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Abstract

A fundamental issue in neural coding is the role of spike timing variation in information 

transmission of sensory stimuli. Vestibular afferents are particularly well suited to study this issue 

because they are classified as either regular or irregular based on resting discharge variability as 

well as morphology. Here, we compared the responses of each afferent class to sinusoidal and 

random head rotations using both information theoretic and gain measures. Information theoretic 

measures demonstrated that regular afferents transmitted, on average, two times more information 

than irregular afferents, despite having significantly lower gains. Moreover, consistent with 

information theoretic measures, regular afferents had angular velocity detection thresholds that 

were 50% lower than those of irregular afferents (~4 vs 8°/s). Finally, to quantify the information 

carried by spike times, we added spike-timing jitter to the spike trains of both regular and irregular 

afferents. Our results showed that this significantly reduced information transmitted by regular 

afferents whereas it had little effect on irregular afferents. Thus, information is carried in the spike 

times of regular but not irregular afferents. Using a simple leaky integrate and fire model with a 

dynamic threshold, we show that differential levels of intrinsic noise can explain differences in the 

resting discharge, the responses to sensory stimuli, as well as the information carried by action 

potential timings of each afferent class. Our experimental and modeling results provide new 

insights as to how neural variability influences the strategy used by two different classes of 

sensory neurons to encode behaviorally relevant stimuli.
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Introduction

The nervous system uses a variety of neural codes ranging from rate codes where spike 

timing appears unimportant (Adrian and Zotterman, 1926; Connor et al., 1990; Carr, 1993; 

Salinas et al., 2000; Johansson and Birznieks, 2004) to temporal codes where spike timing is 
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critical for coincidence detection (Carr and Konishi, 1990; Carr, 1993; Joseph and Hyson, 

1993), first spike latency (Johansson and Birznieks, 2004), or improving stimulus-response 

correlations (Jones et al., 2004). This has sparked intense debate on whether variability in 

spike timing actually plays a role in sensory processing: whereas variability is averaged out 

to obtain the time dependent firing rate in a rate code, variability may carry information in a 

temporal code (Stein et al., 2005). Studies exploiting relatively simple systems with well 

described organization and natural stimuli are needed to make progress toward 

understanding the role of neural variability in sensory processing.

The vestibular system provides information about head motion relative to space that is 

necessary for maintaining posture, computing spatial orientation, and perceiving self-

motion. This system is well characterized anatomically and encodes head velocity over the 

natural frequency range (0–20 Hz) (Grossman et al., 1988; Armand and Minor, 2001; 

Huterer and Cullen, 2002). Furthermore, vestibular afferents at the sensory periphery are 

particularly well suited for studying the role of neural variability because they display a wide 

range of resting discharge variability. Afferents in this system are characterized as either 

regular or irregular based on their resting discharge, which is correlated with distinct 

morphological features at their peripheral terminations (Baird et al., 1988; Fernandez, 1988; 

Goldberg, 2000). Afferent responses to sensory input have been traditionally characterized 

by estimating the gain and phase over several cycles of sinusoidal head rotation (Goldberg 

and Fernandez, 1971b; Goldberg, 2000; Hullar et al., 2005). A limitation of this approach is 

that it averages response variability.

Here, we use information theoretic and signal detection analysis to study the role of neural 

variability in determining the responses of each afferent class to random as well as 0–20 Hz 

sinusoidal head rotations in primates. Our results using information theory reveal that, 

whereas irregular afferents best code for high frequencies, regular afferents instead transmit 

information about the detailed time course of the stimulus because of their lower variability. 

Consistent with these findings, we found that regular afferents had lower velocity detection 

thresholds than irregular afferents. Also, regular afferents are significantly more sensitive to 

addition of spike-timing jitter than irregular afferents. This demonstrates the existence of a 

temporal code at the peripheral level in the vestibular system.

Finally, we used a simple leaky integrate-and-fire model with a dynamic threshold to mimic 

the response properties of regular and irregular vestibular afferents. Our model explains the 

role of intrinsic noise in determining variability, information transmission, and detection 

thresholds, as well as the sensitivity to spike-timing jitter of each afferent class. Together, 

our experimental and theoretical findings establish that neural variability can play an 

important role in determining the neural code used by mammalian sensory systems.

Materials and Methods

Surgical preparations

Two macaque monkeys (Macaca fascicularis) were prepared for chronic extracellular 

recording using aseptic surgical techniques described previously (Sylvestre and Cullen, 

1999). Briefly, the animals were preanesthetized using ketamine hydrochloride (12–15 mg/ 
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kg, i.m.). In addition, atropine sulfate (0.04 mg/kg, i.m.) and valium (1 mg/kg, i.m.) were 

administered to reduce salivation and provide muscle relaxation, respectively. Surgical levels 

of anesthesia were induced using 2–3% isoflurane gas, inhaled through an endotracheal 

tube, and were then maintained at 0.8–1.5%. During the surgery, a dental acrylic implant 

was attached to each animal’s skull using stainless-steel screws. Within the implant were 

embedded a stainless-steel post that was used to restrain the animal’s head during the 

experiment, and two stainless-steel recording chambers, which were positioned 

stereotaxically on the skull to allow recording from the vestibular nerve where it emerges 

from the internal auditory meatus. After the surgery, the animals were administered 

buprenorphine (0.01 mg/kg, i.m.) for postoperative analgesia, and the antibiotic cephazolin 

(Ancef; 25 mg/kg, i.m., for 5 d). Animals were given at least 2 weeks to recover from the 

surgery before experiments began. All procedures were approved by the McGill University 

Animal Care Committee and were in compliance with the guidelines of the Canadian 

Council on Animal Care.

Data acquisition

The experimental setup, apparatus, and methods of data acquisition have been described in 

detail previously (Cullen and Minor, 2002; Huterer and Cullen, 2002; Sadeghi et al., 2006). 

During experimental sessions, the monkey was comfortably seated in a primate chair 

mounted on a vestibular turntable. Eye and head movements were recorded using the 

magnetic search coil technique, collected by the QNX-based real-time data acquisition 

system REX, sampled at 1 kHz, low-pass filtered at 250 Hz (analog eight-pole Bessel filter), 

and stored to digital audiotape for subsequent playback. Extracellular single-unit activity 

was recorded with glass microelectrodes (24–27 MΩ), the depth of which was controlled 

using a precision hydraulic microdrive (Narishige, Tokyo, Japan). The vestibular nerve was 

approached through the floccular lobe of the cerebellum, as identified by its eye-movement-

related activity (Lisberger and Pavelko, 1986; Cullen and Minor, 2002); entry to the nerve 

was preceded by a silence, indicating that the electrode had left the cerebellum. Action 

potentials from extracellular recordings were discriminated using an oscilloscope 

windowing circuit (BAK Electronics, Mount Airy, MD); Schmitt trigger levels and window 

size were manually set and monitored throughout playback sessions to ensure no exclusion 

or double-counting of spikes. The resulting spike train was digitized at 1 kHz. Spike train, 

eye, and head position signals were subsequently imported into Matlab (Mathworks, Natick, 

MA) and analyzed with custom-written algorithms.

Experimental design

We confirmed that each unit discharged in a manner consistent with previous 

characterizations of the afferents that innervate the horizontal semicircular canals (Goldberg, 

2000). All afferents were activated by rotational head movements toward the side of the 

recording, but not in response to static tilts. In addition, we verified that responses were not 

modulated during saccadic or pursuit eye movements.

Each unit’s spontaneous activity (i.e., discharge in the absence of head movement) was 

initially recorded for 2 min before vestibular stimulation so that the regularity of discharge 

could be computed. Afferents were then recorded from during passive whole-body 
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sinusoidal (1–4 Hz, maximum velocity 50°/s) rotations about an earth vertical axis (yaw 

axis). Next, passive horizontal head on body rotations about the yaw axis were applied using 

a torque motor (Servostar S602; Kollmorgen AKM servomotor; Danaher Motion, 

Dusseldorf, Germany), which was securely coupled by precision universal joints to the post 

implanted on the monkey’s head. We used two types of head velocity stimuli. The first type 

consisted of single frequency sinusoidal rotations at frequencies of 5–15 Hz (maximum 

velocity, 50°/s). The second type consisted of broadband noise stimuli characterized by a 

Gaussian distribution of rotational velocities with zero mean and an SD of 20°/s that was 

low-pass filtered at 30 Hz. The acceleration profile of this stimulus had a Gaussian 

distribution with zero mean and an SD of 2000°/s2. Spectral analysis showed that the power 

spectral estimate of the stimulus [computed using multitaper estimation techniques with 

eight Slepian functions (Jarvis and Mitra, 2001)] was constant for frequencies up to 20 Hz 

(data not shown) and the stimuli were low-passed using a 51st-order finite-response filter 

with a Hamming window and cutoff frequency set to 30 Hz (Huterer and Cullen, 2002).

Analysis of background activity

The firing characteristics of vestibular neurons were classified by analyzing the distribution 

of interspike intervals (ISIs) recorded during spontaneous background activity. The 

coefficient of variation (CV) of a sequence of ISIs was calculated from the mean (μISI) and 

SD (σISI) of the ISI distribution (CV = σISI/μISI). Because CV varies with the mean ISI, we 

used a normalized measure CV* to classify afferents (Goldberg et al., 1984). Neurons with a 

CV* < 0.15 were classified as regular whereas those with a CV* ≥ 0.15 were classified as 

irregular (Haque et al., 2004). Results were pooled between high- and low-gain irregular 

afferents (Baird et al., 1988). Each spike train was converted into a binary sequence where a 

value of 1 was assigned to each action potential and the spike train power spectrum P0(f) of 

this binary sequence was computed using multitaper estimation techniques with eight 

Slepian functions (Jarvis and Mitra, 2001).

Afferent tuning

Responses of afferents to broadband (0–20 Hz) vestibular stimulation were characterized 

using two alternate measures. The coherence C(f) between the head velocity signal s(t) and 

the spike train r(t) was calculated as a measure of the strength of the response to the stimulus 

at a frequency f, and is given by C(f) = |Prs(f)|2/[Pss(f) Prr(f)], where Prs denotes the 

stimulus-response cross spectrum, Pss is the power spectrum of the stimulus, and Prr is the 

power spectrum of the spike train. A lower bound estimate of the mutual information rate 

density is obtained from the coherence by I(f)= −log2[1 − C(f)] (Rieke et al., 1996; 

Theunissen et al., 1996; Chacron et al., 2005b) and is measured in bits per second per Hertz. 

To account for the fact that the mutual information rate (MI) density increases with firing 

rate (Borst and Haag, 2001), we normalized it by the mean firing rate fr (measured in spikes 

per second) during stimulation: MI(f) = I(f)/fr. MI(f) is thus measured in bits per spike per 

Hertz. In addition, conventional transfer functions were calculated to determine the response 

gain, which is obtained by dividing the stimulus-response cross spectrum by the power 

spectrum of the stimulus: G(f) = |Psr(f)/Pss(f)|. For comparison, response gains were also 

computed from sinusoidal stimuli in the same manner.
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To quantify the amount of information transmitted by vestibular afferents in different 

frequency ranges, we integrated the normalized information rate density MI(f) over both low 

(0.5–5 Hz) and high frequencies (15–20 Hz). For comparison, we also averaged the gain 

G(f) over these same frequency ranges. Time-dependent firing rates of the afferents were 

represented using a spike density function in which a Gaussian function with an SD of 5 was 

convolved with the spike train. Spike-timing jitter was introduced by adding to each spike 

time a random amount drawn from a Gaussian distribution with zero mean and preset SD. 

The resulting spike train was then analyzed in the same manner as the raw ones. Error bars 

were estimated over 30 realizations of jitter.

Detection threshold calculation

Estimates of the time-dependent firing rate f(t) during sinusoidal head rotation were obtained 

by low-pass filtering the spike train r(t) using a Kaiser window with cutoff frequency greater 

than the stimulus frequency by 0.1 Hz (Oppenheim and Schafer, 1989). At each frequency of 

rotation, an afferent’s dynamic lead time relative to head velocity was estimated by least-

squares optimization of the equation: f(t) = (gain) × [s(t − td)] + bias, where f(t) is firing rate, 

s(t) is head velocity, gain is a constant value, td is the dynamic lead time (in milliseconds), 

and bias is an offset. A minimum of 10 cycles were included in the fit and the variance-

accounted-for was computed as 1 − [var(est − f)/var(f)], where var represents variance, est 

represents the modeled firing rate, and f represents the actual firing rate (Sylvestre and 

Cullen, 1999; Roy and Cullen, 2001). The firing rate was then plotted as a function of the 

shifted stimulus s(t) to obtain the instantaneous firing rate-head velocity curve. We then 

computed the mean and variance of the firing rate distribution for each head velocity using a 

binwidth of 1°/s. The degree of overlap between the firing rate distribution obtained for head 

velocity I and the one obtained under resting discharge was quantified using the d′ measure 

from signal detection theory (Green and Swets, 1966):

where μ(I) and σ2(I) are the mean and variance of the firing rate distribution at head velocity 

I, respectively. μ(0) and σ2(0) are the mean and variance of the firing-rate distribution under 

resting discharge, respectively. It was observed that d′ increased linearly as a function of |I| 
and that the data could be fitted with a first-order polynomial. We thus used our linear fit to 

interpolate between data points to find the detection threshold vT as the lowest absolute head 

velocity satisfying d′(vT) > 1 (Snippe and Koenderink, 1992). We also used the firing rate 

distribution obtained for 0 head velocity to compute discrimination threshold and found that 

these did not differ significantly from the detection thresholds computed from the 

spontaneous activity (data not shown).

Stimulus reconstruction

Spike trains r(t) recorded during broadband (0–20 Hz) vestibular stimulation were used to 

reconstruct a linear estimate of the stimulus s(t). It is assumed that the time-dependent 

stimulus can be described by a first-order Voltera series (Rieke et al., 1996):
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The kernel K(τ) that minimizes the mean-square error ε2 = <[s(t) − sest(t)]2> can be 

computed in the Fourier domain from the cross spectrum and power spectrum of the 

response as follows (Rieke et al., 1996; Dayan and Abbott, 2001):

where K̃(f) is the Fourier transform of K(t). We assessed the quality of linear stimulus 

estimation by computing the coding fraction as follows (Gabbiani, 1996; Rieke et al., 1996):

where ε is the root mean squared error and σstim is the SD of the stimulus s(t). The coding 

fraction ranges between 0 and 1 and represents the fraction of the stimulus correctly 

estimated.

Modeling

We used a modified leaky integrate-and-fire model with a dynamic threshold (Chacron et al., 

2000, 2001, 2005b) to model vestibular afferents. The voltage v and threshold w obey the 

following differential equations over times between action potentials as follows:

where τv is the membrane time constant, τw is the threshold recovery-time constant, and w0 

is the equilibrium value for the threshold. When v(t) = w(t), v is reset to 0 whereas w is 

incremented by Δw and an action potential is said to have occurred at time t. v is 

subsequently kept at 0 for the duration of the absolute refractory period Trefrac. Cumulative 

increases in threshold mimic cumulative afterhyperpolarization in the membrane potential 

after repetitive firing and we note that previous results (Liu and Wang, 2001) have shown 

that our model is qualitatively similar to a previously proposed model of vestibular afferent 

activity based on a cumulative hyperpolarization (Smith and Goldberg, 1986). The synaptic 

current Isynap is given by the following:

HV(t) is the horizontal head velocity, Ibias is a bias current, σ ξ (t) is Gaussian white noise 

with zero mean and SD σ, and GH is the intensity of the signal. Previous studies (Chacron et 

al., 2003) have shown that cumulative summation in the threshold variable after repetitive 
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firing will lead to spike frequency adaptation and thus to increased gain at high stimulus 

frequencies. It is, however, known from experiments that irregular vestibular afferents have 

more high-pass transfer functions than regular ones (Goldberg, 2000); thus, we implemented 

a high-pass filter in the following way: the head velocity HV(t) is first low-pass filtered 

(cutoff frequency 1/τA, where τA = 20 ms) to obtain XA and GA XA is then subtracted from 

GH HV(t). GA controls the amount of high-pass filtering: it is maximal when GA = GH and 

null when GA = 0. We used low-pass filtered (eighth order Butterworth) white noise with 

cutoff frequency fc = 30 Hz and an SD of 20°/s as in the data for HV(t). Numerical 

simulations were performed using an Euler-Maruyama integration algorithm with timestep 

0.0025 ms. Parameter values used for the simulations were taken to be within the 

physiological range (Tasaki, 1955; Smith and Goldberg, 1986) and are given in Table 1.

Results

Spontaneous activity in regular and irregular afferents

We recorded resting discharge from a total of 52 afferents from two macaque monkeys. 

Discharge regularity was estimated from a normalized coefficient of variation CV* 

(Goldberg et al., 1984) (see Materials and Methods). Thirty-one afferents were characterized 

as regularly firing (CV*mean = 0.077 ± 0.033), whereas the other 21 were characterized as 

irregularly firing (CV*mean = 0.344 ± 0.116). Figure 1a shows the ISI histogram obtained 

from the resting discharge (i.e., no stimulus) of a typical regular afferent. This afferent 

displayed low variability (Fig. 1a, inset) and this is reflected in the spike train power 

spectrum (Fig. 1b) by peaks at the resting firing rate (~95 Hz) as well as integer multiples of 

that frequency (higher harmonics). Figure 1c shows the ISI histogram obtained from the 

resting discharge for a typical irregular afferent. This afferent displayed considerable 

variability (Fig. 1c, inset) and its spike train power spectrum (Fig. 1d) showed considerably 

less structure consisting of a broader and shallower peak at its fundamental frequency (~90 

Hz) (Fig. 1d). This irregular afferent displayed more power than the regular afferent over the 

behaviorally relevant frequency range 0–20 Hz, as seen by comparing the power spectra. 

This difference is mostly caused by the differential variabilities of regular and irregular 

afferent resting discharges as quantified by CV. Indeed, it has been shown that the DC 

component of the power spectrum is directly related to CV (Cox and Lewis, 1966).

Previous theoretical studies have emphasized the role of the resting discharge on information 

transmission (Chacron et al., 2004, 2005a). In particular, the power spectrum of the resting 

discharge can be seen as a “noise spectrum” and determines the amount of noise at each 

frequency during stimulation. Lower noise over specific frequency ranges will give rise to 

higher signal-to-noise ratios and, thus, better information transmission for these stimulus 

frequencies (Chacron et al., 2005a). The low power in the regular afferent’s spike train over 

the behaviorally relevant frequency range (0–20 Hz) would thus predict better coding for 

behaviorally relevant head rotations. To verify this prediction, we next investigated the 

responses of regular and irregular afferents to sensory stimulation.
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Information transmission by vestibular afferent spike trains

Vestibular afferents were stimulated using broadband (0–20 Hz) noise with a Gaussian 

distribution of rotational head velocities (see Materials and Methods). The responses of 21 

regular and 15 irregular vestibular afferents to these random stimuli were characterized using 

the stimulus reconstruction technique, which is based on an optimal linear decoding 

algorithm (Rieke et al., 1996) (see Materials and Methods). The quality of the reconstruction 

thus assesses the information carried by vestibular afferent spike trains. Figure 2a shows the 

head velocity signal (gray line) as well as the reconstructed head velocity signal (dotted line) 

for an example regular afferent (same cell as Fig. 1a). As seen from a comparison between 

the original and reconstructed head velocities, this regular afferent followed variations in the 

head velocity with great accuracy. Figure 2b shows the reconstruction for an example 

irregular afferent (same cell as in Fig. 1b). This afferent was much less apt at reconstructing 

the detailed time course of the head velocity signal, as predicted from the power spectra of 

the resting discharges for the stimulus frequency range (0–20 Hz) (Fig. 1b,d). Whereas the 

reconstruction filter from the regular afferent was monophasic in shape and had a large 

amplitude (Fig. 2a, inset), the reconstruction filter from the irregular afferent was biphasic 

and had a lower amplitude (Fig. 2b, inset).

This indicates important differences between both afferent classes

We quantified the performance of regular and irregular afferents at reconstructing random 

head velocity stimuli by computing the coding fraction CF (i.e., the fraction of the stimulus 

that is correctly estimated) (see Materials and Methods). Regular afferents had significantly 

larger coding fractions than irregular afferents (CFreg = 0.39 ± 0.13; CFirreg = 0.24 ± 0.08; p 
= 0.0002, t test; df = 36). We also computed the mutual information rate MI (see Materials 

and Methods). Regular afferents transmitted on average two times more information per 

spike than irregular afferents (MIreg = 0.36 ± 0.25 bits/spike; MIirreg = 0.18 ± 0.08 bits/

spike; p = 0.0038, t test; df = 36).

Comparison with more traditional measures

We compared information theoretic quantities to measures of gain that have been 

traditionally used to characterize vestibular afferent responses. Figure 3a shows the mutual 

information rate density (i.e., the mutual information per spike per frequency; solid line) as 

well as the gain (dotted line) for an example regular afferent (same cell as in Fig. 1a). Note 

that our information rates were normalized to account for firing rate differences among 

different units (see Materials and Methods). This regular afferent displayed a gain that 

increased as a function of frequency. However, the information rate density curve was 

constant over the frequency range of 0–20 Hz. Figure 3b shows the same curves for an 

example irregular afferent (same cell as Fig. 1b) and, in contrast to Figure 3a, the 

information rate density curve had a similar shape to that of the gain curve.

These results were consistently seen across the population studied. Population-averaged gain 

curves for regular (solid) and irregular (dotted) afferents are shown in Figure 4a for random 

head rotations. For both classes, the gain increased with frequency and the average gains 

between 0.5–5 Hz (Glow) and 15–20 Hz (Ghigh) were significantly different for both regular 

( p < 10−3, pairwise t test; n = 21) and irregular (p < 10−3, pairwise t test; n = 15) afferents. 

Sadeghi et al. Page 8

J Neurosci. Author manuscript; available in PMC 2016 October 06.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



These results were not an artifact of using random head rotations because the gain values 

obtained from random head rotations showed trends similar to those obtained with more 

traditional sinusoidal head rotations (Fig. 4a, inset).

In contrast to gain measures, mutual information density measures obtained from regular 

and irregular afferents showed qualitative differences (Fig. 4b). Irregular afferents transmit 

more information about high frequencies whereas regular afferents are tuned both to low and 

high frequencies. We computed the average information rate densities between 0.5–5 Hz 

(Mlow) and 15–20 Hz (Mhigh) to assess coding within the low and high ends of the 

behaviorally relevant frequency range of 0–20 Hz. Although these were significantly 

different for irregular afferents (p < 10−3, pairwise t test; n = 15), no difference was seen for 

regular afferents ( p = 0.77, pairwise t test; n = 21). The difference between the gain and 

mutual information density curves for regular afferents most likely originates from the low 

variability displayed by their resting discharge (Fig. 1a,b), as suggested by previous 

theoretical studies (Chacron et al., 2004; Lindner et al., 2005).

Detection thresholds for regular and irregular afferents

The higher information rates obtained under broadband (0–20 Hz) stimulation for regular 

afferents suggest that they may be able to detect smaller amplitude head velocities than 

irregular afferents. We thus used the d′ measure from signal detection theory (Green and 

Swets, 1966) to discriminate between the firing rate distribution obtained under resting 

discharge and that obtained under sinusoidal head rotations at different frequencies (Fig. 5a). 

We assessed the relationship between head velocity and firing rate for each afferent type by 

plotting the time-dependent firing rate as a function of the head velocity signal (Fig. 5b). For 

a given head velocity, there was significantly less variability in the firing rate of regular 

afferents (Fig. 5b, dark) as compared with irregular afferents (Fig. 5b, gray). As a 

consequence, the d′ measure increased as a function of head velocity with a greater rate 

(Fig. 5c, compare black and gray) for regular afferents. We computed the discrimination 

threshold of each afferent as the minimum absolute head velocity for which d′ = 1 (Fig. 5c). 

For our two examples, the regular afferent had a detection threshold of 3.7°/s and the 

irregular afferent had a much higher detection threshold of 12.4°/s. Similar results were seen 

across the population studied because regular afferents consistently had lower detection 

thresholds (4.0 ± 1.0°/s) than irregular afferents (8.4 ± 0.7°/s) over behaviorally relevant 

frequencies ranging from 0.5 to 15 Hz (Fig. 5d) ( p < 0.001, t tests; n = 20).

Modeling regular and irregular afferents

To gain insight as to the possible differences between regular and irregular afferents that 

could explain their different coding properties, we built a simple phenomenological model of 

vestibular afferent activity. The model consists of two variables: the membrane potential and 

threshold. Action potentials are produced when the voltage reaches the threshold (see 

Materials and Methods). After each action potential, the voltage is reset while the threshold 

is incremented by a constant amount, which means that rapid firing can lead to cumulative 

summation in the threshold. We note that this same model has been used to successfully 

reproduce data from weakly electric fish electroreceptor afferents (Chacron et al., 2001) and 
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that the model structure is qualitatively similar to that of the model proposed previously by 

Smith and Goldberg (1986) to account for the resting discharges of vestibular afferents.

We found parameter sets for which the model accurately reproduced experimental results for 

each afferent class under resting conditions (i.e., no stimulus present) (see Materials and 

Methods). Results from the resting discharge of model regular and irregular afferents are 

shown in Figure 6. For the regular afferent model, the ISI histogram (Fig. 6a) and spike train 

power spectrum (Fig. 6b) closely resemble those obtained experimentally (compare Fig. 1a, 

b, respectively). The model displayed quasi-periodic firing (Fig. 6a, inset).

To model irregular vestibular afferents, we increased spike train variability by increasing the 

noise intensity in the model relative to the value for regular afferents. The ISI histogram 

(Fig. 6c) and spike train power spectrum (Fig. 6d) obtained with the irregular afferent model 

closely resembled those obtained experimentally (compare Fig. 1c, d, respectively). The 

model displayed significantly less periodic firing (Fig. 6c, inset). Overall, CV* increased as 

a function of increasing noise intensity (Fig. 6e). Thus, these modeling results suggest that 

internal noise is a major factor contributing to the differences between the resting discharges 

of regular and irregular afferents, which is consistent with previous results (Goldberg and 

Fernández, 1971a; Smith and Goldberg, 1986).

Results obtained for the model regular and irregular afferents under driven conditions (i.e., 

in the presence of a stimulus) are shown in Figure 7, a and b, respectively. The gain and 

mutual information density curves closely resembled those obtained experimentally 

(compare Fig. 3). To gain insight as to the role of internal noise on information transmission 

about sensory stimuli, we systematically varied the internal noise intensity σ. We varied this 

parameter in both the regular and irregular afferent models to eliminate the potential 

confounding effects of other differences such as the high-pass filter used for the irregular 

afferent model (see Materials and Methods). In particular, we verified the prediction made 

previously that increasing noise intensity should decrease the signal-to-noise ratio and, thus, 

information transmission as results showed that increasing the noise intensity σ decreased 

information transmission for low frequencies (Mlow) and high frequencies (Mhigh) in both 

models (Fig. 7c,d).

In contrast, measures of gain at low frequencies (Glow) and high frequencies (Ghigh) were 

insensitive to variations in σ for both models (Figs. 7c,d). This is expected because they are 

obtained by averaging out neural variability and should thus be relatively insensitive to the 

overall amount of noise in the model (Rieke et al., 1996; Chacron et al., 2005a). Mutual 

information is a direct function of the signal-to-noise ratio (Rieke et al., 1996) and is thus 

sensitive to the overall amount of noise in the model, as confirmed by our results. Our 

modeling results thus provide an explanation for the difference between gain and 

information theoretic measures seen in regular afferents as well as the lack of difference for 

irregular afferents.

We also computed detection thresholds for the regular and irregular afferent models. 

Increasing the noise intensity σ should give rise to increased detection thresholds because of 

increased variability and this is indeed the case for both models (Fig. 7e). Increasing σ from 
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values used to model regular afferents (0.00007) to values used to model irregular afferents 

(0.0015) gave rise to increases in detection threshold from values typically seen for regular 

afferents (2°/s) to values typically seen for irregular afferents (15°/s). As such, our modeling 

results can also explain the differences between regular and irregular afferents in terms of 

detection threshold.

Neural variability and the nature of the neural code

Together, the above results show that regular afferents transmit more information and have 

lower detection thresholds than irregular afferents. Although these results show that neural 

variability influences sensory coding in vestibular afferents, they do not explicitly establish 

the nature of the neural codes used by these afferents. Neural codes can be differentiated into 

two categories: rate neural codes in which all of the information is carried by the time-

dependent firing rate and temporal codes in which at least some of the information is carried 

by the actual timings of action potentials (Adrian and Zotterman, 1926; Theunissen and 

Miller, 1995; Stein et al., 2005). Because temporal codes rely on the precise timing of action 

potentials, the information transmitted should be significantly altered when the timing 

becomes less precise (Theunissen and Miller, 1995). For rate codes, however, the 

information transmitted should be independent of spike timing precision because action 

potential timing itself carries no information.

To test for the presence of temporal codes in the peripheral vestibular system, we added 

random spike-timing jitter to the spike trains obtained from both regular and irregular 

afferents (Fig. 8). We note that this approach has already been used previously to establish 

the presence of temporal codes in other systems (Jones et al., 2004). Because the jitter time 

scale used (2 ms) was much smaller than the noise stimulus time scale (50 ms), addition of 

jitter was not expected to significantly alter information encoded by the time-dependent 

firing rate. This was confirmed by plotting the gain curve, which was not significantly 

affected by addition of spike-timing jitter for the regular afferent (Fig. 8a). However, the 

mutual information density curve of the regular afferent was reduced by a significant amount 

at low frequencies (<2 Hz) whose inverse (>500 ms) was much greater than either the jitter 

or the stimulus time scales (Fig. 8b). This indicates that a significant fraction of the 

information transmitted by this regular afferent was carried in the precise timing of action 

potentials. The quality of the stimulus reconstruction, as quantified by the coding fraction, 

was reduced by the addition of spike-timing jitter by 34% (Fig. 8e, top), whereas the time-

dependent firing rate was unaffected (Fig. 8e, bottom), which further supports the presence 

of a temporal code for this regular afferent.

The situation was, however, different for the example irregular afferent. Although addition 

of spike-timing jitter had no effect on the gain curve (Fig. 8c), the effect on the mutual 

information density curve was small. Furthermore, the effect was negligible for low 

frequencies (<2 Hz) whose inverse (>500 ms) was much greater than either the jitter or 

stimulus time scales (Fig. 8d). Addition of spike-timing jitter also had no significant effect 

on the quality of stimulus reconstruction (Fig. 8f, top, compare red and blue curves) and the 

coding fraction was reduced by a mere 1.6% for this particular afferent. Finally, addition of 

spike-timing jitter had negligible effects on time dependent firing rate for the irregular 
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afferent (Fig. 8f, bottom, compare red and blue curves). These results strongly suggest that 

action potential timing carried little, if any, information for this irregular afferent and argue 

for the presence of a rate code.

Similar results were consistently observed across our populations of regular and irregular 

afferents. Addition of jitter had negligible effects on the gain at low frequencies as Glow 

varied only by 1.53 ± 5.65% for regular afferents and by 0.88 ± 4.94% for irregular 

afferents. The low-frequency information MIlow was, however, reduced on average by 21.55 

± 18.41% for regular afferents and only by 3.86 ± 5.30% for irregular afferents. Moreover, 

the quality of stimulus reconstruction as quantified by the coding fraction was reduced on 

average by 28.12 ± 16.37% for regular afferents and by 9.07 ± 3.06% for irregular afferents. 

Comparable effects were obtained using our model (supplemental Fig. 1, available at 

www.jneurosci.org as supplemental material). Thus, our experimental and modeling results 

strongly suggest that neural variability has a strong influence on the coding schemes used by 

the peripheral vestibular system: regular afferents use temporal codes whereas irregular 

afferents use rate codes.

Discussion

Summary of results

We studied vestibular afferent responses to sinusoidal and random head rotations using gain, 

information, and signal detection measures. Regular afferents had higher information rates 

and lower detection thresholds over a wide range of behaviorally relevant (0–20 Hz) 

frequencies as compared with irregular afferents. In contrast, measures of gain predicted 

better responses for irregular afferents over the same frequency range. A simple leaky 

integrate-and-fire model with a dynamic threshold could reproduce these results and 

suggested that neural variability in vestibular afferents is a function of intrinsic noise. By 

adding spike-timing jitter, we showed that neural variability has a significant effect on the 

nature of the neural code. We found that temporal codes are present in the peripheral 

vestibular system as information is carried in the spiking times of regular afferents only.

Neural variability and information transmission

We quantified the frequency responses of vestibular afferents to novel random as well as 

traditional sinusoidal head rotations within the behaviorally relevant frequency range 0–20 

Hz (Grossman et al., 1988; Armand and Minor, 2001; Huterer and Cullen, 2002). Our results 

with sinusoidal stimuli confirmed those of previous studies showing that, although irregular 

and regular afferents have comparable gains at frequencies of 0.5 Hz, irregular afferents 

consistently displayed higher gains with increasing frequency (Goldberg and Fernandez, 

1971b; Baird et al., 1988; Hullar and Minor, 1999; Goldberg, 2000; Haque et al., 2004; 

Hullar et al., 2005; Ramachandran and Lisberger, 2006; Sadeghi et al., 2006). Moreover, 

random stimuli gave rise to qualitatively similar gains, which is consistent with the 

traditional linear system’s approach applied to the vestibular system. Given that irregular 

afferents have gains that are greater or equal to those of regular afferents over the 

physiological frequency range of natural head movements, one might question the reasons 

for having regular vestibular afferents at all.
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In the present study, we applied, for the first time, information theoretic measures to 

characterize the responses of vestibular afferents to random head rotations over the 

behaviorally relevant frequency range of 0–20 Hz. Contrary to predictions from gain, regular 

afferents consistently transmitted more information than irregular afferents for low-

frequency head rotations (<5 Hz). This result may have important consequences for the 

functional roles of each afferent class. For example, the compensatory eye movements 

produced by the vestibulo-ocular reflex (VOR) (Huterer and Cullen, 2002) requires that 

vestibular afferents encode the time course of head rotations. Regular afferents make the 

primary contribution to the VOR for frequencies <4 Hz (Minor and Goldberg, 1991; Chen-

Huang et al., 1997). This is consistent with our results showing that regular afferents 

transmitted more information about low-frequency head rotations than irregular afferents.

In contrast, the mutual information density and gain curves for irregular afferents were both 

minimal at low frequencies and increased as a function of frequency. This suggests that 

irregular afferents play a greater role in vestibular processing of high-frequency head 

rotations, as suggested by previous studies (a,Goldberg and Fernandez, 1971b; Hullar et al., 

2005; Ramachandran and Lisberger, 2006; Sadeghi et al., 2006). Another proposed function 

for irregular afferents is to mediate behaviorally appropriate changes in the VOR such as 

those necessitated by changes in viewing distance (Chen-Huang et al., 1997). Additional 

studies are needed to understand the mechanisms by which vestibular nuclei (VN) neurons 

integrate inputs from both afferent classes to achieve this modulation.

Neural variability and signal detection

The higher information rates of regular afferents lead us to hypothesize that they would be 

better at detecting small perturbations. Consistent with our predictions, we found that 

regular afferents had detection thresholds that were approximately half of those of irregular 

afferents. Previous results show behavioral detection thresholds of ≥1 °/s for angular 

movements at low frequencies of 0.025–0.45 Hz (Mergner et al., 1993; Becker et al., 2000). 

Our detection thresholds for single afferents are larger, indicating that higher-order neurons 

must integrate inputs from vestibular afferent populations as well as other sensory modalities 

(Benson et al., 1989; Mergner et al., 1993; Fitzpatrick and McCloskey, 1994; Bacsi and 

Colebatch, 2005; Jurgens and Becker, 2006).

Morphological differences and cellular mechanisms underlying discharge variability

Together, our results suggest that the central vestibular system receives input from two 

different information channels. This is further supported by previous studies showing 

morphological correlates for vestibular afferent discharge variability. Afferents that 

terminate as calyx endings onto type I hair cells in the central zone of the crista (the sensory 

neuroepithelium of the canals) have irregular discharges. Regular afferents, in contrast, 

contact type II hair cells with bouton endings in the peripheral zone (Baird et al., 1988). 

Dimorphic afferents make both calyx endings onto type I hair cells and bouton endings onto 

type II hair cells. More recent work suggests that cellular mechanisms such as potassium 

channel densities contribute to the differences between regular and irregular afferents 

(Eatock et al., 2002; Eatock and Hurley, 2003; Limón et al., 2005; Hurley et al., 2006).
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Role of intrinsic noise, variability, and system nonlinearities in sensory coding

Although neurons are by definition nonlinear encoding devices because of their spiking 

mechanism, linear encoding models are often adequate for weak (i.e., low intensity) sensory 

stimuli (Roddey et al., 2000; Chacron et al., 2004). These models have been applied to 

vestibular afferents (Goldberg and Fernandez, 1971b; Baird et al., 1988; Hullar and Minor, 

1999; Haque et al., 2004; Hullar et al., 2005). Such models will underestimate the amount of 

information transmitted by regular afferents, because 30% of the information is carried in 

action potential timing. Thus, regular afferents can be modeled more efficiently by nonlinear 

processes such as the one proposed here. However, previous studies have shown that noise 

linearizes nonlinear systems (Chacron et al., 2005c; Lindner et al., 2005), which might 

explain why linear encoding models are generally adequate to describe responses of 

irregular afferents to sensory input.

Previous studies in other systems have shown that information encoded in a nonlinear 

manner can sometimes be decoded through linear algorithms (Rieke et al., 1996). Our 

results show that this is the case for regular afferents because they were shown to encode 

information through a temporal code yet displayed high coding fractions and mutual 

information rates. We note that linear decoding algorithms perform poorly when significant 

nonlinearities are present (Roddey et al., 2000). The low coding fractions and information 

rates observed for irregular afferents are most likely not attributable to static nonlinearities 

because our stimuli were within the linear encoding range (Hullar and Minor, 1999; Hullar 

et al., 2005; Sadeghi et al., 2006) where no phase-locking occurs (Ramachandran and 

Lisberger, 2006). Rather, our modeling results suggest that they are caused by high levels of 

intrinsic noise, which will also limit the performance of linear decoders (Roddey et al., 

2000).

Because regular afferents display low levels of intrinsic noise, it is possible that nonlinear 

decoding algorithms will outperform the optimal linear algorithms used here. In fact, VN 

neurons receiving direct synaptic input from vestibular afferents possess subthreshold 

voltage-gated ion currents such as persistent sodium (Johnston et al., 1994; Beraneck et al., 

2003; Straka et al., 2005) that lead to amplification of coincident synaptic input (Stuart and 

Sakmann, 1995; Crill, 1996; Berman and Maler, 1998; Andreasen and Lambert, 1999). It is 

thus possible that VN neural responses depend critically on the precise timing of synaptic 

input.

General strategies for sensory coding

A simple leaky integrate-and-fire model with a dynamic threshold could explain the 

differences between regular and irregular vestibular afferents. Our modeling results, like 

those of Smith and Goldberg (1986), suggest that intrinsic noise is a major contributor to the 

differences in the resting discharge variabilities of regular and irregular afferents. The 

increase in threshold after each action potential, which mimics activation of an afterhyper-

polarizing potassium, was larger for the regular afferent model than for the irregular afferent 

model, consistent with experimental findings (Schessel, 1982; Schessel et al., 1991). 

Furthermore, our model has been able to characterize the responses of electro-receptor 

afferents in weakly electric fish (Chacron et al., 2000, 2001). This is not unexpected as both 
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systems have presumably evolved from the lateral line (Romer and Parsons, 1977). However, 

although electroreceptor afferents have similar information tuning to regular vestibular 

afferents (Chacron et al., 2005a), temporal codes are not present in electroreceptor afferents 

(Kreiman et al., 2000; Chacron, 2006).

Temporal codes have also been demonstrated in the visual (Richmond et al., 1987; Meister, 

1996), auditory (Machens et al., 2001), tactile (Johansson and Birznieks, 2004; Jones et al., 

2004), and olfactory (Laurent and Davidowitz, 1994) systems. However, all but one of these 

studies focused on higher processing levels in the brain. One study (Johansson and 

Birznieks, 2004) has shown that information was contained in the timings of spike trains in 

the human tactile afferents, which contradicts the assumption that peripheral sensory 

neurons employ a rate code. Our results are the first to show that both spike timing and rate 

codes can coexist at the sensory periphery and may provide an explanation for the presence 

of a heterogeneous peripheral sensory neuron population.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Spontaneous activity of typical regular and irregular afferents. a, Interspike interval 

histogram from a typical regular afferent (CV* = 0.044). The inset shows an extracellular 

trace from that same afferent. b, Spike train power spectrum for the regular afferent. The 

power spectrum shows low power at low frequencies and displays peaks at the resting 

discharge and its harmonics. c, Interspike interval histogram from a typical irregular afferent 

(CV* = 0.35). The inset shows an extracellular trace from that same afferent. d, Spike train 

power spectrum for the irregular afferent. Note the higher power (i.e., higher variability) at 

low frequencies compared with the regular afferent.
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Figure 2. 
Stimulus reconstruction from example regular and irregular afferents in response to the 0–20 

Hz broadband stimulus. a, Gaussian random head velocity signal (gray) and reconstructed 

stimulus (black) for the regular afferent. The spike train and the time-dependent firing rate in 

response to the stimulus are also shown. The CF and MI were both high. The inset shows the 

filter waveform that was used to estimate the head velocity from the spike train. b, Gaussian 

random head velocity signal (gray) and reconstructed stimulus (black) for the regular 

afferent. The spike train and the time-dependent firing rate in response to the stimulus are 

also shown. The inset shows the filter waveform that was used to estimate the head velocity 

from the spike train. Both signals in a and b are 1 s samples from a 60 s recording.
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Figure 3. 
Comparison between mutual information measures and gain measures. a, Mutual 

information density (solid) and gain (dotted) as a function of frequency for the regular 

afferent. The gain curve increased as a function of frequency, whereas the mutual 

information density was constant. b, Mutual information density (solid line) and gain (dotted 

line) as a function of frequency for the irregular afferent. The gain and mutual information 

density curves had similar shapes and increased with frequency.
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Figure 4. 
Gain and mutual information density for populations of vestibular afferents. a, Population-

averaged gains as a function of frequency for regular (solid line) and irregular (dotted line) 

afferents obtained during random head rotations. The gray bands show 1 SEM. The inset 

shows population averaged gains as a function of frequency for sinusoidal head rotations 

with error bars showing 1 SEM. Irregular afferents had higher gains for higher frequencies. 

b, Population-averaged mutual information density curves for regular (solid line) and 

irregular (dotted line) afferents. These were relatively constant for regular afferents and 

increased with frequency for irregular afferents.
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Figure 5. 
Detection thresholds for regular and irregular afferents. a, Schematic representation of the 

firing-rate distribution during resting discharge (solid line) and during stimulation (dashed 

line). b, Plot of firing rate as a function of head velocity for an example regular (black) and 

irregular (gray) afferent during sinusoidal rotation of 0.5 Hz. Note the strong correlation 

between both quantities for the regular afferent. c, Values of d′ obtained for the example 

regular (black) and irregular (gray) afferents during a 0.5 Hz sinusoidal rotation. A d′ of 1 

was used for computing the detection threshold velocities for each afferent (dotted lines). d, 

Population-averaged detection threshold values for regular (black; n =10) and irregular 

(gray; n =10) units at different frequencies of sinusoidal head rotation. Error bars indicate 

SEM.
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Figure 6. 
Models of spontaneous activity in regular and irregular afferents. a, Interspike interval 

histogram obtained with the regular afferent model. The inset shows the voltage (gray) and 

threshold (black) variables of the model as a function of time. b, Spike train power spectrum 

for the regular afferent model. c, Interspike interval histogram obtained with the irregular 

afferent model. The inset shows the voltage (gray) and threshold (black) variables of the 

model as a function of time. d, Spike train power spectrum for the irregular afferent model. 

e, CV* as a function of noise intensity σ showing the transition between regularity and 

irregularity. Comparison with Figure 1 shows that the model can reproduce the salient 

features of the experimental data.
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Figure 7. 
The role of intrinsic noise on information processing and signal detection. a, Mutual 

information density (solid line) and gain curve (dotted line) obtained with the regular 

afferent model under driven conditions. The mutual information curve was constant over 

frequency, whereas the gain curve increased with frequency. b, Mutual information density 

(solid line) and gain curve (dotted line) obtained with the irregular afferent model under 

driven conditions. Both the mutual information density and the gain curve increased with 

frequency. c, Low-frequency (dotted black line) and high-frequency (solid black line) 

average mutual information densities as a function of noise intensity σfor the regular 

afferent model. Both quantities decreased as σ increased. In contrast, the low-frequency 

(dotted gray line) and high-frequency (solid gray line) averaged gains were unaffected by 

variations in σ. d, Low-frequency (dotted black line) and high-frequency (solid black line) 

average mutual information densities as a function of noise intensity σfor the irregular 

afferent model. Both quantities decreased as σ increased. In contrast, the low-frequency 

(dotted gray line) and high-frequency (solid gray line) averaged gains were unaffected by 

variations in σ. e, Detection threshold velocities of regular afferent model (black line) and 

irregular afferent model (gray line) as a function of noise intensity σ. The detection 

threshold increased with increasing noise intensity for both models.
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Figure 8. 
Effects of spike-timing jitter on gain and mutual information density of regular and irregular 

afferents. a, Gain curve with (red) and without (blue) addition of 2 ms jitter for the regular 

afferent. Addition of jitter had no significant effect on gain. b, Mutual information density 

curve obtained with (red) and without (blue) addition of 2 ms jitter for the regular afferent. 

Addition of jitter decreased the mutual information significantly. c, Gain curve with (red) 

and without (blue) addition of 2 ms jitter for the irregular afferent. Addition of jitter had no 

significant effect on gain. d, Mutual information density curve obtained with (red) and 

Sadeghi et al. Page 27

J Neurosci. Author manuscript; available in PMC 2016 October 06.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



without (blue) addition of 2 ms jitter for the irregular afferent. Addition of jitter had a much 

smaller effect on the information density compared with the regular afferent. e, Top, Original 

head velocity (black) and reconstructed head velocities with (red) and without (blue) 2 ms 

spike-timing jitter. Middle, Time-dependent firing rates obtained with (red) and without 

(blue) addition of 2 ms spike-timing jitter for the regular afferent. Bottom, Jittered (red dots) 

and unjittered (blue lines) spike times. f, Top, Original head velocity (black) and 

reconstructed head velocities with (red) and without (blue) 2 ms spike-timing jitter. Middle, 

Time-dependent firing rates obtained with (red) and without (blue) addition of 2 ms spike-

timing jitter for the irregular afferent. Bottom, Jittered (red dots) and unjittered (blue lines) 

spike times. The light red bands represent 1 SEM obtained from averaging over repeated 

realizations of the jitter (see Materials and Methods).
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Table 1

Parameter values used for the simulations

Regular Irregular

Ibias 0.0515 0.049

τv (ms) 1 1

τw (ms) 9.5 9.5

w0 0.05 0.05

Δw 0.003 0.001

Trefrac (ms) 1 1

σ 0.00007 0.0015

GH (ms/deg) 0/0.0156 0/0.0315

GA (ms/deg) 0/0 0/0.0315

Note that GH and GA values are given for resting/driven conditions.

J Neurosci. Author manuscript; available in PMC 2016 October 06.


	Abstract
	Introduction
	Materials and Methods
	Surgical preparations
	Data acquisition
	Experimental design
	Analysis of background activity
	Afferent tuning
	Detection threshold calculation
	Stimulus reconstruction
	Modeling

	Results
	Spontaneous activity in regular and irregular afferents
	Information transmission by vestibular afferent spike trains
	This indicates important differences between both afferent classes
	Comparison with more traditional measures
	Detection thresholds for regular and irregular afferents
	Modeling regular and irregular afferents
	Neural variability and the nature of the neural code

	Discussion
	Summary of results
	Neural variability and information transmission
	Neural variability and signal detection
	Morphological differences and cellular mechanisms underlying discharge variability
	Role of intrinsic noise, variability, and system nonlinearities in sensory coding
	General strategies for sensory coding

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Table 1

