) Whole	for i) Whole			
transcriptome,	transcriptome.			

ii) DP genes and iii) CEC genes			
Whole transcriptome response to ancestral plasticity after permutations	Reversion=98.5%, Overshooting=0.7%, Reinforcement=0.8%	Reversion = 98.9%, Overshooting = 0.4% Reinforcement = 0.8%	Reversion=99.6%, Overshooting=0.3%, Reinforcement=0.2%
DP gene response to ancestral plasticity after permutations	Reversion=91.5.%, Overshooting=5.3%, Reinforcement=3.2%	Reversion = 93.5%, Overshooting = 4.3%, Reinforcement = 2.1%	Reversion=94.4%, Overshooting=4.4%, Reinforcement=1.1%
CEC gene response to ancestral plasticity after permutations	Reversion=74.9%, Overshooting=1.7%, Reinforcement=23.4%	Reversion = 81.1%, Overshooting = 0.6%, Reinforcement =18.3%	Reversion=91.3%, Overshooting=0.8%, Reinforcement=7.9%

405 Supplementary Table 4: BUSCO assembly scores for individual and combined 406 transcriptome assemblies. The proportion of BUSCO single copy genes in the from the 407 Eudicot dataset present as i) single copy, ii) duplicated, iii) fragmented and iv) missing in 408 de novo assemblies of 4 individuals (1 per population, outlined in brackets), plus the 409 combined de novo assembly using all the data from these 4 individuals.

	BD1 (S1)	SA6 (S2)	GR10 (T1)	PP1 (T2)	Combined
Single copy	66.2%	68.4%	71.3%	69.4%	72.8%
Duplicated	2.1%	2.4%	2.7%	2.3%	2.7%
Fragmented	8.5%	8.1%	7.1%	8.5%	8.3%
Missing	23.2%	21.1%	18.9%	19.8%	16.2%

410

411 Supplementary Table 5: Evolutionary responses to ancestral plasticity, controlling or

412 not controlling for an effect of the genotypes of paired clones between treatments.

413 Comparison of the method of identifying differentially expressed genes between 414 conditions; i) where effects of genotypes of the paired clones between treatments are 415 controlled for by employing a model of ~Pop + Pop:Ind + Pop:Cond (with contrasts 416 PopS1.CondZ, PopS2.CondZ etc.) and ~Ecotype + Ecotype:Ind + Ecotype:Cond (with 417 contrast EcotypeS.CondZ), as in the main text, or ii) where no effect of genotype is 418 included, by using the models ~Pop Cond (using contrasts S1C vs. S1Z, T1C vs. T1Z etc.) 419 and ~Eco Cond (using contrasts SC vs. SZ). For each of these methods, for the i) Entire 420 transcriptome, ii) DP genes and ii) CEC genes, the total number of genes and those 421 classified as undergoing reversion (REV), overshooting (OVER) or reinforcement (RI) are

- 422 displayed; as a percentage of the total number of genes showing substantial |EC| and |PC|,
- 423 with the raw number of genes in brackets.

Gene set	Metric	Controlling for	Not controlling for
		genotype (main	genotype
		text)	
Entire	REV	95.2% (12,070)	95.5% (11,169)
transcriptome			
	OVER	3.7% (465)	4.0% (466)
	RI	1.1% (144)	0.6% (65)
DP Genes	Number of genes	137	46
	REV	79.6% (90)	71.1% (27)
	OVER	16.8% (19)	23.7% (9)
	RI	3.5% (4)	5.3% (2)
CEC Genes	Number of genes	400	400
	REV	68.4% (154)	73.9% (125)
	OVER	3.6% (8)	4.7% (8)
	RI	28.0% (63)	21.3% (36)

425 SI References

426 1. Papadopulos, A. S. T. *et al.* Rapid parallel adaptation to anthropogenic heavy
427 metal Pollution. *Molecular Biology and Evolution* 38, 3724–3736 (2021).

428 2. Andrews, S. A. FATSQC, a quality control tool for high throughput sequence
429 data. 2010. (2015).

430 3. Patel, R. K. & Jain, M. NGS QC Toolkit: A toolkit for quality control of next
431 generation sequencing data. *PLoS ONE* 7, e30619 (2012).

432 4. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for 433 illumina sequence data. *Bioinformatics* 30, 2114–2120 (2014). 434 5. Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using 435 the Trinity platform for reference generation and analysis. Nature Protocols 8, 1494-436 1512 (2013). 437 6. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic 438 RNA-seq quantification. Nature Biotechnology 34, 525-527 (2016). 439 Williams, A. M., Itgen, M. W., Broz, A. K., Carter, O. G. & Sloan, D. B. Long-7. 440 read transcriptome and other genomic resources for the angiosperm Silene noctiflora. G3: 441 Genes, Genomes, Genetics 11, (2021). 442 Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: Assessing genome assembly 8. 443 and annotation completeness. in Methods in Molecular Biology vol. 1962 227-245 444 (Humana Press Inc., 2019). 445 9. Kent, W. J. BLAT---The BLAST-Like Alignment Tool. Genome Research 12, 446 656-664 (2002). 447 10. Bateman, A. UniProt: A worldwide hub of protein knowledge. Nucleic Acids 448 Research 47, D506–D515 (2019). 449 Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local 11. 450 alignment search tool. Journal of Molecular Biology 215, 403–410 (1990). 451 Stranger, B. E. et al. Relative impact of nucleotide and copy number variation on 12. 452 gene expression phenotypes. Science 315, 848-853 (2007). 453 13. Craciun, A. R. et al. Variation in HMA4 gene copy number and expression 454 among Noccaea caerulescens populations presenting different levels of Cd tolerance and 455 accumulation. Journal of Experimental Botany 63, 4179-4189 (2012). 456 14. Finn, R. D. et al. Pfam: The protein families database. Nucleic Acids Research 457 vol. 42 D222 (2014). 458 Mistry, J., Finn, R. D., Eddy, S. R., Bateman, A. & Punta, M. Challenges in 15. 459 homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic 460 Acids Research 41, e121–e121 (2013). 461 16. Bryant, D. M. et al. A tissue-mapped axolotl *de novo* transcriptome enables 462 identification of limb regeneration factors. Cell Reports 18, 762–776 (2017). 463 Ghalambor, C. K. et al. Non-adaptive plasticity potentiates rapid adaptive 17. 464 evolution of gene expression in nature. Nature 525, 372–375 (2015). 465 Ho, W. C. & Zhang, J. Genetic gene expression changes during environmental 18. 466 adaptations tend to reverse plastic changes even after the correction for statistical 467 nonindependence. Molecular Biology and Evolution 36, 604–612 (2019). Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based 468 19. 469 genome alignment and genotyping with HISAT2 and HISAT-genotype. *Nature* Biotechnology 37, 907–915 (2019). 470 471 Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 20. 472 25, 2078–2079 (2009). 473 Li, H. A statistical framework for SNP calling, mutation discovery, association 21. 474 mapping and population genetical parameter estimation from sequencing data. 475 Bioinformatics 27, 2987–2993 (2011). 476 22. Lee, T. H., Guo, H., Wang, X., Kim, C. & Paterson, A. H. SNPhylo: A pipeline to 477 construct a phylogenetic tree from huge SNP data. BMC Genomics 15, 162 (2014). 478