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Abstract

Subclonal reconstruction from bulk tumor DNA sequencing has become a pillar of cancer 

evolution studies, providing insight into the clonality and relative ordering of mutations and 

mutational processes. We provide an outline of the complex computational approaches used for 

subclonal reconstruction from single and multiple tumor samples. We identify the underlying 

assumptions and uncertainties in each step, and suggest best practices for analysis and quality 

assessment. This guide provides a pragmatic resource for the growing user community of 

subclonal reconstruction methods.

Introduction

Cancers evolve from a single cell through the sequential acquisition of somatic mutations, 

some of which enable the hallmark traits of cancer1,2. The descendants of this cell, which 

share its genotype, form the initial cancer clone. Selection, mutation, drift and spatial 

separation of clonal populations may then give rise to related but genetically distinguishable 

descendant subpopulations within a single tumor. These subclones can be evaluated from 

DNA sequencing studies, which have started to quantify key aspects of tumor development, 

such as metastatic seeding patterns3,4 and mutations present in all tumor cells (i.e. clonal 

mutations) that may be targets for treatment and early intervention5,6. Tumor heterogeneity 

has important clinical consequences: tumors with complex subclonal structures can be more 

aggressive7,8 and are more likely to develop drug resistance and metastases9.

The process of subclonal reconstruction involves three key aspects. First, it characterizes the 

major populations of cells in a given tumor by identifying the somatic mutations present in 

each one. Second, it quantifies the proportion of cells from each clone in the tumor (its 

cellular prevalence; Lexicon). Third, it reconstructs the phylogenetic path by which the 

different clones evolved from their common ancestor, and ultimately from a normal host 

cell. Subclonal reconstruction can be performed from DNA sequencing data of a single 

tumor sample, or from multiple samples collected over time and/or space. The DNA 

sequencing data itself can be generated via a variety of sequencing strategies10. Thus, the 

accuracy and resolution of each feature of the subclonal reconstruction is shaped by the 

experimental design and the mutational characteristics of the specific tumor being 

reconstructed.

We focus here on methods for subclonal reconstruction using bulk DNA sequencing data, 

which remains the most widely-used approach, although single-cell techniques continue to 

rapidly improve in quality and cost. We first outline the fundamental principles of subclonal 

reconstruction from a single heterogeneous tumor sample, then extend them to subclonal 

reconstruction from multiple samples. We next review the key approaches used for subclonal 

reconstruction, along with their limitations. Finally, we close with some perspectives on how 
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the field may move and summarize our recommendations for subclonal reconstruction in 

practice (Table 1).

Overview of subclonal reconstruction

Mutations belonging to the initiating cell of the most recent clonal sweep are expected to 

occur in every cell in the tumor. We refer to these as clonal, and distinguish them from 

subclonal mutations which arose in descendant subpopulations. We assume familiarity with 

some key technical terms in cancer genomics (see Lexicon).

Figure 1 outlines the standard workflow for single sample subclonal reconstruction. Most 

subclonal reconstruction methods consider single nucleotide variants (SNVs), small indels, 

and larger copy number alterations (CNAs; Figure 1a). They use the variant allele frequency 
(VAF) of SNVs to infer the proportion of sampled cells bearing the SNV (cellular 

prevalence; CP, see Lexicon). They do so by using the read structure (Figure 1b) to first 

reconstruct copy number state, learning regions of clonal and subclonal copy number change 

(Figures 1b-c). Algorithms then group SNVs with similar cellular prevalences, assuming that 

these occurred within a single distinct clone. Knowing the proportion of the sampled cells 

that are cancerous (the sample’s purity), SNVs can be clustered by the proportion of tumor 

cells bearing the mutation, called the cancer cell fraction (CCF; Figure 1d). Some algorithms 

may then attempt to infer the evolutionary relationships between clones (their phylogeny) 

based on cluster CCF and mutation co-occurrence, although this is usually only advisable 

for multi-sample data.

Inferring CP or CCF from VAFs requires estimating allele-specific copy number as CNAs 

drastically impact VAF interpretation (Figure 1c-d; Lexicon). CNAs can be inferred from 

sequencing data by comparing local read depth in tumor and reference samples (quantified 

as the log2 of the tumor and normal depth ratio; logR) as well as the allele counts of 

heterozygous single nucleotide polymorphisms (SNPs), altering the allelic ratio in the tumor 

relative to the normal sample (quantified as the B-allele frequency; BAF) (Figure 1c). Using 

these metrics, CNA reconstruction algorithms estimate the purity and ploidy of the sample, 

identify genomic segments with copy number changes, infer allele-specific copy number, 
and attempt to distinguish between clonal and subclonal CNAs.

Each of these steps involves uncertainty and can introduce errors into subclonal 

reconstruction. Indeed, many other sources of error exist upstream of subclonal 

reconstruction (e.g. sequencing, alignment, variant detection). For example, low tumor 

purity, errors in sequence alignment, and low sequence coverage in specific regions of either 

the tumor or matched reference normal genomes can all lead to germline variants being 

misclassified as somatic11,12 (Figure 1b). These errors can propagate uncertainty into the 

subclonal reconstruction results.

Study design and data collection for subclonal reconstruction

The resolution and accuracy of subclonal reconstruction are strongly influenced by how the 

input data are sampled. Single-sample sequencing, even at high depth, can underestimate the 

number of subclones, and subclonal populations or mutations can appear clonal (Figure 2). 
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This is called the illusion of clonality (Lexicon)9,13. Multi-region sequencing can improve 

separation of subclones based on CCF differences across samples, and thereby facilitate 

phylogenetic inference13,14 (Figure 2a). Increasing sequencing depth improves the precision 

of CCF estimates and ability to distinguish subclones with similar CCFs. Given these trade-

offs, in general, sequencing more samples will improve subclonal reconstruction more than 

higher-depth sequencing, given that depth is sufficient to accurately identify variants and 

resolve peaks in CCF space.

However, optimizing subclonal reconstruction is not typically the only or primary goal of a 

study. As a result, study design should match the biological questions being investigated 

given technical and financial limitations. For example, if the patient number is large (e.g. a 

clinical trial) single sample analysis may be appropriate to maximize statistical power for 

clinical inference. Single-sample studies can put lower bounds on subclonal heterogeneity, 

as a mutation found subclonally in a single sample is sufficient to be deemed subclonal in 

the whole tumor. Thus, mutations subclonal in single sample studies are potentially poor 

clinical targets (the sufficiency of subclonality, see Lexicon). Single sample subclonal 

reconstruction in large cohorts can be useful for showing coarse trends in mutation timing, 

as clonality errors due to spatial heterogeneity are likely random, but detailed phylogenetic 

inference will likely be imprecise in these studies8,15,16.

In other studies, evaluating clonal evolution over time may be critical, for example in 

understanding metastatic processes. Samples taken at different times (e.g. at diagnosis and 

relapse) permit inference of temporal features of tumor evolution. Samples taken from 

different spatial points (e.g. different regions of the primary site or metastases) permit 

inference on lineage frequency changes that can hint at subclone fitness17. For example, an 

intelligent design to look at evolution across many metastatic sites captures variants through 

high-depth sequencing and follows them spatially through shallow-coverage sequencing18. 

Because of the illusion of clonality, multi-sample designs are superior when searching for 

clonal targets, e.g. clonal neo-antigens19. In general, sequencing even one additional sample 

per tumor can help resolve additional subclones (Figure 2a) and clarify phylogenetic 

relationships (Figure 2b), and additional samples would further improve accuracy20,21. 

However, in practice there are many logistical and physical limitations to multi-sample 

sequencing: tumor size, tissue quality, availability of material for research, cost, feasibility 

of tissue collection in the given clinical setting, and the attainable sequencing depth for each 

sample. As a result, while multi-sample subclonal reconstruction may be technologically 

superior, clinical and financial considerations can strongly constrain the possible sample 

number and space combinations.

Optimizing sequencing depth

When balancing sequencing depth and sample number, an important consideration is that 

overall sequencing coverage, as well as the specific sequencing technology used, which 

influences local read depth distribution, determines the sensitivity and specificity of clonal 

and subclonal SNV detection22,23. Both tumor ploidy and purity impact the depth of 

sequencing coverage needed to detect low-CCF SNVs22,23.
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One useful metric for evaluating sequencing depth for any given tumor is the number of 

reads per tumor chromosomal copy (NRPCC, Box 2). As NRPCC increases, the signal of 

true CCF peaks becomes clearer relative to read-sampling noise, and clones are easier to 

distinguish. In a large single-sample pan-cancer study, most samples with NRPCC>10 

exhibited at least one subclone15. An NRPCC of 10 represents a read depth of ~40x in a 

diploid 50% purity tumor. Some studies have successfully used large numbers of samples 

sequenced to moderate depth (30-50x), but generally deeper sequencing improves subclonal 

reconstruction accuracy and resolution22,24. Sequencing depth of the reference normal 

sample is also important to limit false-positive identification of germline variants as somatic 

ones. This is particularly true in studies sequencing multiple samples for each tumor and 

using a single reference sample as a control for all, as these false positives can enlarge the 

apparent number of clonal mutations. Current copy-number detection algorithms appear to 

be more robust to lower sequencing depths than current SNV detection methods22,25. 

Indeed, some CNA methods are already amenable to single-cell resolution26, although few 

methods reconstruct phylogenies from CNAs27–29.

Sequencing breadth

While in general, higher-depth sequencing will improve subclonal reconstruction, it is also 

important to consider the portion of the genome directly measured – sequencing breadth. 

Subclonal reconstruction can be applied to whole-genome sequencing (WGS) or to targeted 

sequencing of genes, either the whole exome (WES)30, or subsets of selected genes31. The 

major differences between these approaches are the number of SNVs/indels detected, local 

depth and variability of coverage, and resolution and accuracy of CNA reconstruction. 

Moderate depth (30-50x) WGS supports high-quality CNA calls and allows estimation of 

copy number CCFs for the characterization of subclonal CNAs. WES detects ~50-fold fewer 

SNVs and indels, and decreases CNA reconstruction resolution and quality, thus hindering 

subclonal lineage detection25,32. Conversely, higher depth of sequencing usually allows for 

better accuracy in CCF estimates, and WES may yield higher resolution subclonal 

reconstruction than WGS in samples with many SNVs and indels and few CNAs, 

particularly if it permits use of multi-sample data by lowering costs per sample9,33. Targeted 

sequencing using smaller gene panels rarely supports meaningful subclonal reconstruction, 

unless an initial round of WGS or WES is performed to define SNVs representative of 

individual subpopulations (cells with nearly identical genotypes)34. If there are few genes in 

the panel, allele-specific CNA reconstruction will be unreliable unless additional data (e.g. 
from a SNP chip) is available.

We recommend only attempting subclonal reconstruction with fresh frozen tissue. Standard 

WGS with formalin fixed paraffin embedded (FFPE) samples has variable DNA quality35, 

and FFPE derived artefacts can introduce CNA errors36. If FFPE samples must be used, 

protocols that optimize library preparation and sequencing for accurate SNV and CNA 

detection from FFPE samples are an active research area37, but downstream subclonal 

reconstruction results will need to be interpreted with significant caution.
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The subclonal reconstruction workflow

CNA reconstructions

Overview—The majority of CNA reconstructions use germline single nucleotide 

polymorphisms (SNPs; Figure 1c), and evaluate their read depth and allele frequencies. For 

each SNP, copy number state is inferred from the changes in the relative depth, i.e. the logR, 

and an imbalance in the number of maternal and paternal alleles, i.e. the BAF, in the 

corresponding region. Larger allelic imbalances show up as horizontal bands when the SNP 

BAFs are plotted against genomic position. More subtle differences (typically subclonal 

CNAs) can be detected by phasing SNPs within a haplotype block using a large phased 

genome panel38. CNA reconstruction algorithms use the presence or absence of BAF and 

logR shifts to segment the genome into regions with constant copy number states. The logR 

is typically noisier than BAF because it is influenced by local effects such as GC content and 

replication timing, whereas BAF is relatively unaffected (Figure 3a). Many algorithms 

correct logR for these types of covariates39.

Copy-number calling algorithms make the relatively strong biological assumption that most 

copy number events should be clonal, i.e. allow to interpret the logR and BAF as being 

generated by integer copy number values (Figure 3b). From the literature, experimental 

ploidy validation has suggested that this assumption was satisfied in most cases (e.g. breast 

cancers, ovarian cancers, cancer cell lines40) despite most reconstructions bearing at least 

one subclonal CNA16. Concordantly, emerging DNA single-cell sequencing datasets show 

that CNA-defined subclones present at a single time point only differ by a few genomic 

segments26, showing that this assumption is reasonable in many cases.

Segmentation is a critical step in CNA reconstruction because it defines the boundaries of 

each region of constant copy number state. Segmentation can be done by identifying 

breakpoints where there is a change in the average read depth and/or BAF. Differences in 

segmentation lead to many reconstruction differences between methods41. Some methods 

iteratively join segments of fixed size42; others use changepoint detection algorithms, 

commonly including circular binary segmentation43, piecewise constant fitting44 or Hidden 

Markov Models28,38,45,46. Structural variant breakpoints can also help inform 

segmentation15,47,48.

Once segments are defined, the average major and minor allele copy number for each 

segment in the cancer’s genome can be estimated from its logR and BAF, and purity and 

ploidy are estimated from clonal CNAs40 (Figure 3c). CNA segments with integer or near 

integer values are assumed to be clonal, i.e. all cancer cells in a sample have the same copy 

number state in that region. Average copy number values that significantly differ from 

integers (fractional values) typically indicate subclonal CNAs38.

CNA reconstruction then requires interpreting fractional average copy numbers as a mixture 

of whole number states and ascertaining the proportion of cells in each one. Solutions to this 

problem are intrinsically ambiguous: for any segment, it is always possible to posit a larger 

copy number and smaller CP that explain the BAF and logR equivalently well (Figure 3c). 

Purity and ploidy estimates based on CNA reconstructions are ambiguous for the same 

Tarabichi et al. Page 6

Nat Methods. Author manuscript; available in PMC 2021 August 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



reason. CNA detection algorithms usually assess reconstructions based on multiple purity 

and ploidy estimates. Nevertheless, the final estimates may be incorrect and users should 

carefully evaluate solutions (Figure 3d).

For clonal CNAs, ambiguity is partially resolved by requiring that the CP of all clonal CNAs 

must be the same (i.e. equal to the purity). However, in moderate sequencing depth 

experiments, estimates of exact copy number remain uncertain, as many solutions may be 

equally likely at any given purity. This can be particularly problematic for estimating copy 

number in highly amplified regions. There are three main ways to resolve this ambiguity for 

subclonal CNAs. Genome-wide methods attempt to group subclonal CNAs into 

subpopulations with the same CP28,48. They can correct for errors in individual segments, 

but are vulnerable to large-scale errors if they group subclonal CNAs into lineages 

incorrectly. Event-based methods, such as Battenberg38, apply a set of parsimony rules 

separately to each copy number segment. They make reconstruction errors in segments 

where their heuristic is wrong, but those errors are restricted to individual segments. Neither 

of these approaches can robustly infer more than two subclonal copy number states within a 

single region41, since they depend on exactly two informative inputs (BAF and logR). The 

third approach assigns subclonal CNAs to subclonal lineages with defined CP, e.g. via SNV 

clustering46,49. None of these methods fully resolve the subclonal copy number ambiguity, 

so users should consider only using SNVs in regions of normal copy number or clonal copy 

number change for subclonal reconstruction.

Troubleshooting CNA Reconstructions—Detecting CNA breakpoints can be 

challenging, especially in tumors with low effective depth (i.e. low NRPCC). Missing a 

CNA breakpoint can lead to a series of segments with different clonal copy number states 

being called as a single segment, which may be miscalled as normal diploid or subclonal. 

Noise in sequencing data (e.g. from library preparation artifacts) can lead to over-

segmentation. Miscalled copy number states can also produce spurious clusters in the final 

subclonal reconstruction by distorting local CCF estimates. Methods to avoid overfitting 

include prioritizing BAF over logR38, correcting for GC content38,40 and replication timing 

effects50, using structural variants as breakpoints15, and automatic adjustment of 

segmentation parameters38,40.

An intrinsic ambiguity in CNA reconstruction arises from whole-genome duplication 
(WGD). Any given CNA reconstruction is equivalent to another with each copy number 

doubled and purity lowered (Figure 3c,d). To resolve this, CNA reconstruction methods 

often return multiple solutions or select tetraploid solutions only when there is positive 

evidence of them, e.g. from odd (1, 3, 5, …) values for major or minor allele copy number 

states. Because some WGD uncertainty usually persists, we recommend using CNA 

reconstruction methods that allow the user to set the ploidy and re-derive copy numbers and 

purity to facilitate user-driven assessment of different CNA reconstructions.

Several features in the data can help diagnose purity/ploidy errors41. If the majority of CNAs 

appear subclonal or known early drivers in the tumor type being studied appear subclonal, 

the correct purity may be lower than inferred. Missed clonal WGD can sometimes be 

diagnosed by the presence of subclones with ~50% CCF which contain clonal SNVs 
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acquired after WGD (mutations occurring on one of the four copies), while those occurring 

at 100% CCF really represent mutations that occur before WGD and are hence present on 

two of the four copies. Observing a 50% CCF subclone in multiple samples would further 

support WGD, as subclones are unlikely to occur at the same CCF across samples otherwise. 

In the case of multi-sample reconstruction, purity can be estimated from CNA-adjusted 

VAFs of SNVs present in all regions9. Comparing purity estimates from CNA-only, SNV-

only and SNV+CNA subclonal reconstructions can further guide purity inference and is 

especially useful in tumors with few clonal CNAs (e.g. papillary thyroid carcinomas and 

some leukemias)15.

Experimental purity and ploidy estimates can also support CNA fitting. CNA-detection 

methods can fit copy number solutions informed by experimental ploidy estimates, as in 
silico estimates of tumor ploidy have been repeatedly shown to match experimental 

values40,51,52. Experimental purity and ploidy estimates can be obtained through FISH, 

image cytometry, FACS, or single-cell sequencing53.

SNV clustering

Overview—Before SNVs can be clustered, their measured variant allele frequencies must 

be transformed into cellular frequencies (CCF or CP) using purity and copy number. It is 

essential to adjust for CNAs when converting VAFs to cellular frequencies, or to only cluster 

SNVs in normal diploid regions, as copy number gains and losses will alter the fraction of 

reads bearing a SNV. Neglecting to adjust for these effects can lead to incorrect clustering 

(Figure 1b,d)54. Cellular prevalence estimates for SNVs in normal diploid regions can be 

clustered first to identify the major subclonal lineages. In normal diploid regions, CP is 

precisely twice VAF, so clustering by VAF and implied CPs is equivalent. The cluster with 

the highest CP can be deemed clonal, and the remaining clusters can be assigned CPs and 

associated with a subclonal lineage. Errors can arise from incorrect cluster number 

estimation or SNV-lineage mis-assignment, potentially shifting the clonal peak, from which 

purity can be estimated. In general, the clustering principles outlined in this section apply 

equivalently to indels.

The assumed noise distribution in VAF estimates will influence subclonal reconstruction 

accuracy. Using an inappropriate noise model can lead to over- or under-estimating cluster 

number. Binomial noise models can capture the influence of the read depth, copy number 

state and CP on the accuracy of the assessed SNV VAF, while in general fixed variance 

Gaussian noise models cannot. Over-dispersed binomial models (e.g. beta-binomial31 or 

negative binomial, which are often used for bisulfite, exome or single-cell RNA sequencing 

data) assume greater variance than standard binomial models, but it is unclear whether they 

are better-suited for subclonal reconstruction from DNA data. Like Binomial models, Beta 

models are also suited for subclonal reconstruction, as they model VAF directly24,55.

Care should be taken when translating SNV VAFs to CCF space prior to clustering, as this 

requires estimating the multiplicity of each SNV, i.e. the number of tumor DNA copies 

harboring it. SNV multiplicity estimates depend on the accuracy of copy number calls, as 

before assignment, it is necessary to enumerate the space of possible multiplicities. This 

requires allele-specific copy number estimates, as total copy number is insufficient to set 
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boundaries of possible multiplicities. For example, in the case of copy-neutral loss-of-

heterozygosity, the total copy number is two, and individual SNVs can have a multiplicity of 

one (for that mutations that occur after the duplication) or two (for those mutations that 

happen before it). By contrast, in balanced diploid regions, the total copy number is again 

two, but each individual SNV must have a multiplicity of one.

If the CCF values of clonal SNVs are computed assuming a multiplicity of one, then the 

resulting estimated CCFs will be approximately equal to the (real) multiplicity of the SNV 

in the clonal lineage (see Supplementary Information). However, subclonal changes in SNV 

multiplicity equate to subclonal copy number changes, and because subclonal copy number 

states are ambiguous, the affected SNVs may generate spurious clusters. Nonetheless, CCF 

clustering can sometimes detect, but not correct, errors in CNA reconstruction. For example, 

large SNV clusters with CCFs > 1 (super-clonal clusters, see Lexicon) are theoretically 

impossible for somatic mutations. When they are detected in subclonal reconstruction, this 

can be diagnostic of failure in detecting the clonal lineage during CNA reconstruction, or of 

large segments with wrong copy number calls. In the former case, purity will be incorrect 

(i.e. underestimated), and the clonal peak will be shifted upwards in CCF space. In the latter 

case, SNV multiplicity and thus CCF will be incorrect. These errors often occur in tumors 

without CNAs or without any clonal CNAs, or as a result of contamination by germline 

variants (discussed below). In these cases, the CNA-based purity will be underestimated, 

leading to CCFs > 1 for SNVs in these super-clonal lineages.

To address these concerns, a number of methods use generative models of VAFs that 

incorporate CNA reconstructions. These methods assess the impact of clonal and subclonal 

CNAs on SNV multiplicity (and their associated changes in VAF) using maximum 

likelihood25,31,38,46,56. Of these, PhyloWGS25 and LICHEe56 attempt full phylogenetic 

reconstructions. CloneHD46 does not explicitly enforce consistent tree structure, PyClone31 

assumes a single CNA change per segment without reconstructing a clonal tree, and 

DPClust38 assigns SNV multiplicities to the most likely value, given the CNA 

reconstruction.

Assumptions underlying SNV clustering—Methods based on SNV clustering rely on 

several assumptions about cancer evolution. The first assumption is that the majority of 

SNVs with detectable VAFs are associated with a small number of subclonal lineages (weak 
parsimony)25. Given the large number of cells in a bulk tumor and the positive mutation rate 

per cell division, the existence of a very large number of low-prevalence SNVs is 

uncontroversial. Their low VAF typically precludes detection by typical somatic mutation 

calling algorithms, as detectable subclonal lineages are primarily established through 

selective sweeps and early drift2,57. This assumption is somewhat controversial however, as 

the lowest-VAF cluster may contain a mixture of SNVs coming from numerous parallel 

lineages growing neutrally58,59. Therefore, the lowest VAF cluster might be a mix of 

subclones, and efforts are ongoing to characterize this to capture non-tail subclones24.

A second assumption implicitly made by many clustering-based algorithms is that a given 

genomic position is subject to an SNV only once during the development of an individual 

tumor, and never reverts to the germline state (the infinite sites assumption, Lexicon). As a 
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result, each SNV can be uniquely assigned to a specific subclonal lineage31,56,60. It is known 

that the infinite sites assumption can be violated, as exemplified by the existence of parallel 

acquisition of the same driver SNVs and by tri-allelic loci. As a result, some methods do not 

make this assumption61. Infinite sites violations occur rarely enough that they are not 

expected to impact clustering based on hundreds to thousands of SNVs. As a result, this 

approximation remains widely used for subclonal reconstruction through bulk whole-

genome and whole-exome sequencing, and it may even be reasonable for targeted 

sequencing studies of driver genes.

Subclonal losses of chromosomal segments may also lead to somatic variants disappearing 

in these lineages and thereby variants may appear to revert to the germline state, leading to 

apparent violations of the infinite sites assumption. This situation is relatively frequent, 

particularly in multi-sample reconstruction, and may lead to the appearance of spurious 

clusters. Apart from disregarding mutations in regions showing subclonal copy number 

events, another elegant way to account for this in subclonal reconstruction is by modelling 

mutations through a Dollo process, which assumes mutations can occur only once, but can 

subsequently disappear again (only once)14.

Many methods also make implicit “hidden” assumptions about the number of clusters or 

their density. For example many clustering methods rely on some form of Dirichlet Process 

clustering14,25,31,38,56,62. This technique has an important hyperparameter called the 

concentration parameter, which can be inferred from the data or be constrained with strong 

priors. We recommend testing different values for these parameters to quantify their impact 

on the subclonal reconstruction for any given tumor (see Supplementary Information).

Troubleshooting SNV clustering—When two subclonal lineages show similar CPs, 

their VAF distributions may overlap. As a result, clustering algorithms will merge these 

lineages without further information (e.g. using additional samples). Nonetheless, it is 

possible to be highly confident about the presence and CP of a lineage while being uncertain 

about the assignment of many of its SNVs.

Variant calling accuracy will impact clustering accuracy22,23. Germline SNPs wrongly called 

as somatic SNVs have high VAFs (~0.5) (Figure 1b,d), and may be clustered into their own 

high CCF lineage (>100% CCF). These clusters tend to have few SNVs, which have a 

specific mutational signature (primarily C>T and T>C), and contain few or no CNAs. 

Filtering against a database of germline variants (e.g. dbSNP) and higher-depth normal 

sample sequencing can reduce the risk of germline contamination, although filtering against 

a database like dbSNP can lead to increased numbers of false-negative somatic SNVs, 

particularly as these databases grow. False-positive SNVs due to sequencing errors have low 

VAFs and mostly will be assigned to a low-frequency lineage, which can help identify them. 

They may also have a distinct mutational signature63. False-negatives in somatic SNV 

calling can lead to overestimating the CPs of low frequency subclones because only the 

higher part of the VAF distribution is observed. CPs can be adjusted for this bias15, and 

using a highly sensitive SNV detection algorithm can also help mitigate this effect.
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Algorithms that assume a diploid copy neutral state can struggle with mutations on the male 

sex chromosomes. An easy fix is to exclude SNVs on these chromosomes. In theory, these 

SNVs could be reassigned post-hoc with appropriate treatment, although many CNA-

reconstruction methods do not report calls on chromosome Y. Tetraploid tumors will likely 

be annotated as diploid if they have few other CNAs, leading to spurious clusters (see the 

trouble-shooting section on CNA reconstructions, above). Artefact clusters also sometimes 

result from incorrect copy number calls, which can lead to incorrect adjustment of allele 

frequencies to CPs. Such clusters are easily identified, as all the associated SNVs are located 

in a single chromosomal region.

Phylogenetic reconstruction

Given the weak parsimony assumption, SNV clusters represent groups of mutations that 

occurred in one (or a few) subclones at one point in the tumor’s evolution, inherited by all of 

their descendants, i.e. members of their subclonal lineages. These clusters represent the 

ancestors of the subpopulations present in the tumor at the time of sample acquisition. Thus, 

SNVs clustered in CCF space are assigned to the same lineage. Assigning these mutations to 

existing subpopulations in the sample requires additional information, namely the ancestor 

relationships between these lineages or the tumor phylogeny, often represented as a clone 

tree (Figure 1d). Tree inference should generally be restricted to multi-sample studies: while 

subclones can be identified in single samples, they are only weakly informative of the 

underlying tree (Figure 2b).

The weak parsimony and infinite sites assumptions restrict the phylogenies consistent with a 

set of inferred CPs. Assuming SNVs do not revert to their germline state implies that 

descendent subpopulations inherit all the mutations in their ancestors. The CP of an 

ancestral lineage must be at least as large as the sum of the CPs of its direct descendants38 

(this concept is known as the pigeonhole principle, see Lexicon). Consider a common 

ancestor A with two descendants (lineages B & C), whose relationship is unknown. If CP(B) 

> CP(C), and CP(B) + CP(C) > CP(A), then B must be an ancestor of C 62. Tumor 

phylogenetic methods employ some version of these rules either explicitly or implicitly62.

When there are multiple subclonal lineages, and few samples, multiple phylogenies are 

usually consistent with a given set of lineage CPs. Because any set of CPs from a single 

sample are often consistent with a linear phylogeny, it is typically difficult to unambiguously 

call a branching phylogeny from single sample CPs. Branching can be inferred in some 

cases when the CP of an SNV cluster is incompatible with being either an ancestor or a 

descendant of a CNA, which can sometimes be detected automatically in a single 

sample14,25. Branching can also be detected in a single sample when nearby or overlapping 

SNVs on the same chromosome copy are identified as mutually exclusive through read 

phasing41 (Figure 1b). However, with short-read data, it is often difficult to phase enough 

somatic SNVs for a high-quality reconstruction, though some methods automatically apply 

this approach64. As some phylogenetic ambiguity usually persists, and choice of a single 

phylogeny is often arbitrary or depends on weakly validated assumptions60,65, phylogenetic 

methods should report uncertainty in the reported phylogeny.
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In single sample studies15, phasing of SNVs can inform branching subclones and the 

pigeonhole principle helps identify linear subclones, although most phylogenies remain 

unresolved. Multiple samples can greatly clarify phylogenetic relationships amongst 

subclones (Figure 2b). For example, if CP(B) > CP(C) in one sample but CP(C) > CP(B) in 

another sample, then these subclones must be cousins or siblings. Thus, though branching is 

usually impossible to establish using a single sample, it is often possible with just two 

samples and becomes increasingly easy to identify with additional samples. Subclonal 

reconstruction methods generalize trivially to clustering SNVs in multiple CCF dimensions 

and the same principles and assumptions apply. Notably, chromosomal losses leading to 

variants being lost in subclonal lineages and thereby apparent infinite sites violations are 

quite common and, if overlooked, can lead to errors in both multi- and single sample 

phylogeny reconstruction.

Evolution of the Field

DNA sequencing technologies continue to improve, with major ongoing advances in long-

read and single-cell sequencing. These technologies will be useful for reducing subclonal 

reconstruction uncertainty and improving accuracy. Long-read sequencing allows more 

accurate breakpoint detection, copy number state characterization and longer-range phasing 

relative to short read sequencing66–68. These will all improve CNA reconstruction, reducing 

downstream errors, while long-range phasing will facilitate phylogeny inference through 

mutual exclusivity. Single-cell WGS will become increasingly useful for phylogenetic 

inference as its CNA and SNV detection accuracy improves69,70. Both these technologies 

can be combined with short-read sequencing to reduce costs and leverage their strengths but 

retain the resolution of high-depth sequencing71,72. Subclonal reconstruction algorithms will 

need to accommodate the data, biases, and errors these and other new technologies generate. 

Carefully characterizing error profiles at each step is critical for interpretation as errors are 

likely to propagate and impact the final reconstruction.

Both WGS and WES have limited sensitivity for studying intra-tumor heterogeneity in 

single samples73,74. Bulk sequencing of multiple tumor regions still misses many subclones, 

particularly when subclones are not evenly distributed across the tumor mass. While cell 

turnover facilitates subclone mixing, spatial subclone segregation can arise through local 

differences in the microenvironment and subclone competition. As subclone distributions 

remain difficult to predict, and cannot be exhaustively sampled, emerging liquid biopsy75 

and homogenized tissue sampling technologies76 can provide a more complete evolutionary 

profile than even dense tissue sampling, by providing a complementary sampling of the 

tumor with different biases. These technologies are especially useful when detecting minor 

subclones is a priority (e.g. to detect evolving post-treatment resistance). They typically 

employ targeted gene panels to allow sufficient depth for accurate SNV calling and 

subclonal reconstruction. However, their sensitivity may depend on tumor features and their 

efficacy in diverse clinical contexts is not yet clear17.

Single-cell sequencing can resolve phylogenies in greater detail and with less uncertainty 

than bulk sequencing10,14,77,78 and the technology is rapidly developing79. Due to artefacts 

left during amplification of the genetic material, and limited genome coverage, calling SNVs 
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in single-cell data remains an important challenge, with active development69. Many 

alternatives have been explored, such as using the cell’s own high-fidelity replicative 

machinery by expanding colonies from single cells, on which to perform bulk whole-

genome sequencing80; using direct library preparation of thousands of cells81, which simply 

skip the error-prone amplification; or using single-cell targeted sequencing approaches to 

maximize local depth of coverage, also allowing allele-specific copy number inference in 

single-cells26.

Although inferring the genotypes of each subclone may be more difficult using bulk than 

single-cell sequencing, bulk-sequencing tissue samples from multiple tumor regions can 

mitigate some of these limitations13. We thus recommend combining bulk and single-cell 

when possible for phylogeny reconstruction, which has shown great potential to resolve 

ambiguities in the phylogenetic tree reconstruction due to the single cell resolution, while 

maintaining high-quality somatic mutation calls from the bulk14,80. However, if cells are 

sampled from a small number of regional biopsies and there is limited clonal mixing, spatial 

biases may still impact single-cell phylogenetic reconstruction82.

Subclonal reconstruction is a fast-evolving field. Further work is underway to integrate 

additional data types into subclonal reconstructions (e.g. structural variants which, given the 

higher noise in their VAF, are assigned to subclones post hoc 83,84, or epigenetic marks56) 

but these will require careful validation given the uncertainty already present in subclonal 

reconstruction. Similarly, mechanistic models and approaches have recently been 

proposed13,58,59, but remain in their infancy58,59,85,86. In the future, combining the 

phenomenological models discussed with mechanistic models is likely to prove invaluable24. 

A thorough assessment of new and existing methods, particularly for subclonal CNA 

detection, is acutely needed. Precise metrics of reconstruction accuracy, increasingly 

realistic synthetic tumor genomes and joint single-cell and bulk tumor sequencing 

datasets22,72 are all required to establish community-accepted benchmarks that drive 

algorithm development and application.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1

Lexicon

Branching clones: a non-linear set of clones descending from a common ancestor (e.g., 
sibling or cousin clones).

Cancer cell fraction (CCF): the fraction of cancer cells from the sequenced sample 

carrying a set of SNVs, i.e. CCF = CP / purity. It can be inferred from the VAF (f), given 

a sample purity (ρ), local copy-number (NT) and the inferred multiplicity of the 

mutations m:CCF = f
mρ ρNT + 2(1 − ρ) .

Cellular prevalence (CP): the fraction of all cells (both tumor and admixed normal cells) 

from the sequenced tissue carrying a set of SNVs.

Clonal mutation: mutation present in all the tumor cells of a tumor sample or biopsy.

Clone: a lineage of cells descended from a common ancestor that inherited its genotype. 

Clones can be characterized by 1) the genotype of the MRCA of that lineage, which is 

the set of initial SNVs that will be carried by the descendant cells, i.e. detected at the 

same CP or CCF and 2) the fraction of (cancer) cells carrying these SNVs, i.e. the CP or 

CCF of the initial SNVs.

Crossing rule: when performing multi-sample or multi-region sequencing, when clone A 

and B are descendant of clone C and the CCF of clone A is higher than the CCF of clone 

B in one sample but the opposite is true in another sample, then clone A and B must be 

branching subclones. It stems from the more general rule that the shared subclones across 

samples arose from the same phylogeny, which further constrains the possible 

phylogenetic relationships between subclones.

Illusion of clonality: a mutation that is clonal in the sequenced tumor sample but is not 

clonal in the whole tumor.

Infinite sites hypothesis: hypothesis that the size of the genome tends to infinity. 

Consequently, mutated positions are only mutated once and never revert to wild type. 

This approximation results from the observation that, given the large size of the genome, 

a set of mutations is unlikely to have happened twice during tumor evolution. The infinite 

sites hypothesis is likely occasionally violated for single nucleotide variants90, but their 

frequencies remain very low when considering larger sets of SNVs spread along the 

genome such as those making up the genotype of large subclones (see pigeonhole 

principle).

logR: total copy number log ratio, which can be estimated from local normalized tumor 

to normal read depth log2 Ri = log2

Ti
T

Ni
N

, where the logR at position i is the log-ratio of 

two normalised depths, the total depth in the tumor or normal at that position (Ti or Ni, 

respectively) divided by the average depth across positions in the tumor or normal (T´ or 

Ń), respectively).
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Linear clones: a set of clones where one or more clones is an ancestor of another clone in 

the set (e.g., parent-child clones).

Most recent common ancestor (MRCA): the most recent common ancestor is the most 

recent cell that spawned a set of cells. By extension, the MRCA also refers to the 

genotype of that ancestor cell. The MRCA of a given tumor is sometimes used to 

implicitly refer to the MRCA of all cells in a set of sequenced samples. Note that the 

MRCA of a tumor sample (or set of samples) is not necessary the MRCA of the whole 

tumor, due to the illusion of clonality.

Multiplicity of a mutation: the number of DNA copies bearing a mutation m, which can 

be estimated from the VAF f, sample purity ρ and total copy number of the region in the 

tumor cells (NT) as m = f
ρ ρNT + 2(1 − ρ) . In regions of clonal copy number, the 

multiplicity of a mutation is a strictly positive integer, so the most likely value can be 

obtained by rounding to the nearest non-zero integer: 

m = max 1, round(f
ρ ρNT + 2(1 − ρ) ) , where round is a function that returns the nearest 

integer or by performing probabilistic assignment to integer values. In genomic regions 

with subclonal copy number alterations, subclonal cell populations may have differing 

multiplicities. Further, subclonal copy number losses may cause mutations to be lost from 

some subclones, resulting in multiplicities of zero for these subclones.

Pigeonhole principle: in the context of subclonal reconstruction, the sum of CCFs of 

branching subclones should be less than the CCF of their parent clone. Indeed, if it was 

greater, this would mean that mutations have occurred independently in branching 

lineages. However, according to the infinite sites hypothesis, the same set of random 

mutations is unlikely to have happened twice independently. Therefore, the smaller 

subclone must be a descendant of the bigger subclone, i.e. they are linear subclones, 

which is compatible with the infinite sites hypothesis.

Purity, sample purity or tumor purity (ρ): the purity is the fraction of cancer cells in the 

tumor sample. Thus, the cellular prevalence of clonal mutations is the purity. 

Consequently, the fraction of non-cancer cells in the tissue sample is 1-ρ.

Subclonal mutation: mutation that is present in a subset of tumor cells in a tumor sample 

or biopsy.

Subclone: a clone that is a descendant of the MRCA of the tumor sample, i.e. with 

associated CCF<1 in at least one region.

Superclonal cluster: an apparent clone with CCF > 1, usually indicative of germline 

contamination or purity estimation errors.

Subclonal reconstruction: the exercise of reconstituting the subclonal structure from 

sequencing data, i.e. number of (sub)clones, size of subclones in terms of fraction of 

cancer cells, and genotype of the subclones, as well as their phylogenetic relationships.

Sufficiency of subclonality: a mutation that is subclonal in the sequenced tumor sample 

will be subclonal in the whole tumor.

Sum rule: see Pigeonhole Principle.
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Variant allele fraction or frequency (VAF): the fraction of mutated reads for a given 

variant, which is a readout for the proportion of DNA mutated in the sequenced tissue.

Weak parsimony: the vast majority of the SNVs with detectable VAFs are associated with 

a small number of subclonal lineages.
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Box 2

NRPCC

The number of reads per tumor chromosomal copy (NRPCC) can be defined as:

NRPCC = ρ
ψ d

where d is the depth of sequencing, ρ is the purity and ψ is the average tumor sample 

ploidy, i.e. ψ = ρψ T + (1 − ρ) ψ N, where ψ T is tumor ploidy and ψ N = 2 is normal 

ploidy.

Consider a diploid tumor sample (ψ T = 2) with purity ρ = 0.5. In this diploid context, 

because 50% of the cells are non-tumor cells, 50% of the reads would derive from non-

tumor cells. If a mutation occurs on one of the two tumor copies, then ~25% of reads will 

carry it 1 × 0.5
2 × 0.5 + 2 × 0.5 . Next consider a ρ = 0.5 tumor that undergoes a whole genome 

duplication and becomes tetraploid (ψ T = 4). In this case, two thirds of the reads derive 

from tumor cells. Note that mutations that have happened after the whole genome 

duplication will only be present on one of the four tumor copies, and therefore only 

~16.7% of reads will carry these clonal mutations 1 × 0.5
4 × 0.5 + 2 × 0.5 . Thus, the fraction of 

mutated reads of subclonal mutations in a tetraploid tumor is lower than in a diploid 

tumor.

One rule of thumb is that most variant detection algorithms will not identify a somatic 

SNV without at least three variant reads91.

Let us imagine a tetraploid tumor ψ T = 4, with purity ρ = 0.7, i.e. ψ = 0.7 × 4 + 0.3 × 2 

= 3.4. An SNV at CCF = 0.33 (present in a third of cancer cells), will be present in f 
fraction of the reads as quantified by:

f = ρ
ψ CCF

And the expected number of mutated reads will depend on the depth and is:

Nmut = f × d

Or in terms of NRPCC:

Nmut = NRPCC × CCF

This equation illustrates why the NRPCC is a relevant measure. It defines the expected 

number of mutated reads at given CCF values, and given that (as a rule of thumb) 

mutation with N mut < 3 are not being called, it defines the detection threshold, or 

sensitivity threshold, i.e. the power to detect these subclonal mutations.
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We model the number of mutated reads as following a Binomial distribution:

NmutBin(f, d)

If we want to select a minimum depth that allows to detect most of these mutations, the 

probability to miss or to call them must be low or high, respectively. For example, not to 

miss more than 5% mutations in that subclone, i.e. to have N mut < 3 with probability P < 

0.05 (N mut ≥ 3 with probability ≥ 0.95), we have:

P(Nmut < 3) < 0.05 P(Bin f = 0.7
3.40.33, d < 3) < 0.05 d ≥ 91

The depth of sequencing must be greater than 91x, which corresponds to NRPCC=18.7. 

For clonal mutations, i.e. CCF=1, the depth should be greater than 29x.
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Figure 1. Standard Workflow and Input Data for Subclonal Reconstruction
(a) A simplified example of tumor clonal genotypes. We illustrate a tumor containing two 

subclones at 50% (purple) and 25% (yellow) CCF, both descended from a common ancestral 

clone (100% CCF, black). The remaining 25% of tumor cells are indistinguishable from the 

ancestor. (b) First, somatic mutations are called from aligned reads. Read depth must be 

much higher (coverage >60x) than illustrated for mutation calling and subclonal 

reconstruction. Similarly, an elevated local mutation burden is illustrated. A somatic variant 

caller identifies somatic SNVs by comparing to a matched normal, although germline SNP 
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contamination may occur (see main text). (c) Second, CNA reconstruction is performed. It 

typically uses read depth and B-allele frequency (BAF) data for heterozygous SNPs. (d) 
Third, CNAs are used to translate the measured SNV VAF to a CCF/CP estimate. This 

procedure relies on an accurate SNV multiplicity estimates (see Lexicon) which are 

typically inaccurate in subclonal CNAs so we exclude these regions from the analysis. SNV 

CCFs are then clustered to identify (sub)clonal lineages in the sample. False positive SNVs 

or inaccurate CNAs can cause spurious superclonal clusters (i.e. with CCF>1. Finally, 

phylogenetic reconstruction infers the ancestral relationships among lineages.
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Figure 2. Subclonal Reconstruction Using Multiple Samples
(a) Multiple samples can reveal additional subclones. Left: a tumor with three sequenced 

samples (a,b,c). The table, shows clones in each sample with color-coded circles 

proportional to their CCF in size. Truncal is defined as CCF = 1 in all samples and branch as 

CCF < 1 in at least one sample. Right: two sample density plots for the tumor. SNV CCFs 

from each sample are plotted along the axes. Circles indicate clone clusters, while the red 

background shows SNV density. SNVs clustered around (1,1) occur in all tumour cells in 

both samples; subclones on the axes are sample-specific, and clusters off the axes appear 

subclonal in both samples. For example, a subclonal cluster occurs in ~15% of cells in c but 

is absent in a. However, region (b) shows that this cluster was a mixture of two subclones: 

one unique to c and one shared by b and c. (b) Sequencing multiple samples clarifies 
clonal relationships. Left: phylogenetic trees for 2- and 3-sample subclonal reconstruction 

from multi-region sequencing (a, b, c). Subclones are represented by color-coded circles, as 

in (a). Right: density plots, as in (a). Looking only at samples a and c, mutations from the 

purple cluster appear clonal. However, it is absent in sample (b) and thus subclonal.
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Figure 3. CNA reconstructions and Uncertainty from Whole Genome Duplications
(a) Effect of GC-content on logR. Left: the GC content (% in 500 kbp bins) around SNPs 

vs. logR for a PCAWG tumour16 with a loess fit (purple). Right: chromosome 22 logR 

before (top) and after GC and replication timing correction (bottom). (b) logR and BAF 
reflect relative allele-specific DNA content. Left: the subclonal structure for a tumour with 

clonal and subclonal chromosomal CNAs. Right: genome-wide logR and BAF with expected 

(violet) and measured (purple) values for CNAs22. (c) Schematic illustration of ploidy 
ambiguity. The bulk sample contains tumor (blue) and non-tumor (green) cells. The number 

of reads from each allele from normal and the tumor cells depends on the number of allelic 

copies. We show a toy example with two heterozygous SNP positions (A and B alleles). 

logR and BAF can be expressed as a function of purity ρ, tumor ploidy ψT and the number 

of major and minor allele copies (nA and nB) in the tumor, which clonally should be 

integers. Combinations of purity and ploidy values that best align nA and nB to integers are 

often used to derive copy number profiles. However, multiple combinations can explain the 

observed data -- multiples of 2ψT (i.e. a whole genome duplication; WGD) apart. In this 

example, ψT = 2.5 and ψT = 2 × 2.5 = 5 both explain the data. (d) Copy number profiles 
inferred by Battenberg. Left: along the genome (x-axis) copy number of the major (violet) 
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and minor (grey) allele (default fit, which favored a WGD solution because it fit the 

subclonal event on chromosome 16 near integers). Right: same as left, after manual refitting.
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Table 1
Checklist of best practices

Recommendation Rationale

High-depth sequencing (>60x) of biopsy samples with the 
highest pathological purity possible, ideally complemented 
with deep targeted sequencing of SNVs

Increasing read depth increases the limit of detection for minor subclones and the 
resolution of CCF estimation22,23,54. High purity ensures most of the reads come 
from the tumor cells, increasing NRPCC.

Ensure the number of SNVs called is sufficient for 
subclonal reconstruction

A low coding substitution rate can lead to insufficient data for accurate subclonal 
reconstruction in exome-based studies23,87.

Sequence multiple regions from a single tumor Single-region bulk sequencing systematically underestimates the number of 
subclones and locally dominant subclones can be mistaken as clonal13,21,88. 
Multi-region sequencing also provides better subclone resolution and allows 
phylogeny inference.

Minimize germline variant contamination:

• Sequence matched normal tissue, ideally 
from an unrelated tissue source (e.g. blood)

• Remove known germline variants

• Combine multiple SNV detection 
algorithms

• Remove SNVs in genomic regions where 
read mapping is difficult

• Use a panel of normal samples

Germline contamination can lead to false-positive SNVs with high VAF that can 
be mislabeled as a cluster. Using a consensus call set can improve sensitivity and 
specificity of variant detection23.

Call somatic variants with a highly sensitive algorithm Increased algorithm sensitivity facilitates low VAF SNV detection, improves 
clustering accuracy and better captures the level of tumor heterogeneity. Highly 
sensitive detection algorithms can also improve the chances of detecting 
clinically relevant minor subclones22,23,89. However, users should be cautious of 
false-positive SNVs which are often seen at low VAF and may form a low VAF 
cluster.

For CNA reconstructions, review solutions for incorrect 
CP and WGD estimation and adjust accordingly. 
Optimally, perform experimental ploidy validation.

CNA reconstructions must decide between multiple equally likely ploidy and 
purity solutions. Ideally, inform CNA calling with experimental ploidy estimates 
using FACS, image cytometry, or FISH.

Carry out orthogonal copy number estimation Multiple copy number solutions are usually possible; estimating copy number 
from WES data can be especially challenging87.

Perform CNA + SNV based reconstruction using a method 
that incorporates a Binomial or Beta-binomial noise model

Binomial and Beta-binomial noise models better capture the noise in read 
sampling for a given read depth and CP, improving SNV clustering accuracy.

If possible, use phasing or single-cell sequencing data to 
support inferred mutation ordering. Ideally, perform multi-
sample sequencing.

An unambiguous phylogeny is not always possible based only on the crossing 
and sum rules. Phasing or single-cell sequencing information can support or 
refute a proposed phylogeny14,16,72. Our preferred setup is multi-sample 
sequencing, intelligent designs combine high and low depth sequencing to 
minimize cost18.

Validate subclonal SNVs of interest using high-depth 
targeted sequencing

SNVs detected in one sample may occur at very low VAFs in another, and high-
depth targeted sequencing can detect these rare subclonal populations17,23,89.
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