nature ecology & evolution

Article <https://doi.org/10.1038/s41559-022-01975-w>

Genetic assimilation of ancestral plasticity during parallel adaptation to zinc contamination in *Silene uniflora*

In the format provided by the authors and unedited

Supplementary Methods

1. Plant materials and experimental procedure

20 Seeds from each of the four populations were collected as described in Papadopulos *et al.*¹. Populations T1, S1, T2 and S2 correspond to populations WWA-M, WWA-C, ENG-M and 22 ENG-C in Papadopulos *et al.*¹. In October 2019 wild-collected seeds (three seeds per population, collected from different individuals) were germinated in Erin Traditional Multipurpose Compost in 80ml cells and grown in a greenhouse (16/8 hour day/night cycle; temperature controlled 18/12 ºC, supplementary lighting automatically switched on if light 26 levels fell below 120 μ mol m⁻² s⁻¹ during the day) before being transplanted to 1.5L pots filled with compost and 14.7g MiracleGro Slow Release Fertiliser after five weeks**.** When the plants were ten weeks old at least six 6-8cm cuttings per plant were taken per plant and suspended in a foam discs (1 disc per individual) in a 40 Site X-Stream Aeroponic Propagator filled with 12L Ultrapure deioinised water (Barnstead D4642-33 e-pure ultra water purification system). After 2.5 weeks the propagator was refreshed with 1.92g Hoaglands No. 2 Basalt Salt Solution (Merck) dissolved in 12L ultrapure water once a week for a further three weeks to encourage root growth. This second round of root development, after being grown from seed in common benign conditions, should reduce any maternal effects from differences in resource allocation to seeds between populations. The rooted cuttings were then transferred to six hydroponics tanks. For each tank, 1.28g Hoaglands No. 2 Basal Salt Solution was dissolved in 0.8L deionised water (Fluid

 Science) and adjusted to pH 5.5 using 0.1M Potassium Hydroxide. This was added to an 18L opaque tank (48 x 39 x 20cm) and topped up to 8L using deionised water. Tanks were aerated using an airstone and pump. Individual cuttings in foam discs were added to 5x4

 polystyrene floats, with 18-19 cuttings per tank, with cuttings from each individual present at least once in each tank and approximately equal representation of each population in each tank.

 After one week of acclimation, the hydroponic solution was replaced. For three of the six tanks, fresh hydroponics solution prepared as previously described was added (control treatment). For the remaining three tanks, 1.28g of Hoaglands No2 Basal Salt solution and 2.4mL 2.0M ZnSO4 solution (Sigma) were dissolved in 0.798 ml deioinised water, and adjusted to pH 5.5 as above. This was then topped up to 8L with deioinised water, giving a final ZnSO⁴ concentration of 600µM (zinc treatment). Eight days after media replacement, the roots from each individual cutting were flash frozen in liquid nitrogen and stored on dry ice before being transferred to a -80˚C freezer. From each individual within a treatment, one cutting's roots from each of the three tanks (which were of approximately equal size) were pooled. This resulted in each of the three individuals per population being represented by a pooled sample of three cuttings (one from each of the three replicate tanks), for both the control and the zinc treatment. This approach reduced technical variation from between-cutting and between-tank differences, and allowed between-individual variation to be accounted for when comparing within populations between the two treatments.

-
- **2. RNA extraction and sequencing**

 Roots from each sample were homogenised on dry ice using a pestle to evenly distribute material from each of the three replicate cuttings. From this, a volume of approximately 150µL of material was added to 2.0mL Safe-Lock Tube (Eppendorf) along with a 5mm

 stainless steel bead (Qiagen). Samples were homogenised using a TissueLyser LT (Qiagen), 65 the adapter of which had been chilled in a -80 $^{\circ}$ C freezer for at least 2 hours, for 1 minute at 50Hz. RNA was extracted using a Qiagen RNeasy Plant Mini Kit (Qiagen) using the 67 standard protocol, including the optional DNase digestion step, with two 50μ L elutions in RNase free water. RNA quantity and quality were checked using electrophoresis on a 1% agarose gel, a Nanodrop v2 and Qubit BR RNA Assay Kit (Thermo Fisher) using a Qubit v3. Samples were shipped on dry ice to the Beijing Genomics Institute in Hong Kong and RNA integrity measured using an Aligent Technologies 2100 Bioanalyser, with RIN ranging from 8.2-10.0 (Supplementary File 7). RNA-seq libraries were prepared according to the BGISEQ-500 RNA-Seq Library Preparation Protocol (Document NO: SOP-SS-027) with mRNA enrichment using oligo(dT)-attached magnetic beads. Libraries were sequenced on a BGISEQ500 with 100bp paired-end reads with an average insert size of 161bp. This produced 25.1-26.0M read pairs per sample (Supplementary File 7).

3. Data pre-processing, transcriptome assembly and transcript quantification.

79 Read quality was inspected using $FastQC^2$ v0.11.8. The IlluQC.pl script from 80 NGSQCToolkit³ v2.3.3 was used to keep reads with at least 70% of the sequence having 81 a PHRED score >20 . Trimmomatic⁴ v0.39 was used with settings LEADING:10 TRAILING:10 SLIDINGWINDOW:4:15 MINLEN:70 to remove leading and trailing low- quality bases with a length cut-off of 70bp. Trimmed reads were inspected for quality and adapter contamination using FastQC.

85 *De novo* transcriptome assembly was performed using Trinity⁵ v2.10.0 using $\overline{}$ 86 min kmer cov=2 and default settings for all other parameters. The reads from control and zinc from the individual in each population with the highest total number of reads were used to construct the transcriptome (Supplementary File 7). This resulted in a transcriptome of 502,579 transcripts from 270,649 trinity "genes" (henceforth referred to as genes). 90 Transdecoder⁵ v.5.5.0 was used to predict open reading frames (ORFs) and transcripts lacking an ORF at least 100 amino acids long, which are likely to mostly be assembly artefacts, were discarded. 237,424 transcripts from 121,009 genes were retained. Reads were mapped to these transcripts using the align_and_estimate_abundance.pl utility in 94 Trinity, using kallisto⁶ v0.46.1.

 To examine whether short-read transcriptome assembly may present difficulties in accurately reconstructing transcripts, we calculated Ex90N50 using the trinity 97 contig ExN50 statistic.pl utility, giving a value of 2,316bp. This indicates that the N50 of the most highly expressed 90% of the transcriptome is 2,316. An iso-seq transcriptome, which uses longer PacBio reads for de novo assembly, was recently published from *Silene noctiflora*⁷. This had an N50 value of 1,857, suggesting our transcriptome assembly is of comparable contiguity to one constructed using long-read sequencing technology. 102 Transcriptome completeness was assessed using BUSCO^8 v.4.0.5 using the Eudicot dataset. For these highly conserved single copy genes our transcriptome assembly is 72.2% single copy, 2.8% duplicated, 8.4% fragmented and 16.6% missing. This is a level of 105 completeness comparable to the *S. uniflora* genome assembly ¹, indicating a low percentage of BUSCO transcripts being inappropriately fragmented or deleted. These results indicate little inappropriate fragmentation or duplication of genes in our assembly.

 Individual de novo assemblies may reduce the chances of genetically divergent homologous transcripts being resolved into separate genes, but reducing the amount of data

110 per assembly may also reduce the number of transcripts that can be assembled. To evaluate the impact of multiple vs individual assemblies, the individuals used in the joint transcriptome assembly were assembled individually and completeness/duplication assessed using BUSCO. These results (Supplementary Table 4) indicate that a smaller proportion of BUSCOs are assembled in the individual de novo assemblies, and the combined assembly does not contain substantially more duplicated BUSCOs than the individual assemblies. It is possible that polymorphic genes may be assembled into different isoforms within a single gene. However, we use tximport to summarise expression values of all isoforms to the gene level, so even if reads from some individuals map to different isoforms within a gene, this will not affect the expression level of the genes. We therefore conclude that our combined assembly is best placed to accurately identify expression levels of the most genes.

 To identify and remove transcripts potentially representing microorganism contaminants from the hydroponic media, for each gene the longest transcript was mapped 124 to the *Silene uniflora* genome (NCBI: ASM1898310v1)¹ using BLAT⁹ v35, with the database translated into six frames to protein and query three frames into protein using the arguments -q=RNAX -t=DNAX. Genes with a match >200bp and >90% sequence identity were retained. To avoid discarding genes with homologs in unassembled regions of the *S. uniflora* genome, the translated protein sequences of the transcripts were searched against 129 the SwissProt/UniProt¹⁰ database [version 290; using BLASTP v2.10.0¹¹]. Genes with a top hit to an Embryophyte with match length >200bp and >70% sequence identity were also retained. This resulted in the retention of 27,970 genes for use in downstream analysis.

 To identify how many recently duplicated genes may be collapsed into a single contig in our assembly, we took BLAT matches from our filtered transcriptome that matched the *S. uniflora* genome with >200bp length and >90% sequence ID. So that locus to contig relationships could be unambiguously identified, we chose regions that had a single contig mapped; 940 contigs mapped to these regions. Of these, 86 had a hit on a different scaffold of which 77 had a match length >95% of the length of the first match; these contigs could represent expression products of these multiple loci being collapsed. This suggests that a small proportion of contigs (<10%) may result from gene expression of multiple loci.

 Merging multiple genes that have expression differences between conditions may cause those differences to be dampened or cancel each other out, but would not result in increased signal. We do not think that contigs consisting of duplicated genes should be excluded either - changes in gene copy number has been shown as a driver of gene 147 expression change (e.g., Stranger et al. 2007¹²) including in metal tolerance (e.g., Craciun 148 et al. 2012¹³). We would also note that genes with highly similar sequences may be hard to resolve during genome assembly, and unambiguously mapping reads to one vs. another copy of a gene would be comparably challenging to a reference genome assembly as it would be to a de novo transcriptome."

 To annotate the transcriptome, ORFs >100 amino acids were searched against the 153 Pfam-A¹⁴ v33.0 database using hmmer¹⁵ v3.3 to identify protein domains. These results along with the blastp results described above were loaded into an SQLite database using 155 trinotate¹⁶ v3.2.1.

4. **Defining genes as having undergone substantial PC and EC**

 Only genes having "substantial" PC and EC were investigated for their subsequent response to ancestral plasticity, to avoid spurious classification into these categories for genes with very small expression shifts. There are a number of possible approaches to 161 define this. 1. Ghalambor *et al.*¹⁷ and other studies in the field have used a fixed cutoff of 0.2 x Lo for the magnitude of both EC and PC. However, genes with high expression variability may have average expression values distorted by a single outlier individual. 2. 164 Using a cutoff of 0.2 x L_0 for the magnitude of EC and PC, and additionally statistically significant expression shifts for both S1 and S2 between conditions (PC) and S1 and T1, 166 and S2 and T2, in the zinc (EC). This approach results in a much larger proportion of genes being discarded (Supplementary Table 3). Too stringent an approach may risk distorting the results; overshooting in particular is characterised by a relatively small expression shift in EC compared to PC. Expression shifts in adaptive genes (Fig. 3B, 3C) are relatively small and may be particularly sensitive to such an approach. 3. Defining substantial PC as a significant expression shift in both S1 and S2, combining data across both populations 172 (using a model \sim Ecotype + Ecotype:Individual plant + Ecotype:Condition), and defining EC as a significant expression shift from susceptible to tolerant individuals in the zinc (using a model with a single combined term for Ecotype and Condition). This approach increases the power to detect small shifts in expression by combining replicates whilst avoiding the problem of highly variable genes distorting the mean. Whilst this approach may be problematic for genes with different behaviours between geographic pairs, the CEC and DP gene sets were defined as those showing highly similar behaviours across both populations pairs. The third method was used in the main text; all three approaches are

 compared in Supplementary Table 3. The second method gives a relatively high proportions of genes undergoing reinforcement and overshooting; whereas the third gives many more genes undergoing reversion in all comparisons, with the first method giving an intermediate number of reinforcements and overshooting. All three methods show a substantial enrichment in genes undergoing reversion in CEC genes, and a smaller enrichment of genes undergoing overshooting in DP genes.

5. Parametric bootstrapping for classifying responses to ancestral plasticity

188 Parametric bootstrapping was implemented in R following the method of Ho & Zhang¹⁸; 189 for each gene normal distributions were generated with means L_0 , L_p and L_a and sd the 190 standard error of L_0 , L_p and L_a as estimated from the data (i.e. from across the 6 individuals used to generate each parameter). Values were randomly drawn from each distribution and from these the gene was classified as reversal, overshooting or reinforcement. This was repeated 100 times per gene and genes which did not show one classification in 95 or more repeats were excluded from the analysis. The results of this analysis for the entire transcriptome, CEC and DP genes are shown in Supplementary Table 1.

4. Genotyping and phylogenetic inference

 For genotyping, cleaned reads from each individual were mapped to the longest isoforms 199 of each Trinity gene using HISAT2¹⁹ v2.2.1, with reads with MAPQ <20 removed using 200 samtools²⁰ v1.7. Genotypes were called using bcftools v1.10.2²¹. Indels were removed, and at least 2 genotyped individuals per population were required for a site to be included, with a minimum read depth of 6 for a sample to be genotyped. Per-population vcfs were merged and sites with QUAL<20 removed. Only sites in the filtered genes used in the gene 204 expression analysis were included. A phylogenetic tree was constructed using $SNPhylo²²$ v20180901 using default settings, which removes sites with linkage disequilibrium >0.1, missing rate >0.1 and minor allele frequency <0.1, and constructs a maximum-likelihood 207 tree. This resulted in a tree generated from 15,285 SNPs, with 100 non-parametric bootstrap replicates performed to assess branch support. All inter-population branches had bootstrap 209 support \ge 99%. (Figure 1A).

5. Models and contrasts used for differential gene expression

 To identify sets of differentially expressed genes, models were fit to the entire dataset in DESeq2 using the ~design() function. Contrasts were then used to identify sets of differentially expressed genes within subsets of the dataset using the results() function. Sections 5.1-5.4 show levels of each factor assigned to each individual, how these were combined into a model, and the subsequent contrasts used to define sets of differentially expressed genes. Subsets, unions or intersections of these genes form the CEC, DP and other sets of genes described in the main text.

 To identify genes differentially expressed between populations within each condition, a model with a single factor representing all the combinations of population and condition was fitted (Pop_Cond) and the relevant contrasts identified as recommended in the Interactions section of the DESeq2 user guide (Section 5.1 below). For between-conditions comparisons, the paired pools of clones between conditions (i.e. individual i1 of population S1 was present in both C and Z) allowed us to fit a model that accounted for differences due to individual genotypes (Section 5.2) below, as specified in the "group-specific condition effects, individuals nested within groups" section of the DESeq2 user guide.

227 Analagous models were fit, using an ecotype term (S vs. T) rather than population (S1, S2, T1, T2) to identify genes with substantial |PC| and |EC| (see Section 4 above for justification; Sections 5.3 and 5.4 below for models and contrasts used). The impact of not including a genotype specific term was assessed by identifying between-condition changes 231 using contrasts from the ~Pop_Cond and ~Eco_Cond models, using the contrasts T1C vs. T1Z, T2C vs. T2|, S1C vs. S1Z, S2C vs. S2Z at the population level and TC vs.TZ, SC vs. SZ at the ecotype level respectively, which do not include the effect of genotype. The results of this are displayed in Supplementary Table 5; fewer genes with between-condition changes are identified, but this has minimal impact on our estimates of evolutionary responses to ancestral plasticity across different gene sets.

237

238 **5.1 Within-condition comparisons (population level):**

- 239 Individual assignments:
- 240

241
242

- Design matrix:
- 243
244
- ~Pop_Cond
- 245
246
- Contrasts:

247

248

249

250

251 **5.2 Between-condition comparisons (population level)**

- 252
- 253 Individual assignments:

255
256

Design matrix:

257
258

 \sim Pop + Pop:Ind + Pop:Cond

259

Contrasts:

261

$\frac{262}{263}$ 263 5.3 **Within-condition comparisons (ecotype level):**

264 Individual assignments:

266
267

Design matrix:

268
269

 $~\sim$ Eco_Cond

270
271

Contrasts:

272

273
274

274 **5.4 Between -condition comparisons (ecotype level)**

275 Individual assignments:

Design matrix:

- ~Ecotype + Ecotype:Ind + Ecotype:Cond
-
- Contrasts:

-
-

Supplementary File 1 (File_S1.csv): Overrepresented Gene Ontology (GO) terms for

genes upregulated in the zinc in S1 and S2.

For genes upregulated from control to zinc in both S1 and S2 in the same direction, table

outlining enriched GO terms. Each row indicates a GO ID with columns indicating: i) the

291 GO ID; ii) overrepresented p-value; iii) underrepresented p-value; iv) the number of genes

in the background set; v) the number of genes in the query set; vi) the GO term; vii) the

GO ontology; viii) the over-represented false discovery rate; and ix) the GO term.

 Supplementary File 2 (File_S2.csv): **Overrepresented Gene Ontology (GO) terms for genes differentially expressed between S1 and T1, and S2 and T2, in the zinc treatment.**

For genes differentially expressed between T1 and S1, and T2 and S2, in the zinc treatment,

in the same direction, table outlining enriched GO terms. Each row indicates a GO ID with

columns indicating: i) the GO_ID; ii) overrepresented p-value; iii) underrepresented p-

 value; iv) the number of genes in the background set; v) the number of genes in the query set; vi) the GO term; vii) the GO ontology; viii) the overrepresented false discovery rate; and ix) the GO term.

 Supplementary File 3 (File_S3.csv): Overrepresented Gene Ontology (GO) terms for derived plasticity (DP) genes with ancestral plasticity. For genes displaying the DP expression pattern (see main text for definition), which also showed differential expression between treatments in S1 and S2, table outlining enriched GO terms. Each row indicates a GO ID with columns indicating: i) the GO_ID; ii) overrepresented p-value; iii) underrepresented p-value; iv) the number of genes in the background set; v) the number of genes in the query set; vi) the GO term; vii) the GO ontology; viii) the overrepresented false discovery rate; and ix) the GO term.

 Supplementary File 4 (File_S4.csv): Overrepresented Gene Ontology (GO) terms for derived plasticity (DP) genes without ancestral plasticity. For genes displaying the DP expression pattern (see main text for definition), but which did not show differential expression between treatments in S1 and S2, table outlining enriched GO terms. Each row 318 indicates a GO ID with columns indicating: i) the GO ID; ii) overrepresented p-value; iii) underrepresented p-value; iv) the number of genes in the background set; v) the number of genes in the query set; vi) the GO term; vii) the GO ontology; viii) the overrepresented false discovery rate; and ix) the GO term.

Supplementary File 5 (File_S5.csv): Overrepresented Gene Ontology (GO) terms for

 constitutive expression change (CEC) genes. For genes displaying the CEC expression pattern (see main text for definition), table outlining enriched GO terms. Each row indicates a GO ID with columns indicating: i) the GO_ID; ii) overrepresented p-value; iii) 327 underrepresented p-value; iv) the number of genes in the background set; v) the number of genes in the query set; vi) the GO term; vii) the GO ontology; viii) the overrepresented false discovery rate; and ix) the GO term.

 Supplementary File 6 (File_S6.csv): Overrepresented Gene Ontology (GO) terms for derived plasticity (DP) genes. For genes displaying the DP expression pattern (see main text for definition), table outlining enriched GO terms. Each row indicates a GO ID with columns indicating: i) the GO_ID; ii) overrepresented p-value; iii) underrepresented p- value; iv) the number of genes in the background set; v) the number of genes in the query set; vi) the GO term; vii) the GO ontology; viii) the overrepresented false discovery rate; and ix) the GO term.

 Supplementary File 7 (File_S7.csv): Data for individual RNA samples. For each individual sequenced, table outlining i) the sample ID, ii) the date of extraction, iii) the Plant ID, iv) the population ID, v) RNA concentration measured on a Nanodrop 3000, vi) the 260/280nm absorbance ratio, vii) the 260/230 absorbance ratio, viii) RNA 343 concentration measured on a Qubit, ix) the elution volume (first + second elution), x) the extraction batch, xi) the RNA integrity number (RIN), xii) the number of raw reads, xiii)

- the number of clean reads produced per sample, and xiv) whether that sample was used in
- *de novo* transcriptome construction.
-
- **Supplementary File 8 (File_S8.phylip.txt):** Phylip format file of sites used to construct
- the phylogenetic tree in Figure 1A.

Supplementary Table 1: Impact of parametric bootstrapping on response to ancestral plasticity classification.

Classifications of genes showing substantial ancestral plasticity and evolutionary change

from i) the entire transcriptome, ii) genes showing derived plasticity DP genes), iii) genes

showing constitutive expression changes (CEC) by their evolutionary response to ancestral

plasticity; reversion, overshooting or reinforcement. Listed either without parametric

bootstrapping or after parametric bootstrapping (the % of genes followed by the number

able to be classified).

372 **Supplementary Table 2: Classification of evolutionary response to ancestral plasticity** 373 **in geographic pairs.**

 Table outlining for genes in i) the entire transcriptome, ii) DP genes, iii) genes with derived plasticity in only one of T1 or T2, iii) CEC genes, iv) CEC genes and v) genes with constitutive expression changes in only one of T1 or T2, evolutionary responses to ancestral plasticity. For each gene set, the percentage of genes that could be classified (that showed substantial ancestral plasticity and evolutionary change; see Methods) and the proportions assigned to overshooting, reversions and reinforcement are given. The values 380 are either calculated based on values of L_0 , L_p and L_a calculated from a) T1 and S1 only 381 (i.e. L_p is average of S1 expression in zinc; L_a is expression of T1 in the zinc etc.), b) T2 382 and S2 only (i.e. L_p is average of S2 expression in zinc; L_a is expression of T2 in the zinc 383 etc.) and c) the combined values (i.e. L_p is average of S1 and S2 expression in zinc; L_a is expression of T1 and T2 in the zinc etc.; see Methods); note that these are the values used in the text unless otherwise stated.

386

389

390

 Supplementary Table 3: Evolutionary responses to ancestral plasticity using different criteria for defining "substantial" ancestral plasticity (PC) and evolutionary change (EC). Table outlining evolutionary responses to ancestral plasticity (metrics outlined in table rows), using genes with "substantial" EC and PC defined using each of the three methods outlined in the Supplementary Methods. i) a significance threshold for gene expression changes in susceptible populations between conditions (PC) and between susceptible and tolerant populations in zinc (EC), ii) the magnitude of PC and EC being greater than 20% of the average expression level of the gene in ancestral populations in control conditions (Lo**),** iii) significant differential expression between conditions in both S1 and S2, and between S1 and T1 and S2 and T2 in the zinc, in addition to the criteria 401 outlined in (ii). Method (i) is used in the main text.

 Supplementary Table 4: BUSCO assembly scores for individual and combined transcriptome assemblies. The proportion of BUSCO single copy genes in the from the Eudicot dataset present as i) single copy, ii) duplicated, iii) fragmented and iv) missing in de novo assemblies of 4 individuals (1 per population, outlined in brackets), plus the combined de novo assembly using all the data from these 4 individuals.

Supplementary Table 5: Evolutionary responses to ancestral plasticity, controlling or not controlling for an effect of the genotypes of paired clones between treatments.

 Comparison of the method of identifying differentially expressed genes between conditions; i) where effects of genotypes of the paired clones between treatments are 415 controlled for by employing a model of $\sim Pop + Pop: Ind + Pop: Cond$ (with contrasts 416 PopS1.CondZ, PopS2.CondZ etc.) and \sim Ecotype + Ecotype:Ind + Ecotype:Cond (with contrast EcotypeS.CondZ), as in the main text, or ii) where no effect of genotype is 418 included, by using the models \sim Pop Cond (using contrasts S1C vs. S1Z, T1C vs. T1Z etc.) 419 and ~Eco Cond (using contrasts SC vs. SZ). For each of these methods, for the i) Entire transcriptome, ii) DP genes and ii) CEC genes, the total number of genes and those classified as undergoing reversion (REV), overshooting (OVER) or reinforcement (RI) are

- 422 displayed; as a percentage of the total number of genes showing substantial |EC| and |PC|,
- 423 with the raw number of genes in brackets.

425 **SI References**

426 1. Papadopulos, A. S. T. *et al*. Rapid parallel adaptation to anthropogenic heavy 427 metal Pollution. *Molecular Biology and Evolution* 38, 3724–3736 (2021).

428 2. Andrews, S. A. FATSQC, a quality control tool for high throughput sequence 429 data. 2010. (2015).

430 3. Patel, R. K. & Jain, M. NGS QC Toolkit: A toolkit for quality control of next 431 generation sequencing data. *PLoS ONE* 7, e30619 (2012).

432 4. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for 433 illumina sequence data. *Bioinformatics* 30, 2114–2120 (2014).

 5. Haas, B. J. *et al*. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. *Nature Protocols* 8, 1494– 1512 (2013). 6. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. *Nature Biotechnology* 34, 525–527 (2016). 7. Williams, A. M., Itgen, M. W., Broz, A. K., Carter, O. G. & Sloan, D. B. Long- read transcriptome and other genomic resources for the angiosperm *Silene noctiflora*. *G3: Genes, Genomes, Genetics* 11, (2021). 8. Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness. in Methods in Molecular Biology vol. 1962 227–245 (Humana Press Inc., 2019). 9. Kent, W. J. BLAT---The BLAST-Like Alignment Tool. *Genome Research* 12, 656–664 (2002). 10. Bateman, A. UniProt: A worldwide hub of protein knowledge. *Nucleic Acids Research* 47, D506–D515 (2019). 11. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. *Journal of Molecular Biology* 215, 403–410 (1990). 12. Stranger, B. E. *et al*. Relative impact of nucleotide and copy number variation on gene expression phenotypes. *Science* 315, 848–853 (2007). 13. Craciun, A. R. *et al*. Variation in HMA4 gene copy number and expression among *Noccaea caerulescens* populations presenting different levels of Cd tolerance and accumulation*. Journal of Experimental Botany* 63, 4179–4189 (2012). 14. Finn, R. D. et al. Pfam: The protein families database. *Nucleic Acids Research* vol. 42 D222 (2014). 15. Mistry, J., Finn, R. D., Eddy, S. R., Bateman, A. & Punta, M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. *Nucleic Acids Research* 41, e121–e121 (2013). 16. Bryant, D. M. et al. A tissue-mapped axolotl *de novo* transcriptome enables identification of limb regeneration factors. *Cell Reports* 18, 762–776 (2017). 17. Ghalambor, C. K. *et al*. Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. *Nature* 525, 372–375 (2015). 18. Ho, W. C. & Zhang, J. Genetic gene expression changes during environmental adaptations tend to reverse plastic changes even after the correction for statistical nonindependence. *Molecular Biology and Evolution* 36, 604–612 (2019). 19. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. *Nature Biotechnology* 37, 907–915 (2019). 20. Li, H. *et al*. The Sequence Alignment/Map format and SAMtools. *Bioinformatics* 25, 2078–2079 (2009). 21. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. *Bioinformatics* 27, 2987–2993 (2011). 22. Lee, T. H., Guo, H., Wang, X., Kim, C. & Paterson, A. H. SNPhylo: A pipeline to construct a phylogenetic tree from huge SNP data. *BMC Genomics* 15, 162 (2014).