Active nuclear import of mammalian cellexpressible DNA origami

Anna Liedl^{‡,§}, Johanna Grießing^{‡,§}, Jessica A. Kretzmann^{‡,§,†,*} and Hendrik Dietz^{‡,§,*}

[‡] Department of Biosciences, School of Natural Sciences, Technical University of Munich, Am Coulombwall 4a, 85748 Garching, Germany.

[§] Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany.

Table of Contents

1.	Mate	erials & Methods	2
2.	Supp	plemental Data	8
3.	Sequ	uences & Designs	. 14
3	.2	sc_mCherry_0×SV40	. 14
3	.2	sc_mCherry_1×SV40	. 17
3	.3	sc_mCherry_3×SV40	. 20
3	.4	sc_mCherry_6xSV40	. 23

1. Materials & Methods

Plasmid cloning. Plasmids encoding for custom scaffolds were created via standard cloning techniques. All plasmids were created via Golden gate assembly using Bsal-HF®v2 (NEB cat. no. R3733), together with T4 DNA ligase (NEB cat. no. M0202). For each plasmid, appropriate cut sites were introduced with PCR (Q5® High-Fidelity 2x Master Mix, NEB, as per manufacturer's protocol), and the assembly was conducted as per manufacturer's protocol. Plasmids were verified using restriction digests and DNA sequencing (Eurofins genomics, Ebersberg Germany).

Touchdown PCR with primers for all constructs are detailed in Table S1. In all cases, PCR products were confirmed by agarose gel electrophoresis (AGE), bands were excised, and fragments were extracted (Qiagen QIAquick Gel Extraction Kit) as per manufacturer's protocol. For the introduction of DTS sequences, custom sequences encoding for the 72 bp SV40 DTS and Bsal cleavage sites were ordered as ssDNA from IDT and were annealed in-house directly prior to the Golden gate assembly reaction.

Plasmid	Template	Primer	Sequence 5' - 3'
	Addgene plasmid	FWD	CAAGGTGGTCTCCgtgacattaagcgcggcgggtg
sc mCherry 0xSV40	#126854	REV	CAAGGTGGTCTCCaatgagtgagcaaaaggccagca
	Addgene plasmid	FWD	CAAGGTGGTCTCGcattcgcgatgtacgggccaga
	#128744	REV	CAAGGTGGTCTCGtcacagagccccagctggttctt
	Addgene plasmid	FWD	TTTCCGGGTCTCGgtgacattaagcgcggcgggtg
	#126854	REV	TTTCCGGGTCTCGaatgagtgagcaaaaggccagca
	sc mCherry	FWD	TTTCCGGGTCTCCcattgtacgggccagatatacg
		REV	TTTCCGGGTCTCCATctctagactcgagcggcc
	sc mCherry	FWD	TTTCCGGGTCTCCGCtttaaacccgctgatcagc
sc_mCherry_1xSV40		REV	TTTCCGGGTCTCCtcacaggttctttccgcctcaga
	IDT SV40 seq*	S1*	TTCCGGGTCTCCAGATCCGGTGTGGAAAGT CCCCAGGCTCCCCAGCAGGCAGAAGTATGC AAAGCATGCATCTCAATTAGTCAGCAACCAA AGCTTGGAGACCAAAGGC
		S2*	CCTTTGGTCTCCAAGCTTTGGTTGCTGACTA ATTGAGATGCATGCTTTGCATACTTCTGCCT GCTGGGGAGCCTGGGGACTTTCCACACCGG ATCTGGAGACCCCGGAAA
	sc_mCherry_1xSV40	FWD	TTGTGGGGTCTCGgcctcgactgtgccttctag
		REV	TTGTGGGGTCTCGgagcggccgctcacttgtacagc
	sc_mCherry_1xSV40	FWD	TTGTGGGGTCTCGgctcgagtctagagatccg
sc_mCherry_3xSV40_		REV	TTGTGGGGTCTCGtttggttgctgactaattgag
intermediate	sc mCherry 1xSV40	FWD	TTGTGGGGTCTCGcaaagctctagagatccggtgtgg
		REV	TTGTGGGGTCTCGgatggtttaaagctttggttgct
	sc_mCherry_1xSV40	FWD	TTGTGGGGTCTCGcatccggtgtggaaagtcc
		REV	TTGTGGGGTCTCGaggctgatcagcgggtttaa
	sc mCherry	FWD	TTCGAGGGTCTCCttgtgacattaagcgcggc
sc mCherry 3xSV40	cconony	REV	TTCGAGGGTCTCCcttacccggccctctaga
	sc_mCherry	FWD	TTCGAGGGTCTCGtaaggagggcccgtttaaaccc
		REV	TTCGAGGGTCTCGagccatagagcccaccgcat

Table S1 I Primer sequences used for the construction of the plasmids for mCherry-encoding custom scaffold production.

	sc mCherry	FWD	TTCGAGGGTCTCGggctcgctttcttgctgtcc
	00 <u>_</u> 0	REV	TTCGAGGGTCTCGcatccccagtttagtagttgg
	sc_mCherry_3xSV40	FWD	CAAGAGGGTCTCCatgcggccgctcgagtctag
	_ intermediate	REV	CAAGAGGGTCTCCcgaggctgatcagcgggtt
	Addgene plasmid #128744	FWD	AACACCGGTCTCGgactacaacaaggcaaggct
		REV	AACACCGGTCTCGacaaagcagcgcaaaacgcct
	sc_mCherry_3xSV40	FWD	GTACACGGTCTCGgactatacgcgttgacattgattat
sc mCherry 6xSV40		REV	GTACACGGTCTCGccaatgagtgagcaaaaggcc
<u></u>	sc_mCherry_3xSV40	FWD	GTACACGGTCTCGttggggatgcggccgctcga
		REV	GTACACGGTCTCGagtcgaggctgatcagcgg

*Sequences were annealed and used directly in the Golden gate assembly reaction, as opposed to being used as primers.

Scaffold production. The custom scaffolds were produced based on the plasmids described above. A protocol to produce custom scaffolds was presented previously^{1,2} and is described in detail in the following section.

For ssDNA production, chemically competent DH5a E. coli cells were cotransformed with both the scaffold plasmid of interest, and a helper plasmid (Addgene, # 120346). Transformations were plated on agar plates containing 100 µg/mL carbenicillin and 50 µg/mL kanamycin. After growing overnight, a single colony was picked and grown in a 5 mL pre-culture (2xYT medium, 100 µg/mL carbenicillin, 50 µg/mL kanamycin) at 37 °C with shaking. After turning turbid (~10 h), the pre-cultures were transferred to 2.5 L Ultra Yield flasks (Thomson) containing 750 mL of 2xYT medium (50 µg/mL carbenicillin, 30 µg/mL kanamycin, 5 mM MgCl₂), and were grown overnight at 37 °C. 50 μL anti-foam (A8311, Sigma-Aldrich) was added per flask to avoid foam formation. The next day, the culture was transferred to 750 mL centrifuge bottles and the bacteria were removed by centrifugation at 4700g for 45 min at 4 °C. The supernatants were transferred to fresh centrifuge bottles where 30 g/L polyethylene glycol 8000 (PEG-8000) and 30 g/L NaCl was added and mixed for 30 min, r.t. to precipitate the phages. Afterwards, the phages were pelleted by centrifugation (1 h, 4700g, 4 °C), and the pellet was resuspended in 4 mL 1×TE buffer. Samples were transferred to 50 mL falcon tubes, and residual bacteria was pelleted by centrifugation (20 min, 15 000g, 4 °C). The supernatant was transferred to a fresh falcon tube and the single stranded DNA was extracted from the phages. First, 10 mL lysis buffer (Qiagen P2, cat. no. 19052) was added and mixed gently by inversion. Afterwards, 7.5 mL neutralization buffer (Qiagen P3, cat. no. 19053) was added and mixed by inversion. Samples were incubated on ice for 15 min, and then centrifuged (25 min, 16 000g, 4 °C). The supernatant was transferred to fresh falcon tubes and ethanol (22.5 mL/tube, 4 °C) was added. The falcon was incubated in an ice water bath for 30 min and centrifuged (20 min, 16 000g, 4 °C) to collect precipitated ssDNA. The ssDNA pellet was then washed with an additional 10 mL 75% ethanol, incubated (10 min, ice water bath), and centrifuged (20 min, 16 000g, 4 °C). The supernatant was carefully removed, and residual ethanol was evaporated, before the pellet was dissolved in 1-2 mL 1×TE. Scaffold concentrations were measured with a NanoDrop™8000

Spectrophotometer (Thermo Scientific) using the absorbance at 260 nm. The size and sequence of the scaffold was verified using agarose gel electrophoresis and sequencing (Eurofins genomics).

DNA origami design, folding and purification. Origami objects were designed using caDNAno v0.1 software. All origami objects were folded in standardized 'folding buffers' containing *x* mM MgCl₂ in addition to 5 mM Tris base, 1 mM EDTA and 5 mM NaCl, pH 8 (FOB*x*). All reactions were subjected to thermal annealing ramps in Tetrad (Bio-Rad) thermal cycling devices. Exact folding conditions for each structure is given in Supplementary Table S2 and S3. Staple strands were purchased from Integrated DNA Technologies at 100 µM with standard desalting, listed in Supplementary Tables S4–S7. Origami scaffold and staple routing are given in Fig. S7–S10. Origami objects were purified by either PEG precipitation, or gel purification, as previously described.^{3,4} When necessary, DNA origami objects were concentrated *via* repetitive filter centrifugation (50 kDa Amicon ultra centrifuge filters, 10,000*g*, 2 min) as per manufacturer's protocol.

Scaffold	Structure	Program	10× Folding Buffer	v(scaffold, 100 nM,) μL*	v(staples, 100 <i>μ</i> M), <i>μ</i> L*
sc_mCherry	20HB	1	FOB10	4	8
sc_mCherry_1xSV40	20HB	1	FOB15	10	8
sc_mCherry_3xSV40	20HB	2	FOB25	4	14
sc_mCherry_6xSV40	20HB	5	FOB15	10	8

*For 20 μ L folding reaction, where necessary volume supplemented to 20 μ L total with ddH₂O.

	1. Denaturation time		2. Temperature ramp	3. Storage temperature
Program	30 s	15 min		-
1	-	65 °C	60–44 °C, at 1 °C/1 h	20 °C
2	-	65 °C	60–44 °C, at 1 °C/2 h	20 °C
3	70 °C	65 °C	60–35 °C, at 1 °C/1 h	20 °C
4	70 °C	65 °C	60–35 °C, at 1 °C/2 h	20 °C
5	-	65 °C	60–25 °C, at 1 °C/2 h	20 °C

Table S3 I Folding programs used for the folding reactions detailed in Table S2.

Gel electrophoresis. For characterization of PCR products and plasmids, 1% agarose gels containing $0.5 \times \text{TBE}$ buffer (22.25 mM tris base, 22.25 mM boric acid, 0.5 mM EDTA) were used. Gel electrophoresis was performed with an identical buffer solution for 1 h at a voltage of 110 V. To characterize folded origami objects and ssDNA scaffolds, we used 2% agarose gels containing $0.5 \times \text{TBE}$ buffer and 5.5 mM MgCl₂. Gel electrophoresis was performed with an identical buffer solution for 1 - 2 h at a voltage of 90 V, gels were placed in a water bath for cooling. All gels were imaged using a Typhoon FLA 9500 laser scanner (GE Healthcare) with a pixel size of 50 µm/pixel.

Negative staining TEM. Samples were incubated on glow-discharged copper TEM grids (FCF400-CU, Electron Microscopy Sciences), for 30–60 s. Grids were then stained for 30 s (2% aqueous uranyl

formate, 25 mM NaOH). Imaging was performed at magnifications of 21,000–42,000×. Data was acquired with SerialEM software, using a FEI Tecnai T12 microscope (120 kV, Tietz TEMCAM-F416 camera). Images were processed using ImageJ.⁵ TEM micrographs were high-pass filtered to remove long-range staining gradients and the contrast was auto-levelled using Adobe Photoshop CS5.

Cell culture. HEK293T cells (DSMZ) were cultured routinely in Dulbecco's modified Eagle's medium (DMEM, Gibco, cat. no. 31966047), supplemented with 10% heat-inactivated fetal bovine serum (FBS, Sigma-Aldrich, cat. No. F9665). Cells were grown in a humidified incubator at 37 °C with 5% CO₂, cells were routinely checked for presence of mycoplasma.

Cell cycle arrest. HEK293T cells were arrested for 24 h prior to electroporation using arrest media (DMEM supplemented 10% FBS and 5 ng/µL aphidicolin, Sigma-Aldrich, cat. no. A0781, dissolved in dimethyl sulfoxide, DMSO, Sigma-Aldrich, cat. no. D2438). Cells were kept in arresting media for the entirety of the experiment. For cell cycle arrest with thymidine the cells were treated with DMEM supplemented with 10% FBS and 2.5 mM thymidine (Sigma-Aldrich, cat. no. T1895, dissolved in ddH₂O) for 16 h, followed by 8 h without in routine growth media, and then a further 16 h of arrest. For cell cycle arrest with hydroxyurea the cells were treated with DMEM supplemented with 10% FBS and 1 mM hydroxyurea (Sigma-Aldrich, cat. no. H8627, dissolved in ddH₂O), and cells were kept in arresting media for the entirety of the experiment.

In preparation for flow cytometry, arrested and dividing cells were collected via trypsinization and fixed with 2% formaldehyde (20 min, Merck, cat. no. 1.00496.8350). Cells were centrifuged (5 min, 300*g*) and the cell pellet was washed with DPBS (Dulbecco's phosphate buffered saline, Gibco, cat. no. 14190-094), before being resuspended in DPBS with 0.1% TritonX-100, FxCycle Far Red Stain (200 nM final concentration for 1 x 10⁶ cells/mL, Invitrogen cat. no. F10348) and 5 μL RNase A (Invitrogen, cat. no. 12091021), and incubated for 30 min, r.t.

Lipofection. To transfect the cells using Lipofectamine 2000 (Invitrogen, Thermo Fisher Scientific, cat. no. 11668-027) cells were seeded the day before at a density of 80,000 cells/mL in a 48-well plate either in normal or in arrest media. On the day of the transfection, plasmid was diluted to 100 ng/µL, and 5 µL of the plasmid was mixed with 25 µL of Opti-MEM (Gibco, Thermo Fisher Scientific). Next, 0.5 µL of Lipofectamine 2000 was mixed with 29.5 µL of Opti-MEM. The plasmid solution (30 µL) was thoroughly mixed into the Lipofectamine solution (30 µL) and incubated for 20 min at r.t. Then, 30 µl of the mixture was added per well to either arrested or dividing cells. After 24 h, the cells were analyzed by fluorescence microscopy and flow cytometry, as described below.

Electroporation. Electroporation experiments were carried out according to the Manufacturer's protocol (Neon[™] transfection protocol, ThermoFisher). Briefly, HEK293T cells were washed with DPBS and collected using TryplE. Cells were pelleted via centrifugation (5 min, 300*g*), resuspended in DPBS

and counted. Cells were centrifuged again (5 min, 300*g*), and then resuspended in Buffer R (NeonTM Transfection System) at a concentration of 5.6×10^6 cells/mL. Mixtures for each condition were prepared so that each electroporation event contained 0.75 µg total DNA origami, and the volume was supplemented to a total of 1 µL with 1 × FOB5 buffer (folding buffer, 1 mM Tris, 1 mM EDTA, 5 mM NaCl, 5 mM MgCl₂), which was mixed with 9 µL of the cell suspension. Electroporation occurred in the 10 µL transfection tips, with one pulse at pulse voltage of 1600 V and width of 20 ms. After electroporation, cells were immediately transferred to a 48 well plate which had been pre-prepared with a poly-L-lysine coating, and 240 µL of complete DMEM growth media or arresting media. After 24 h, the cells were analyzed by fluorescence microscopy and flow cytometry, as described below.

Microscopy and flow cytometry. After 24 h, samples were imaged using the EVOS[™] M7000 Imaging System, and the percentage of mCherry positive cells was quantified via flow cytometry. Briefly, samples were acquired using Attune Nxt Flow Cytometer and software (Thermo Fisher). In total, either 20,000 or 10,000 single cell events for dividing or arrest cells respectively, gated on side scatter area versus height, were recorded for analysis. mCherry was excited with a 561 nm laser and emission was measured with a 620/15 nm bandpass filter. Untreated cells, and cells electroporated with buffer only, were used as negative controls. Cell cycle arrest was confirmed by cell cycle analysis via flow cytometry. The cells were stained with FxCycle[™] Far Red Stain (Invitrogen, Thermo Fisher, cat. no. F10348) according to Manufacturer's protocol (and as specified above), the dye was excited with a 638 nm laser and emission was measured with a 670/14 nm bandpass filter. Data was analyzed post-acquisition using FlowJo software (v10.7.1). Exemplary flow gating pathways are given in Fig. S8.

Statistics and reproducibility. Statistical analyses were performed with GraphPad Prism (GraphPad Software Inc. v9). The data is illustrated as the mean \pm standard deviation, and the individual data points representing biological replicates are shown. The specific analysis performed is detailed in the corresponding figure caption. For all tests, differences were considered significant at p ≤ 0.05 (*), p ≤ 0.01 (***), p ≤ 0.001 (****).

References

- (1) Engelhardt, F. A. S.; Praetorius, F.; Wachauf, C. H.; Brüggenthies, G.; Kohler, F.; Kick, B.; Kadletz, K. L.; Pham, P. N.; Behler, K. L.; Gerling, T.; Dietz, H. Custom-Size, Functional, and Durable DNA Origami with Design-Specific Scaffolds. ACS Nano 2019, 13 (5), 5015–5027. https://doi.org/10.1021/acsnano.9b01025.
- (2) Praetorius, F.; Kick, B.; Behler, K. L.; Honemann, M. N.; Weuster-Botz, D.; Dietz, H. Biotechnological Mass Production of DNA Origami. *Nature* **2017**, *552* (7683), 84–87. https://doi.org/10.1038/nature24650.
- (3) Stahl, E.; Martin, T. G.; Praetorius, F.; Dietz, H. Facile and Scalable Preparation of Pure and Dense DNA Origami Solutions. *Angewandte Chemie* **2014**, *126* (47), 12949–12954. https://doi.org/10.1002/ange.201405991.
- (4) Wagenbauer, K. F.; Engelhardt, F. A. S.; Stahl, E.; Hechtl, V. K.; Stömmer, P.; Seebacher, F.; Meregalli, L.; Ketterer, P.; Gerling, T.; Dietz, H. How We Make DNA Origami. *ChemBioChem* **2017**, *18* (19), 1873–1885. https://doi.org/10.1002/cbic.201700377.

(5) Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; Tinevez, J.-Y.; White, D. J.; Hartenstein, V.; Eliceiri, K.; Tomancak, P.; Cardona, A. Fiji: An Open-Source Platform for Biological-Image Analysis. *Nat Methods* **2012**, *9* (7), 676–682. https://doi.org/10.1038/nmeth.2019.

2. Supplemental Data

Fig. S1 I Placement of SV40 DTS sequences in 20HB DNA origami designs. a, Schematic cross section of 20 HB, with helices labeled 0 - 19. b, Number of SV40 sequence repeats, and helix within the 20HB that the SV40 sequences feature.

Fig. S2 I AGE showing all custom scaffolds created in this study. ssDNA markers at 2873 b, 4027 b and 7560 b were used as molecular weight markers, while 'ladder' depicts NEB 1 kb dsDNA ladder.

Fig. S3 I AGE lane profiles of purified DNA origami objects. Representative normalized lane profiles for purified origami objects 20HB_0×SV40 (a), 20HB_1×SV40 (b), 20HB_3×SV40 (c) and 20HB_6×SV40 (d). For reference, the well pocket of each lane is highlighted in blue, and shoulder impurities are demonstrated with an arrow (red).

Fig. S4 I Comparison of different arresting agents. Cell cycle analysis of untreated HEK293T cells (**a**) or cells treated wither 15 μ M aphidicolin, 1 mM hydroxyurea or 2.5 mM thymidine for either 24 or 48 h (**b**). Cells were analyzed by flow cytometry, and the data presented here is representative of n = 2 biologically independent experiments.

Fig. S5 I Cell cycle analysis of dividing and chemically arrested cells. Cell cycle analysis of dividing HEK293T cells (a) and chemically arrested HEK293T cells (b). Cells in G1, S and G2 phases are given in blue, yellow and green, respectively.

Fig. S6 I Expression of plasmid DNA in dividing and arrested cells with lipofectamine 2000 delivery. a, Quantification of mCherry+ cells (%) in dividing and chemically arrested HEK293T populations 24 h after delivery of plasmid DNA corresponding to sc_mCherry_0×SV40. **b**, Percentage of mCherry+ cells and **c**, mean fluorescent intensity (MFI) of mCherry in dividing and arrested cells after delivery of plasmid DNA variants with lipofectamine. Data for **a**–**c** collected were quantified using flow cytometry and are presented as mean ± standard deviation (s.d.) for n = 3 biologically independent experiments. Statistical analysis for **a** was performed using Student's t-test (**p ≤ 0.01), and for **b**, **c** statistical analysis was performed using two-way ANOVA with Dunnett's multiple comparisons, no significant difference was observed compared to the corresponding mCherry_0×SV40 plasmid control.

Fig. S7 I Full panel of representative images corresponding to Fig. 4. Representative fluorescence microscopy images after electroporation of dividing cells (a) and arrested cells (b) for all 20HB variants. Images were taken 24 h after electroporation and are representative of n = 3 biological replicates (similar results were observed each time). mCherry signal is shown in red, nuclei are shown in blue. Scale bar is 100 µm.

Fig. S8 I Exemplary flow cytometry gating pathways for HEK293T cells. From left to right: cell populations were first gated on forward scatter-area (FCS-A) versus side scatter-area (SSC-A), gate 'cells'; single cells were selected by gating SSC-A versus side scatter-height (SSC-H), gate 'single cells'; cells were then assessed per

specific experiment. For arrest experiments the population was plotted for FxCycle DNA stain (A.U., 640 nm excitation) versus total cell count, as demonstrated for dividing (**a**) and chemically arrested (**b**) cells. For mCherry expression experiments, cells were assessed for mCherry expression (561 nm excitation) versus SSC-A. Examples are given for dividing cells (**c** and **d**) and chemically arrested cells (**e** and **f**). Representative gating for negative controls are given in **c** and **e**.

3. Sequences & Designs

3.2 sc_mCherry_0×SV40

Sequence sc_mCherry_0×SV40:

cgcgatgtacgggccagatatacgcgttgacattgattattgactagttattaatagtaatcaattacggggtcattagttcatagcccatatatgga gttccgcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtcaataatgacgtatgttcccata gtaacgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagt acgccccctattgacgtcaatgacggtaaatggcccgcctggcattatgcccagtacatgaccttatgggactttcctacttggcagtacatctac gtattagtcatcgctattaccatggtgatgcggttttggcagtacatcaatgggcgtggatagcggtttgactcacggggatttccaagtctccacc ccattgacgtcaatgggagtttgtttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccattgacgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctctctggctaactagagaacccactgcttactggcttatcgaaattaatacgactcacta tagggagacccaagetggetagcgtttaaacttaagettggtaccgagetcggatccactagtccagtgtggtggaattcgccaccatggtgag caagggcgaggaggataacatggccatcatcaaggagttcatgcgcttcaaggtgcacatggagggctccgtgaacggccacgagttcga gatcgagggcgagggcgagggccgcccctacgagggcacccagaccgccaagctgaaggtgaccaagggtggccccctgcccttcgcc tgggacateetgteeetcagtteatgtacggeteeaaggeetacgtgaagcaceeeggeegacateeegactaettgaagetgteetteeeeg agggcttcaagtgggagcgcgtgatgaacttcgaggacggcggggtggtgaccgtgacccaggactcctccctgcaggacggcgagttcat ctacaaggtgaagctgcgcggcaccaacttcccctccgacggccccgtaatgcagaagaagaccatgggctgggaggcctcctccgagcg gatgtaccccgaggacggcgccctgaagggcgagatcaagcagaggctgaagctgaaggacggcggccactacgacgctgaggtcaa gaccacctacaaggccaagaagcccgtgcagctgcccggcgcctacaacgtcaacatcaagttggacatcacctcccacaacgaggact acaccatcgtggaacagtacgaacgcgccgagggccgccactccaccggcggcatggacgagctgtacaagtgagcggccgctcgagtc tagagggccgggtaagctcgctttcttgctgtccaatttctattaaaggttcctttgttccctaagtccaactactaaactggggattcctgggccctg aagaagggcccctcgactaagtccaactactaaactgggccctgaagaagggcccatatagggccctgaagaagggccctatcgaggata ttatctcgactaagtccaactactaaactgggccctgaagaagggcccatatagggccctgaagaagggccctatcgaggatattatctcgag ctggggatgcggtgggctctatggcttctgaggcggaaagaaccagctggggctctgtgacattaagcgcggcggtgtggttacgcgca atcgggggctccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgc cctgatagacggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacactcaaccctatctcggtct attcttttgatttataagggattttgccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaattttaacaaaatattaac gcttacaatttaggtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgagacaat aaccctgataaatgcttcaataatattgaaaaaggaagagtatgagtattcaacatttccgtgtcgcccttattcccttttttgcggcattttgccttcct gtttttgctcacccagaaacgctggtgaaagtaaaagatgctgaagatcagttgggtgcacgagtgggttacatcgaactggatctcaacagc ggtaagatccttgagagttttcgccccgaagaacgttttccaatgatgagcacttttaaagttctgctatgtggcgcggtattatcccgtattgacgc cgggcaagagcaactcggtcgccgcatacactattctcagaatgacttggttgagtactcaccagtcacagaaaagcatcttacggatggcat ggatggaggggataaagttgcaggaccacttctgcgctcggcccttccggctggtttattgctgataaatctggagccggtgagcgtgg gtctcqcqgtatcattqcaqcactqgqgqccaqatqgtaaqccctcccqtatcqtaqttatctacacqacqqqqaqtcaqqcaactatqqatqa gtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgtccttctagtgtagccgtagtt aggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtct taccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccgg taagcggcagggtcggaacaggagagcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctc ggccttttgctcactcatt

Corresponding 20HB DNA origami design and staple list for sc_mCherry_0×SV40:

Fig. S9 I Scaffold routing and staple design for 20HB_0xSV40. Scaffold routing is shown in blue, staples are given in black, skips are given as red crosses. Design was prepared using caDNAno v0.1.

Name	Sequence 5' - 3'
core_1	CCGCTTACCGGATCCAACATACGTATTTAGA
core_2	CTCCCTCGTGCGCTCGGGTCGTTATTGTCTC
core_3	TATAAAGATACCAGGTTACCGTATTTCAATA
core_4	TCAAGTCAGAGGTGGATATGGGCACGGAAAT
core_5	CCCCCCTGACGAGCAGATTACTAAAAATGCC
core_6	CCGCGTTGCTGGCGTTGTCAACGCAGCGTTTC
core_7	TGGGCGGTCCTGTTCCGCACATTTCCCCCGATAGAGCTTGTCATTCT
core_8	CGGGCCATCGTTTCCCTGTAAGCGTTAATATTAAATCGGAGTTGCTC
core_9	AACTCCATCGAAACCCTTAAATTTTTGTTAAAGTTTTTTATACCGCG
core_10	CCGTAATTTCACAAAAACCAATAGGCCGAAATGGCCCACGCTCATCA
core_11	TAATCAATTTTCCATATAAATCAAAAGAATATCAAAGGGAAACTCT
core_12	CGTCAATGATGGAAAAAACCACCATGAGCGGTCAACCAAGACGGGG
core_13	GGAAAGTCTTTACCGTTGCAAGCTTATTGAAGGCGACCGAACCCTA
core_14	AACTCCCTGATACAGGATCTCGTTGAATAACGGGATAGGGGTCGA
core_15	TGGAAATATTGACGTCGGGGTCGCAAAAAATTAAAAGTTACGTGAA
core_16	CGCCCATGGGCATAACACGTTAATGGGTGAGCGGGGGGGG
core_17	ACCATGGTCAAGTAGGAAAAAGGACTTCAGCAGTTGAGATATTAAAGA
core_18	AGCTCTGAACTGAGGAGGGCTTCAGATTT
core_19	AGTAAGCGCAGGGGGCTCCCCGTGAAGGGCC
core_20	CTATAGTGGGCGGTCTCTGTCTATTTTATCCG
core_21	TAAGTTTATCGCCCTCGCTTAATCTGCCGGGA
core_22	GGACTAGTCGTTCACGTATGAGTATTAATAGT
core_23	CTCGCCCTTGCTCACCGCGCATGAAAATGAATACAGGCA
core_24	TCGGGGATACTTGATACTGTTCCACGATGGT
core_25	GAAGCCCTCTGCACGCCGGTGGAGTGGCGGC
core_26	CGTCCTCGCTTGACCTGGCCGCTCACTTGTAC
core_27	GAGGAGTCTTCAGCTTGCGAGCTTACCCGGC
core_28	CACCTTGTTCAGGGCGGAACCTTTAATAGAA
core_29	TGGGAGGTGATGTCCAGTCGGCGACCGGCTCACCATCTG
core_30	TGTAGGCGCCGGGCAGCGGGGAAGCCAGCCGCGTGTAG
core_31	GGCCTTGTAGGTGGTAAGTTCATCTGCAACTTCGTTC
core_32	TAGTGGCCGCCGTCCCTGGGTCATAATTGTAGTGAGG
core_33	GCTTGATCTCGCCCTAGATGAACTTCGCCAGAACTTGGT
core_34	GGGGTACATCCGCTCGGGAAGTTGCCATTGCGTTTTAAA
core 35	CAAGGCCGTAGTCCCCACGCTCGGGTGCTTTTGGAGCCGTACATG

Table S4 I Individual staple sequences for sc_mCherry 20HB.

core_36	ATCCTCGACCTCGGCTAAACCAGGACAGCTTGTCCCAGGCGAAGG
core_37	TATGGGCCAGCTCGTCAAGTGGTCCACGCGCGGGTCACCTTCAGCTT
core 38	GTTGGACTCCTCTAGACAGTCTATCGGTCACTCGTAGGGGCGGCCC
core 39	GGGCCCTTATTGGACATAAGTAGTCGCCGTCATCTCGAACTCGTGGC
core 40	TCTTCAGGGACTTAGGCGTTGTTGGTGCCGCCCATGTGCACCTTGAA
core 41	AGAATCCAGCGAAAGGCCGTAAGGTGACTGGGCCCCAGT
core 42	ACGGGCCCGTGTGGGCGCGCGCGGGGGGGGGGGGGGGGG
core 43	AGGCACAGACCCGCCGGGCCGCAGTTGCCCGATCCATAG
core 44	
core 45	
core 46	
core 47	
core 48	
core_40	
core_ 5 0	
core_50	
<u>core_51</u>	
0010_52	
COTE_55	
CORE_54	
CORE_55	
core_57	
core_58	
core_59	
core_60	
core_61	
core_62	GGATCCGAGAAAACTTGCCAGGCTAGTCAA
core_63	
core_64	
core_65	
core_66	GATCAAGGTTGCGCAAGAACAAAGCCGTCCTC
core_67	ACTGCCAAGTGGGCAGCCGTTGAGATAAGCC
core_68	GGGCGTACTTGGCATAATTGACGTGGGTCTCC
core_69	CGGGCCATTTACCGTCCCCCGTGAACCAAGCT
core_70	CTTATATACGGCAAACGTCCCTATGACGTCAA
core_71	AGTCGTAGAAAAAACTTGATGTAACGCGG
core_72	AACGCTACTTTTCTACAATAGGAATGACC
core_73	ATGGTGGCGATTATCAAAGTCCTGGCCCGT
core_74	ATGCTTACCGCGAGACTCGACTATCGGTATTG
core_75	CTTACTGTTATCCTCGGTGACACTATAGAAT
core_76	TGTTATCGAGCGCAGCATGCCGGGCTTCTT
core_77	TTGTCAGAGGGCCCATGGCTGGCAACTAGA
core_78	CCGATCGCCTCCATCCTCGAGCCAGCGTCG
core_79	AAAGCGGTATAATATAGGAAGGCACGGGGG
core_80	GTGCAAAAGCTAGAGGCAAGAAACAGCCTCT
core_81	TTCATTCTTAGTAGTATGCGATGCAATTTCC
core_82	CTTCATAACATGCCATAGCGGGCGAAAGCCGG
core_83	TAGGGCCCTTATGGCAGTCACGCAAGGGAGC
core_84	CTTCTTCAAGTAAGTTCGCTTAAGGTGCCG
core_85	TAGTCGAGTAGCTCCTTTTCCGCCCCATCAC
core_86	CTTCAGGGCATGATCCATCCCCAGCGTCTATC
core 87	GCCCAGTAGCTCCGGTCCTCCCCACGTGGAC
core_88	CAGGAAAGGGAAGAAAGATCGACAGACAGCT
core_89	CTAGGGCGCTGGCAATCTAGCAGAGATAAT
core_90	TGCGCGTAACCACCACTCGAGGCTGGCCCTA
core_91	TGTCACAGAGCCCCAGACAACAGAGTTTAGTA
core_92	TCAGAAGCCATAGAGCCAGGGTCACCTCGATA
core_93	CATGCCTGCTATTGTCATTAGGAATGGGCCCT
core 94	TCTTGATCGACCTCCCGCCTACCGCCCATTTG
core 95	GCTGGTAGATACGGGGGACAGGATCAAGTAG
core_96	GCGGTGGTCTCTAGTTGTTACGACATTTT

core_97	AGCAGATTTGCCTGACCACCCTTTCCCACTT
core_98	TACGCGCATTAATTTCTTTTGGTGCCAAAACA
core_99	AAGAAGATTCAGCGATGGGTGCCCCACGCCGC
core_100	CCTTTGATGCCAGCTTCAATGGGGTGGAGACT
core_101	TGACGCTCTTACCAATGCCCTCGCTGCAGG
core_102	AGTGGAACGCTCGGTGTCAAACCGCTATCCA
core_103	GGGATTTTAAAGTATAGAGCCCTGCAGCTT
core_104	GGTCATGAGAATTCCTGCCAAAACCGCATC
polyT_1	TTTTTGGCCAGCAAAAGGCCAAATGAGTGAACTGATTCTTCACCTAGATTTTTT
polyT_2	TTTTTGCTTTCTCATAGCTCCTTCGGGAGCTACAGAAAAATAAGCGAGAAAGGCTTTCT
polyT_3	ACATCGCGGGAACCGGAGTGTTGTTCCAGTTTGGAATTTTT
polyT_4	TTTTTACGTAGATGTACTGCAATAGCGA
polyT_5	TTTTTAGTTCGGTGTAGGTCACGCTGTAAAAAGAGTGTTCTTGAAGTGGTTTTT
polyT_6	GTTACACACCGTCGCTCCAAGCTGGGCTTTTT
polyT_7	TTTTTTGTGTGCACGAACGACTCTGCTGCGTACACTAGAAGGACAGTATTTTT
polyT_8	TTTTTTCTTCTGCATTGATGATGGCCATTTTTTTTTTTT
polyT_9	TTTTTGCTGCGCCTTATCCGTCTTGAGTTTTT
polyT_10	AGGAATCCCCTCCCAGCCCATGGTCTTTTT
polyT_11	TTTTTTTCTTCAGGGCCCGTCACGCTTTTTT
polyT_12	TTTTTCCAACCCGGTATTATCGCCACTGGCAGCAGTTTTT
polyT_13	TTTTTATAGAATGACACCTACACCCCACCCCCAGATTTTT
polyT_14	TTTTTCCACTGGTAAAGAGCGAGGTATTTTTTTTTTTGTAGGCGGTAGCGTGGCTTTTT
polyT_15	CTTGCTGTCCTGCCCCTCAGACATGGACTTAGTCGAGGGGCCCTTTTT
polyT_16	TTTTTCAAGAGTCCACTCCAGTTCGGTATGGCTCGTGGT
polyT_17	TTTTTTGGCCTAACTACGGTTAGC
polyT_18	TTTTTCGTCGTTTGATGTAACCCATTTTTTTTTTCTCGTGCACCCAGCAAAATTTTT
polyT_19	TTTTTTTGGTATCTGAAGCCAGTTTTTTTTTTTTACCTTCGGAGGTATCTCTTTT
polyT_20	TTTTTCCTTTTAAATTAAACTCCTTACGGGGCCGTCGGAGGGAG
	TTG
polyT_21	TGGTAGCGCTGCAATCCCAGGCCCACGTCCGTTCAGCCCGACCTTTTT

3.2 sc_mCherry_1×SV40

Sequence sc_mCherry_1×SV40:

gtacgggccagatatacgcgttgacattgattattgactagttattaatagtaatcaattacggggtcattagttcatagcccatatatggagttccgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctggcattatgcccagtacatgaccttatgggactttcctacttggcagtacatctacgtattaacgtcaatgggagtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccattgacgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctctctggctaactagagaacccactgcttactggcttatcgaaattaatacgactcactatagg gagacccaagctggctagcgtttaaacttaagcttggtaccgagctcggatccactagtccagtgtggtggaattcgccaccatggtgagcaagagggcgagggcgagggccgcccctacgagggcacccagaccgccaagctgaaggtgaccaagggtggccccctgcccttcgcctggg acatectgteccetcagtteatgtacggetecaaggeetacgtgaageaceecggeegacateceegaetaettgaagetgteetteeegaggg ctt caagtgggagcgcgtgatgaacttcgaggacggcgtggtgaccgtggtgacccgtgaccccaggactcctccctgcaggacggcgagttcatctacaaggtgaagctgcgcgcaccaacttcccctccgacggccccgtaatgcagaagaagaccatgggctgggaggcctcctccgagcggatgt accccgaggacggcgccctgaagggcgagatcaagcagaggctgaagctgaaggacggcggccactacgacgctgaggtcaagacca cctacaaggccaagaagcccgtgcagctgcccggcgcctacaacgtcaacatcaagttggacatcacctcccacaacgaggactacaccatcgtggaacagtacgaacgcgccgagggccgccactccaccggcggcatggacgagctgtacaagtgagcggccgctcgagtctagagAttgaccctggaaggtgccactcccactgtcctttcctaataaaatgaggaaattgcatcgcattgtctgagtaggtgtcattctattctggggggtgg gaacctgtgacattaagcgcggcgggtgtggtggtggtggtggtggtgaccgctacacttgccagcgccctagcgcccgctcctttcgctttctt gact cttgttccaaactggaacaacactcaaccctatctcggtctattcttttgatttataagggattttgccgatttcggcctattggttaaaaaatga

gctgatttaacaaaaatttaacqcgaattttaacaaaatattaacqcttacaatttaqqtqgcacttttcqqqqaaatqtqcqcqgaacccctattt gtttatttttctaaatacattcaaatatgtatccgctcatgagacaataaccctgataaatgcttcaataatattgaaaaaggaagagtatgagtattc aacattteegtgtegeeettatteeetttittgeggeattttgeetteetgtttttgeteaceeagaaaegetggtgaaagtaaaagatgetgaagatea gttgggtgcacgagtgggttacatcgaactggatctcaacagcggtaagatccttgagagttttcgccccgaagaacgttttccaatgatgagca cttttaaagttctgctatgtggcgcggtattatcccgtattgacgccgggcaagagcaactcggtcgccgcatacactattctcagaatgacttggtt gagtactcaccagtcacagaaaagcatcttacggatggcatgacagtaagagaattatgcagtgctgccataaccatgagtgataacactgc gqccaacttacttctqacaacqatcqgaqqaccqaaqqaqctaaccqcttttttqcacaacatqqqqqatcatqtaactcqccttqatcqttqq gaaccqgaqctgaatgaagccataccaaacgacgaqcqtgacaccacgatgcctgtagcaatggcaacaacgttgcgcaaactattaact ctggctggtttattgctgataaatctggagccggtgagcgtgggtctcgcggtatcattgcagcactggggccagatggtaagccctcccgtatcgtagttatctacacgacggggagtcaggcaactatggatgaacgaaatagacagatcgctgagataggtgcctcactgattaagcattggtaa agcgcagataccaaatactgtccttctagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaat cctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcggg ctgaacqqqqqqttcqtqcacacaqcccaqcttqqaqcqaacqacctacaccqaactqaqatacctacaqcqtqaqctatqaqaaaqcqc cacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccaggggg

Corresponding 20HB DNA origami design and staple list for sc_mCherry_1×SV40:

Fig. S10 I Scaffold routing and staple design for 20HB_1xSV40. Scaffold routing is shown in blue, staples are given in black, skips are given as red crosses. Design was prepared using caDNAno v0.1.

Name	Sequence 5' - 3'
core_1	TGACGTCACTCTTCCGAAAAAGATACGGGA
core_2	CAGCCAGTAAGGGCGACAAACCGCCTGACGGTCTGGACTGAGGGGACAGGA
core_3	GTAACGCGCAGGAAGGTTTGCAAGCGATCTCCCTCGCTGCTTCACGTAGGCC
core_4	CTAATGACACTTTCAAAAGGATCACCAATGCTTCACGGACAGCTTCAAGTAGTCG
core_5	ACTAGTCATCGTGCACTACGGGGGAGTATATAGCATGAACCGCGCTCCCACTTGAA
core_6	CTGGCCCGCGCTGTTGCTCACGTTAAATTAAACTCCTCGCGTCACCACGCCGCCGT
core_7	TTGGCGTTCCGGCAAACACGGAACTCTTACTCGTGAACCAACC
core_8	TCCACCCAGTTTTTTTGCAAAATGTTCTGTGAAAAAACCGGACGGGGAAAGCCGG
core_9	TACTGCCACAGAAAACCAGCGTTTTCTGAGATAAAGAACAGGAAGGGAAGAAAGC
core_10	GGGGCGTAATCTTTTCCCAACTGGCTCTTGGTTGTTCCTAGGGCGCTGGCAAGT
core_11	GCGGGCCAACGAAAAAGATCCACGCGCCAATCAAAAGCGCGTAACCACCACAC
core_12	TACACGCCTACCGCCCAGCTTGGCTCCCCGTCTGATACCG
core 13	AGAGAGCTCTGCTTATGGCCCTCGGTCTATTAGATTTAT

Table S5 I Individual staple sequences for sc_mCherry_1×SV40 20HB.

core_14	GCCAGTAAGCAGTGGGTGGCCGTTAATCAAGGGCCGA
core_15	TCCCTATAGTGAGTCTTGAAGCTGAGTAATATCCGCC
core_16	GCTTAAGTTTAAACGTGTTATCAATGAAGTCCGGGAAG
core 17	GCGAAGGGACCCTTGGTCACCTTCATTTGCGT
core 18	GTACATGAGTGCCCTCGTAGGGGCATAGACCT
core 19	CGGCGGGGCCTCGATCTCGAACTCGTTCTCTA
core 20	GGGAAGGAGCCCTCCATGTGCACCGTATTAAT
core 21	TTCATCATCCTTGATGATGGCCACTAGCCAG
core 22	GGTCACGCCTTGCTCACCATGGCCGAGCTCTTGGTCA
core 23	TCAGCCTAGGTGGTCTTGACCTCCGGGGGAG
core 24	GCCGTCCCCGGGCAGCTGCACGGACTAGAA
core 25	GCCTCCCGATGTCCAACTTGATGGTTTAAA
core 26	ACGGGGCCCACGATGGTGTAGTCTGCATGC
core 27	GCAGCTTCAGTGGCGGCCCTCGGGAGCCTGG
core 28	TAGTTATCGCGCCTGGCCGCCGTCCTTCAGCTTGTCCCAGGCTGCAA
core 29	GCCTTGTCTGCTTGATCTCGCCCTTCAGGGCTTGGAGCCCCGGCTCC
core 30	GTAGGCGTCGGGGTACATCCGCTCGGAGGAGGGGGATGTCAGCCGGA
core 31	GGGAGGTAGCCCATGGTCTTCTTCTGCATTGCCCTCGTGCAACTT
core 32	TACTGTTCGTCGGAGGGGAAGTTGGTGCCGCCCTCGAAGAATTGTTG
core_33	GGTCGGTACAACCCAAGGAAGGCAAGCGTCGGCCCCAGT
core 34	AGGAAAGGCAACAGATGGCTGGCAGCTTCTTGACGCTCA
core_35	
core_36	
core_37	
core_38	
core 39	TGTAGGCGTTTTTCAATTTTTTGGGCCTATGGATGGTTAAACCATCTG
core_09	
core_40	
core 42	
0010_42	
<u>core_43</u>	
<u>core_44</u>	
0010_45	
core_40	
<u>core_47</u>	
core_40	
<u>core_49</u>	
core_51	
core_57	
0010_32	
00re_55	
core 55	
0010_00	
core_57	
core_50	
core_59	
<u>core_61</u>	
core_63	
<u>core_03</u>	
0010_72	
core_/3	
core_/4	GUTUTTGATAUTATGGGGGGTUGTTGGGUGGTUTUUTGTT

core_75	TAGCGGTGTTGACGTTTTACCGTAAGTTATGCGTTTCC
core_76	ATTACGCGAGTGGGCTATATGGGCTATGAAGCGAAACC
core_77	ATCCTTTGCTTGGCATTGATTACTATTAATAATCACAAA
core_78	TCAGTGGATTTACCGTTGTCAACGCGTATATTTTTCCA
polyT_1	TTTTTAGGCCAGGAACCTCATTTTTATTTTT
polyT_2	TTTTTGGAAGCGTGGCGCTTTCGCCTTTC
polyT_3	TCATGTACGTGAGCAAAAGGCCAGCAAATTTTT
polyT_4	TTTTTAAGTCCCATAAGGTGAGATTATCATTTTT
polyT_5	TTTTTTAGGTATCTCAGTTCCTCATAGCTACCTTCGGTGCTACAGAGTTTTTT
polyT_6	GGTGTTGTGCGGAGTAGGTCGTTCGCTCTTTT
polyT_7	GGTACCAATAATACGTAGATGTACTGCCAAGTAGGATTTTT
polyT_8	TTTTTACTGGACTAGTGGATTGGCGAATTCCACCACTTTTT
polyT_9	TTTTTCAAGCTGGGCTGTGGGGGGTATCTGCGCTCTGTTTTT
polyT_10	GTGGGCCCAGGGCACGAACCCCCCGTTTTTT
polyT_11	TTTTTGGGAGGAGTCCTGCGCCAGTTCACCTAGAAGTGCTC
polyT_12	TTTTTCAGCCCGACCGCTCGGTAACTATTTTT
polyT_13	GCCGGTGGACCTTGTAGATGAACTCGCCGTCCTGCATTTTT
polyT_14	TTTTTCACTTGTACAGCTCGGACTCGAG
polyT_15	TTTTTCGTCTTGAGTCAGACACGACTTATCGCCATTTTT
polyT_16	TTTTTTCCGCCTCAGAAGCCATAGAGCCCACCGCCGC
polyT_17	TTTTTCTGGCAGCAGGATTAGCATTTTT
polyT_18	TTTTTACCAATAGGCCTCACAGGTTCTTTTT
polyT_19	TTTTTGAGCGAGGTATCCCTTCGTTTT
polyT_20	TTTTTTCTTCGGGGCGAAAAATCATTGGAAAACGTTTTTT
polyT_21	TTTTTCTTGAAGTGGTGGGTGGTAACCACTCGAGGTGCCG
polyT_22	TTTTTAACGTTGTTGCCACGGCCGCTTTTTT
polyT_23	TTTTTAAGGACAGTATTTCTTCTACGGCTACACTAGTTTTT
polyT_24	TTTTTAAAAGGATCTTAATAGTTTGCGCTTTTT
polyT_25	TTTTTCTGAAGCCAGTTCACGCTGTTTTT

3.3 sc_mCherry_3×SV40

Sequence sc_mCherry_3×SV40:

cgcgatgtacgggccagatatacgcgttgacattgattattgactagttattaatagtaatcaattacggggtcattagttcatagcccatatatggagttccgcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtcaataatgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagt acgccccctattgacgtcaatgacggtaaatggcccgcctggcattatgcccagtacatgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctattaccatggtgatgcggttttggcagtacatcaatgggcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtcaatgggagtttgtttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccattgacgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctctctggctaactagagaacccactgcttactggcttatcgaaattaatacgactcactatagggagacccaagctggctagcgtttaaacttaagcttggtaccgagctcggatccactagtccagtgtggtggaattcgccaccatggtgagcaagggcgaggaggataacatggccatcatcaaggagttcatgcgcttcaaggtgcacatggagggctccgtgaacggccacgagttcgagatcgagggcgagggcgagggccgcccctacgagggcacccagaccgccaagctgaaggtgaccaagggtggccccctgcccttcgcc tgggacatectgteccetcagttcatgtacggetecaaggectacgtgaagcaececegacatececgaetaettgaagetgteetteeeeg gatgtaccccgaggacggcgccctgaagggcgagatcaagcagaggctgaagctgaaggacggcggccactacgacgctgaggtcaa gaccacctacaaggccaagaagcccgtgcagctgcccggcgcctacaacgtcaacatcaagttggacatcacctcccacaacgaggact acaccatcgtggaacagtacgaacgcgccgagggccgccactccaccggcggcatggacgagctgtacaagtgagcggccgctcgagtc ccttccttgaccctggaaggtgccactcccactgtcctttcctaataaaatgaggaaattgcatcgcattgtctgagtaggtgtcattctattctggggggtggggtggggcaggacagcaagggggggggggggaggattgggaagacaatagcaggcatgctggggatgcggtgggctctatggctcgctttcttgctgtccaatttctattaaaggttcctttgttccctaagtccaactactaaactggggatgcggccgctcgagtctagagATCCGGTGTGGAAAGCtctagagATCCGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGC ATCTCAATTAGTCAGCAACCAAAGCtttaaaccATCCGGTGTGGAAAGTCCCCAGGCTCCCCAGCAG GCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCAAAGCtttaaacccgctgatcagcctcgactac

caagctctaaatcqqqqgctccctttaqqqttccqatttaqtqctttacqqcacctcqaccccaaaaaacttqattaqqqtqatqqttcacqtaqt gggccatcgccctgatagacggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacactcaacc ctatctcggtctattcttttgatttataagggattttgccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaattttaacaaaatattaacqcttacaatttaqqtqqcacttttcqqqqaaatqtqcqcqqaacccctatttqtttatttttctaaatacattcaaatatqtatccqctca tgagacaataaccctgataaatgcttcaataatattgaaaaaggaagagtatgagtattcaacatttccgtgtcgcccttattcccttttttgcggcat tttgccttcctgtttttgctcacccagaaacgctggtgaaagtaaaagtgctgaagatcagttgggtgcacgagtgggttacatcgaactggatct caacagcggtaagatccttgagagttttcgccccgaagaacgttttccaatgatgagcacttttaaagttctgctatgtggcgcggtattatcccgt attgacqccqqqcaaqaqcaactcqqtcqccqcatacactattctcaqaatqacttqqttqaqtactcaccaqtcacaqaaaaqcatcttacq aatagactggatggaggcggataaagttgcaggaccacttctgcgctcggcccttccggctggtttattgctgataaatctggagccggtg agcgtgggtctcgcggtatcattgcagcactggggccagatggtaagccctcccgtatcgtagttatctacacgacggggggtcaggcaactat ggatgaacgaaatagacagatcgctgagataggtgcctcactgattaagcattggtaactgtcagaccaagtttactcatatatactttagattga tttaaaacttcatttttaatttaaaaqqatctaqqtqaaqatcctttttqataatctcatqaccaaaatcccttaacqtqaqttttcqttccactqaqcqtc tggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgtccttctagtgtagcc gtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtc qtqtcttaccqqqttqqactcaaqacqataqttaccqqataaqqcqcaqcqqtcqqqctqaacqqqqqqttcqtqcacacaqcccaqcttqq agcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggta tccggtaagcggcagggtcggaacaggagagcgcacgaggggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgcc tttgctggccttttgctcactcatt

Corresponding 20HB DNA origami design and staple list for sc_mCherry_3×SV40:

Fig. S11 I Scaffold routing and staple design for 20HB_3×SV40. Scaffold routing is shown in blue, staples are given in black, skips are given as red crosses. Design was prepared using caDNAno v0.1.

Table S6 I Individual staple sequences for sc_mCherry_3×SV40 20HB.

Name	Sequence 5' - 3'
core_1	CTTTCTCCCTTCGGGAAGCGTGGGGAACATAAAGTGCCA
core_2	GCTTACCGTTGTTAAAATTCGCGCTAGGGCCGTCAATA
core_3	CCCTCGTGTCAGCTCATTTTTTAAAGGAAGCAGAACTT
core_4	TAAAGATACGGCAAAATCCCTTATTGACGGCGTTCTT
core_5	AAGTCAGAACCGAGATAGGGTTGGGAACCCTTACCGCT
core_6	CCCTGACGGAACAAGAGTCCACTTGGGGTCCACTCGT
core_7	CGTTGCTACTCCAACGTCAAAGGACTACGTGTTTTACTT
core_8	CGTCATTATTGGCGTTACTATGCTGTGCTTATATAGA
core 9	GTGAGCAAAATACGTAGATGTACTTGCCAAAATGATGATG

core_10	GCCAAGTTAAATTAAGAAGGCACAGCATCAACCATCACTGGGGAC
core_11	CCTCCCACCGTACACGTCAATGGATTTGTTTGGGTTCCGC
core_12	CCTACCGCAGTAAGCAGTGGGTTCCGTAGGCCACGCTCAC
core_13	CCATTTGCGTCAATGGGGCGGAGCAGTTTACAAAAAGGATTGAATGT
core_14	TTGTTACCTATAGTGAGTCGTATGGACAGGAGCCCCAGT
core_15	GACATTTTGGAAAGTCCCGTTGATATATGATATTCTACGGCAGGGTTA
core 16	TTTGGTGAAGTTTAAACGCTAGCCACCCTTATAACTAC
core 17	CCAAAACAAACTCCCATTGACGTCGTCATTGAAACTCACCTTCCTT
core 18	AATGGGGGACTAGTGGATCCGAGGGTGCCCTCCATAG
core 19	TGGAGACTTGGAAATCCCCGTGACTGGGCATATCAAAGGGCGACA
core 20	GTCAAACCGCTCACCATGGTGGCGCCCTCGAACCTATC
core 21	TCTAGTTAGTGGTTTTAAGTCCCTATTGACGTCAATGGGC
core 22	GCCATGTGAGCCCTCTGACAGTGCTCCGGCCATGTTATTTCCTC
core 23	AACTGAGGTAATTTCGGCGCAGAACGTAAATAGTCAGCCAGGCGGGCC
core 24	GCAGGGGGCCAGCTTGTTGATCTTCACTTGATTGTAACGCGGAACTCC
core 25	GGCGGTCTGCTCGGTAGGAACGAACGTCAATAACTAATGACCCCGTAA
core 26	TCGCCCTCGAATTCCACATGAGATTAATGCCAAACTAGTCAATAATC
core 27	CGTTCACGTATCCTCCATCCTTTAGGAAAGTTCTGGCCCGTACATC
core 28	CACGCGCTCCTCCATCGCTGCAATATACCGCGATTTAGAA
core 29	CGGTCACCAGCTAGAGGATACGGGGCTCATCATTGTCTCA
core 30	TCGCCGTCTTGCGCAATTGCCTGAAAACTCTCTTCAATAT
core 31	GGTGCCGCTCGTGGTGTCAGCGATCCAGTTCGCGGAAATG
core 32	TCTGCATTTCATTCATACCAATCTGATCTTAAATGCCG
core 33	CCTCGTTGGTGGCGGCCCTCGGCAACAAGAGTCATTC
core 34	ACTTGTACAGCTCGTCGCAAGAAATGCTTTTCCTAAGCAGGCGAAAGG
core 35	TACCCGGCCCTCTAGACCCCAGCATAATTCTCAGCCTTGCGGCGAACG
core 36	GGCTGATCAGCGGGTTCTCCCCCTTGTTATCAGCGGGTTTGCCCCCCGA
core 37	CAGATGGCTGGCAACTCCCAGAATCCGATCGTGAGATGCACGTAAAGC
core 38	GTCAAGGAAGGCACGGGCGATGCAGTGCAAAAGGGGAGCCCCTAAT
core 39	AATAGAAATTGGACACATGCCGTTATCCGCCCACTTGTACATG
core 40	TAGAGCCCACCGCATCTCGAGCTGCCGGGAACGCCGCGCGAAGG
core 41	ATTGTCTTCCCAATCTAAACGGTTAATAGTCTGCAGGGTTCAGCTT
core 42	TGCCCCACCCAGAAGGCATACAGGCAGCAGCTTCGGCGGCCC
core 43	ACCTACTCAGACAATGGGAGGGGGGGTATGGCACGGGGCCCTCGTGGC
core 44	TGCATGCTTTGCATACTTCTGCCTGCCTGCTAAGCGGTTGCACCCAA
core 45	CGCGCTTTGAGAATAGTGTATCCCAGCCGGACTCCCGGTA
core 46	AATGTCACGTGTAGCGGTCACGCGTAAGCGCCCCGAA
core_47	GCCTAACCTGTGACTCGGGATAGATACCGCCAGATTACATAAGCC
core_48	GTCGGTCATTACTGTCTAAAAGTAGGGCTTAAAGATCCTGGTCTCC
core_49	GCTGATCACTCATGGTCGGGGCGACTCCCCGTCGCTCAGTCCAAGCTT
core 50	GACTAATTTGTCAGAAGTTGAGATCTGTCTATATTTTGGTCCACACTG
core 51	TGCGCGTAGGTATGCGGCGACCGGATTTAT
core_52	AGCGGGCGTTAAATTAAATAAATTGGGCGCTCCACCCATTGACG
core_53	TGGCGAGAACCAATAGTGAGCGGGTAAGTTAGTACTGCCAAGTGGG
core_54	TTTAGAGCTAAATCAATATTGAAGGGCTATGAGGGGGGCGTACTTGGC
core_55	ACTAAATCAGTGTTGTTTGAATACCTATTAATGGCGGGCCATTTACC
core_56	CAAGTTTTTATTAAAGCAAAAAAGCGCGTATACCCATAAGGTCATGTA
core_57	TTGTTAAACGCTCTCCTGTTCCGACCCTGCCGGGGGTCGCAAATAGG
core_58	GCCGAAATCCAGGCGTTTCCCCCTGGAAGCTATTTACCATACATA
core_59	AAGAATAGGGTGGCGAAACCCGACAGGACTAATATATGCATTTAT
core_60	TCCAGTTTGAGCATCACAAAAATCGACGCTCTTGATTATCATACT
core_61	AACGTGGGGCGTTTTTCCATAGGCTCCGCCCAATGTCAAGGAATAA
core_62	TTGCCCGGGCTGGCAAAAAGCAGCGCAAAACAGACTCG
core_63	CCACATAGGGAAGAAAATTCTTCATGCAATTGGAGCCT
core_64	TTGGAAAAGGAAAGCCCTTGTTGTAGTCGAGGATGCAT
core_65	AAGGATCTAAAGGGAAAAGCTTTGGTTGCTATCTCTAG
core_66	ATGTAACCGAGGTGCTGCTTTGCATACTTCTGCTGGGG
core_67	GGTGAGTACTGCAACTCCGGTGGATGGGAGGTGATGTCCAACTTGAT
core_68	ATGCCATTAATTGTGGCCGCTCTGTAGGCGCCGGGCAGCTGCACG
core_69	TATGGCATCGCCAGGCCCTCCTGGCCTTGTAGGTGGTCTTGACCT
core_70	GTAAGTTCCATTGCCAGTCGATAGTGGCCGCCGTCCTTCAGCTT

core_71	AGCTCCTTCGTCGTTTCAAACAAGCTTGATCTCGCCCTTCAGGGCG
core_72	GAGCGCAGCGGCTCCAAGTTGCTCGCACATTTTTAATATT
core_73	AAGTGGTCCTCAACCAGAACCTTTAGCGGCCGCATCCCCAGTTTAGT
core_74	CAGTCTATCCGTAAGAGCGAGCCAGGGGACTTTCCACACCGGATCTCT
core_75	TAAGTAGTGCACTGCATGCCTGCTGCTTTGCATACTTCTGCCTGC
core_76	CGTTGTTGGGCCGCAGTGCTGTCCAGCTTTGGTTGCTGACTAATTGA
core_77	TCACGCTCGGTCCTAGAATGACAGCCTGGGGACTTTCCACACCGG
core_78	GCTTAATCTCACCTAGTCGCCCTTGCTATCCACGCCCATTGATGTAC
core_79	CCACCGCTCAGCAATAGCTGATGTCGGCGGGGGGGCGCTCA
core_80	CAAGCAGGAGACCCTTGGAGCCGAAGCCCTCGGGGAAG
core_81	TCTCAAGCCATCTGTGTCCCAGCGTCCTCGAAGTTCATGTTGACGT
core_82	GGTCTGACGTGTAGGGTCACCAGGAGTCCTGGGTCAGGCTTCTT
core_83	GTTAAGGGTTCGTTCATCGTAGGACCTTGTAGATGAACCAGCGTCG
core_84	AAGGATCTAGTGAGGCTCTCGAAGTCGGAGGGGAAGTTCAGCCTCT
core_85	AAATGAAGAACTTGGTCCATGTGCAGCCCATGGTCTTCTCCGTCCT
polyT_1	TTTTTAAAGGCCAGGAACCGTAAAAAGGCCGGCGAATGAAAAAACAG
polyT_2	TTTTTACGCTGTAGGTATCTCCGCTTTCTGCCTAACTCCTAAATT
polyT_3	TTTTTTTCGCTCCAAGCTGGGAGTTCGGTCAAACAAAACGGCTACACTAGTTTTT
polyT_4	CCGCATCACCATGGTAATTTTTTTTTTTAGCGATGACTAAGGCCAGCATTTTT
polyT_5	TTTTTGTTCAGCCCGACCAACAAAAAGAGTTGGTAGCTTTTT
polyT_6	TTTTTGGAGGCCTCCCACCTTGAAGCGTTTTTTTTTTCATGAACTCCT
polyT_7	TTTTTCTATCGTCTTGAGTCCAAGTTCCACGATGGTGTAGTGACAGCTT
polyT_8	AGACACGACTTTTTTTTTTTTTTTTCGCCACTGGCAGTGGACTTAGGG
polyT_9	GCGTTCGTAAGGGCCCAAGTAGTCGGGGCGCCTTATCCGGTAATTTTT
polyT_10	TTTTTTGGGAGTGGCACCGATCAAGGTTTTT
polyT_11	TTTTTCTTTGGTTGCTGACTCCGGATGGTTTAAAGTTTTT
polyT_12	TTTTTGAGCGAGGTATGTAGGACCACACCCGCAGTCAGCCACTGGTAACAGGATTAGCATTT
	TT
polyT_13	TTTCCACAAATTGAGAATTTTATTAGGAAAGGACAGTTTTT
polyT_14	TTTTTTCAGGGCGATGGCCCGCGAAAAACCGTCTATTTT
polyT_15	TTTTTAAGGACAGTATTTACCCGGTGCTACAGAGTTCTTTTTTTT
	тстттт
polyT_16	ATGATCCCTTCCCAACTTCCAGGCGGGGTACATCCGCTCGGATTTTT
polyT_17	TTTTTCGAGTTACTCACCAGCGTTTTTTTTTTTTTCTGGGTGAGC
polyT_18	TTTTTCAGTTACCTTCGGCAGTGCGCTCTGCTGAAGCTTTTT
polyT_19	
polyT_20	TTTTTTCTTGATCCGGGTAGGTCGTTTTT
polyT 21	

3.4 sc_mCherry_6xSV40

Sequence sc_mCherry_6xSV40:

ggggatgcggccgctcgagtctagagATCCGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATG CAAAGCATGCATCTCAATTAGTCAGCAACCAAAGCtctagagATCCGGTGTGGAAAGTCCCCAGGCT CCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCAAAGCtttaaaccATCC $\label{eq:agenerative} AGCAACCAAAGCtttaaacccgctgatcagcctcgactatacgcgttgacattgattattgactagttattaatagtaatcaattacggggtc$ attagttcatagcccatatatggagttccgcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgt atcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctggcattatgcccagtacatgaccttatgggac tttcctacttggcagtacatctacgtattagtcatcgctattaccatggtgatgcggttttggcagtacatcaatgggcgtggatagcggtttgactcaatcgaaattaatacgactcactatagggagacccaagctggctagcgtttaaacttaagcttggtaccgagctcggatccactagtccagtgtggtggaattcgccaccatggtgagcaagggcgaggaggataacatggccatcatcaaggagttcatgcgcttcaaggtgccacatggagggctccgtgaacggccacgagttcgagatcgagggcgagggcgagggccgcccctacgagggcacccagaccgccaagctgaaggtgaccaagggtggccccctgcccttgccctgggacatcctgtcccctcagttcatgtacggctccaaggcctacgtgaagcaccccgccgacatccccg ccctgcaggacggcgagttcatctacaaggtgaagctgcgcggcaccaacttcccctccgacggccccgtaatgcagaagaagaccatgg

gctgggaggcctcctccgagcggatgtaccccgaggacggcgccctgaagggcgagatcaagcagaggctgaagctgaaggacggcgg ccactacgacgctgaggtcaagaccacctacaaggccaagaagcccgtgcagctgcccggcgcctacaacgtcaacatcaagttggacat cacctcccacaacgaggactacaccatcgtggaacagtacgaacgcgccgagggccgccactccaccggcggcatggacgagctgtac aagtgagcggccgctcgagtctagagggccgggtaaggagggcccgtttaaacccgctgatcagcctcgactgtgccttctagttgccagcc atctgttgtttgcccctcccccgtgccttccttgaccctggaaggtgccactcccactgtcctttcctaataaaatgaggaaattgcatcgcattgtct gqtqqqctctatqqctcqctttcttqctqcccaatttctattaaaqqttcctttqttccctaaqtccaactactaaactqqqqatqcqqccqctcqaqtc AATTAGTCAGCAACCAAAGCtctagagATCCGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGA AGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCAAAGCtttaaaccATCCGGTGTGGAAAGTCCC CAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCAAAGCtttaaa cccgctgatcagcctcgactacaacaaggcaaggcttgaccgacaattgcatgaagaatctgcttagggttaggcgttttgcgctgctttgtgac ccacgttcgccggctttccccgtcaagctctaaatcggggggctccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttg attagggtgatggttcacgtagtgggccatcgccctgatagacggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttcca aactggaacaacactcaaccctatctcggtctattcttttgatttataagggattttgccgatttcggcctattggttaaaaaatgagctgatttaacaa aaatttaacqcqaattttaacaaaatattaacqcttacaatttaqqtqqcacttttcqqqqaaatqtqcqcqqaacccctatttqtttatttttctaaat acattcaaatatgtatccgctcatgagacaataaccctgataaatgcttcaataatattgaaaaaggaagagtatgagtattcaacatttccgtgt cgcccttattcccttttttgcggcattttgccttcctgtttttgctcacccagaaacgctggtgaaagtaaaagatgctgaagatcagttgggtgcacg agtggttacatcgaactggatctcaacagcggtaagatccttgagagttttcgccccgaagaacgttttccaatgatgagcacttttaaagttctg ctatgtggcgcggtattatcccgtattgacgccgggcaagagcaactcggtcgccgcatacactattctcagaatgacttggttgagtactcacc agtcacagaaaagcatcttacggatggcatgacagtaagagaattatgcagtgctgccataaccatgagtgataacactgcggccaacttact tctgacaacgatcggaggaccgaaggagctaaccgcttttttgcacaacatgggggatcatgtaactcgccttgatcgttgggaaccggagct gaatgaagccataccaaacgacgagcgtgacaccacgatgcctgtagcaatggcaacaacgttgcgcaaactattaactggcgaactactt actctagcttcccggcaacaattaatagactggatggaggcggataaagttgcaggaccacttctgcgctcggcccttccggctggtttatt actgataaatctggagccggtgagcctgggtctcgcggtatcattgcagcactggggccagatggtaagccctcccgtatcgtagttatctacac gacggggagtcaggcaactatggatgaacgaaatagacagatcgctgagataggtgcctcactgattaagcattggtaactgtcagaccaa gtttactcatatatactttagattgatttaaaacttcattttaaaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaac gtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatccttttttcgcgcgtaatctgctgcttgcaaaca aaaaaaccaccgctaccagcggtogtttgtttgccggatcaagagctaccaactctttttccgaaggtaactogcttcagcagagcgcagatac caaatactgtccttctagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagt ggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacggggg gttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccga agggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccagggggaaacgcctggt

Corresponding 20HB DNA origami design and staple list for sc_mCherry_6×SV40:

Fig. S12 I Scaffold routing and staple design for 20HB_6×SV40. Scaffold routing is shown in blue, staples are given in black, skips are given as red crosses. Design was prepared using caDNAno v0.1.

Name	Sequence 5' - 3'
core_1	CGTAATTGTGGAAAGTCCCTATTTTTGGT
core_2	AATCAATGTTACCGTAAATACTCTCAATGGG
core_3	TCAGCGGGGATACACTTGATGTAAGTCAAAC
core_4	ATTGAGATTGACGTCAATAGGGCTGCCAAA
core 5	GCTGGGGGGCATAATGCCAGGCGATGACTAA
core 6	GGTCGTTGGGCGGTCAGACTACCGCCCATTTGCGTCAATGGGGCGGAACGTCAAT
core 7	TATGGGATATGGGCTATGAACTGGGGACTT
core 8	GACGTCAAATTACTATTAATAACGCTTTGCA
core 9	TGGGCAGTTCAACGCGTATAGTCGAGCTTTG
core 10	TGGCATATTTTAAAGCTTTGGTTGAGCCTGG
core_11	TACCGTCATGCATGCATACATGCATGC
core_12	GTTGTTAGAGCTCTGCTTATATGGGTGCTT
core_13	CAGTAAGCAGTGGGTTTGAACTGAATGAGATTCACCTATC
core_14	CCTATAGTGAGTCGTAGGGCAGGGGAACGAAAATCCATAG
core_15	TTAAGTTTAAACGCTATTGGCGGTTGATCTTTATAACTAC
core_16	GGACTAGTGGATCCGCCTCGCCCGCAGAAAGCCCCAGT
core_17	TGCTCACCATGGTGGGCCGTTCGGTTTTTACGCTCAC
core_18	ATCACGCCCTTGGAGCCGTACACTCTAGTGACTTATC
core_19	CACGGTCGATGTCCCAGGCGAATTAATTTACAGGATT
core_20	ACTCGCCGCTTGGTCACCTTCAGCGCCAGCTTTGCTACAG
core_21	TTGGTGCCCCCTCGTAGGGGCGGCAGCTCGGTTACGGCT
core_22	CTTCTGCACGATCTCGAACTCGTGCGAATTCCTCTGCGC
core_23	GCTCGGAGCTCCATGTGCACCTTTTATCCTCGAAAAAGA
core_24	GTGGAGTTAGACTCGAGCGGCCGATACTTCT
core_25	TGTTCCACGGTTTAAACGGGCCCTTTCCACAC
core_26	CGGCCCTCGGCGCCCTCGGCGCGTTCGTACCGAAGTTCAGTGAGGATCAAAAGAAGTAA
core_27	ATCAGCGGATGGTGTAGTCCTCGTTGTGGGTCCTGGGTTTCGTTCACTCAC
core_28	AACTAGAAGGCACAGTGCATCCCCTGGTGTCA
core_29	GGCTGGCTCCAACTTGATGTTGACGTTGTAGTAGATGATCGTGTAGTCTACGGGTGTCATGC
core_30	CGGGGGAGGGCAAAACAAAGGCGCAACGT
core_31	GGAAGGCAGCAGCTGCACGGGCTTCTTGGCCAGGGGAAGACCATCTGAAAAGGATACTGG
	TGA
core_32	GGAGTGGCACCTTCCAAGAAAGAGAGAGTAA
core_33	
Core_34	
COTE_35	
00re_37	
00re_30	
core_09	
core 41	
core 42	
core 43	
core 44	
core 45	AGCAGCGCGTCCACTATTAAAGAAGCCACCTAGAGATCCA
core 46	TCTTCATGGGGTTGAGTGTTGTTCTAAAATTCGGCGAAAA
core 47	AGGGAGCCAGTGTGCAAAAAAGCGAATGAAGT
core 48	ATATTATTGAAGCATGGTGCCGTCCTCCGATCAACGATTTACCAAT
core 49	CTCATGAGCGGATACCCATCACCCAGTGTTAGTTTGGTTCAGCGAT
core 50	AGAAAAATAAACAAACGTCTATCGCATAATTTTGCTACATTGCCTGA
core 51	ATTTCCCCGAAAAGTCGTGGACAGATGCTTCCAGTTAAGATACGGG
core_52	AGCGTTAATATTTTGTCAGTTTGCCAAGTCTTGTTGCCGCTGCAA
core_53	ATTTTTGTTAAATCAGGAATAGACACCGAGTCAACTTTACGGCTCC
core_54	AATGTTGACGCCTTATTTTAAATCAGAAGTAGTCGGGGATGTCGGCGAGACCTCC
core_55	GCAAAATACTCCATAACATACGTCATTATTG
core_56	ACAGGAAGGTTATTGTTCCACACCGGATCTCTAGACTCGACGCGGAGCCGCAAA

Table S7 I Individual staple sequences for sc_mCherry_6×SV40 20HB.

core_57	GAGCAAAAGTTGGCCGCTAATCAAGCGAAAGGAGCGGGCG
core_58	TACTTTCAATGTATTTTACTTCTGCCTGCTGGGGAGCCTAATGACCCTTCTGGGTCAGCAGC
core_59	GCATCTTTGCAGCACTAGGGCGATGTGTAGCGGTCACGCT
core_60	CTCGTGCACCGCGCACGTTGCTGACTAATTGAGATGCATTAGTCAATATCTTCACGAGGTAT
core_61	GTAACCCACATCCGTATCCAACGTACCCGCCGCGCGTTAAT
core_62	CCGCTGTTAATTGTAGGACTTTCCACACCGGATCTCTAGAGGCTGAGTTCGATGAAGTGGT
core 63	GATCTTAGTACTCAAGAACAAGAAAAACGCCTAACCCT
core 64	TTCTTCGGGCGTTAATTTGCATACTTCTGCCTGCTGGGGCTGACTACTCTCAAGAGGACAGT
core 65	GAAAACGATGCGGCGCGAGATACAATTGTCGGTCAAG
core 66	AACTTTATTTAACCAGCTTTGGTTGCTGACTAATTGAGTTCTGCCTCATCATTGAGCCAGTT
core 67	GTTACATGGAAAGCCGAAATCGGAACCCTAAACTCTTCGACACGGAGGGCCATT
core 68	ATTCAGCTGAAGAAAGTTTTTTGGGGTCGATTATCAGG
core 69	ATGGCTTCCGGATCTGCCTGGGGACTTTCCACACCGGAAAGGAAGG
	Α
core 70	GGCATCGAGTTTAGGCATGCTTTGCATACTTCTGCCTCTAGGGCGCGCTCGTCTCACTCA
core 71	TAGTTTGAACCTTTATTTAAAGCTTTGGTTGCTGACTAGCGCGTATGTTGCCACTCTTAC
core 72	GGGAAGCTCGAGCCATGGGGAGCCTGGGGACTTTCCACAGTCACAAGTAGTTCGTTC
core 73	TCCGCCTCGCCTGCTAGAGATGCATGCTTTGCATACTTCAAGCAGATTCTATTAAATTCTGAG
core 74	AATTAAAGTTAGCTCTAAGGGCCTTTTTCAGCATCCCCAATGAGTGAG
core 75	TCCTTTTACTGACAGCAAGGCGAGCCTGCTGGCTTTGGTTGCTGACTAATTGAGTTGACGGG
core 76	AGGATCTTTAAGACACTAGCCAGACGACATTTTGGAAAGTCCCGTTGAGGCGTTACGCCACT
	GG
core 77	TTTTGGTCGGGGACAGACCACGCCGCCGTCCT
core 78	TAAGGGACACTGGTACGATAAGCGCCAAAACAAACTCCCATTGACGCACCCATTAGCAGAG
core 79	GCTCAGTGGGCCACCTCCTGCAGGGAGGAGGAGGTGATG
core 80	GTCTGACGTAGGCGGGGGTCTCGTGGAGACTTGGAAATCCCCGTGCTGCCAAGAGTTCTT
core 81	GATCCTTCTGGGTGGCGCAGCTTCACCTTGGCGCCGG
core 82	CTCAAGAAGGCCTAACACCAAGCCGCTATCCACGCCCATTGATGTAGGCGTACTACACTAG
	Α
core 83	GATTACGCTCGCCCTTTACGGGGCCGTCGGTTGTAGGT
core 84	AAGCAGCAATTTGGTAACCACACTACCGCATCACCATGGTAATAGCGGGCCATTTCTGCTGA
core 85	GTAGCGGTACGGAGCCGAGGCCTCCCAGCCCGGCCGCCG
core 86	CTATCGTCGGGCGGGTACCGTAAGTTATGTAAGCGGCC
core 87	TTGAGTCCAAAGGGAACTTCGGTAAAGCACTGCGAACGTGGCGAGA
core 88	AACCCGGCACCTAGACACGTAGGGCTCCCACTTGAAGCC
polyT 1	TTTTTGGATGGTTTAAAATAGGCCGAAATTTTT
polyT_2	TTTTTTAAAAAGGCCGCGTTGAAAGGCCGCGCTTTCATACTCAT
polyT_3	ATGTACTGAGCCTGGGGACTTTCCACACCTTTT
polyT 4	TTTTTTCCCATAAGGTCGTTGGTAGCTCTTTT
polyT 5	TTTTTAGGCTCCGCCCCCCTCTGGCGTGACCGCTGTCATAGCTCACGCTTTTT
polyT_6	CTCGCCCTTACGTAGATGTACTGCCAAGTAGGAAAGTTTTT
polyT_7	TTTTTTGATGATGGCCATGGAAGCGCATGAACTCCTTTTT
polyT_8	TTTTTGACGCTCAAGTCAATGTGTGCACGAACCCCCTTTTT
polyT 9	TTTTTGGCGCCGTCCTCGGGGGGATCTCGTAGAATGACACCTAC
polyT_10	TTTTTAGGACTATAAAGATACCCAGCTCGTCCATGCCGCCGCTCGGGGAACTTGGT
polyT_11	TTTTTACCCCCCAGAACCCTTCAGTTTTT
polyT_12	TTTTTGAAGCTCCCTCGTGCGCATGCTTTGCCTCACTT
polyT_13	TTTTTTCAGCGGGTTTAAAGCTTTGGTTGCTGCCTTGCCTGGTCCTGTGCTCTTGCACCGCT
	GACCTTCG
polyT_14	TTTTTTTACCGGATACCTGTGATTTAGAGCATGCTCTCCTGTTCCGACCCTGCCGCTTTTT
polyT_15	TTTTTTCGGCAAAATTCGAGGCTGATTTTT
polyT_16	TTTTTGGGAAGCGTGAGGAACCGTTTTT
polyT_17	TTTTTCCGCGCCACATAGCAGCAATACGGGATAATATTTTT
polyT_18	TTTTTTGTAGGTATCTCCCCCGCCTTTCTCCCTTCTTTT
polyT_19	ATCCCCCATGTTTCGAAAGTATAGTAAGGCGTTTCCCCCTGTTTTT
polyT_20	TTTTTGGAAGGGCCGAGCGCTGTCCTGCCCCACCCCTTTTT
polyT_21	TTTTTTCCAAGCTGGGCTCTGTGTAGGTCGTTCGCTTTTT
polyT_22	TATGAGTAAAGGACAGCTTCAGGTGGCGAAACCCGACTTTTT
polyT_23	TTTTTTGATCCGGCAACCAGCCAGCCTTTTT
polyT_24	TTTTTCGTTCAGCCCTTTTCCATTTTT
polyT_25	CCGGTAACACCGTACACGCCGAGCATCACAAAAATCTTTT