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Abstract

Genes encoding the mRNA targets of Fragile X mental retardation protein (FMRP) are 

enriched for genetic association with psychiatric disorders. However, many FMRP targets possess 

functions that are themselves genetically associated with psychiatric disorders, including synaptic 

transmission and plasticity, making it unclear whether the genetic risk is truly related to binding 

by FMRP or is alternatively mediated by the sampling of genes better characterised by another 

trait or functional annotation. Using published common variant, rare coding variant and copy 

number variant data, we examined the relationship between FMRP binding and genetic association 

with schizophrenia, major depressive disorder and bipolar disorder. High-confidence targets of 

FMRP, derived from studies of multiple tissue types, were enriched for common schizophrenia 

risk alleles, as well as rare loss-of-function and de novo nonsynonymous variants in schizophrenia 

cases. Similarly, through common variation, FMRP targets were associated with major depressive 

disorder, and we present novel evidence of association with bipolar disorder. These relationships 

could not be explained by other functional annotations known to be associated with psychiatric 

disorders, including those related to synaptic structure and function. This study reinforces 

the evidence that targeting by FMRP captures a subpopulation of genes enriched for genetic 

association with a range of psychiatric disorders.

Introduction

Fragile X mental retardation protein (FMRP) binds selected mRNA species to repress their 

translation [1–5]. In the brain, FMRP is highly, and dynamically, expressed in neurons, 

where it regulates the dendritic synthesis of proteins [6, 7], many of which are modulators 

of synaptic plasticity [1]. The loss of FMRP function causes fragile X syndrome [8], 
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characterised by abnormal dendritic morphology, impaired learning and memory, autism and 

a high prevalence of seizures [9].

The mRNA targets of FMRP have received additional attention due to their enrichment 

for genes harbouring risk to psychiatric disorders. A set of 842 high-confidence FMRP 

targets, originating from a study by Darnell et al in 2011 [1], have been reported to be 

enriched for genetic association with schizophrenia [10–17], autism [18–21] and major 

depressive disorder [22]. In the case of schizophrenia, not only is this association robust 

across genome-wide association studies, but it is also seen in studies of rare variants that 

confer risk for the disorder [10–16].

Whilst the case for the involvement of some FMRP targets in psychiatric disorders 

is unequivocal, FMRP targets represent long, brain-expressed transcripts [23] with 

considerable overlap with other sets of genes enriched for genetic association with 

psychiatric disorders, including those encoding synaptic proteins [1, 24]. This has led to 

speculation that the association between psychiatric disorders and FMRP targets is driven 

not by the property of being targets of FMRP per se, rather that it reflects association to one 

or more functional sets of genes that also happen to be overrepresented in the FMRP target 

set [23]. Furthermore, FMRP targets were defined by applying a cut-off to a probabilistic 

scale of FMRP binding [1], though the relationship between these binding statistics and 

genetic association with psychiatric disorders has not been investigated.

In the present study, we aimed to 1) establish whether the association of FMRP target genes 

with schizophrenia correlates with binding confidence; 2) determine whether the FMRP 

gene set association can be explained by alternative characterisation or functional annotation 

of genes; and 3) demonstrate the extent to which FMRP targets are associated with risk 

across a range of psychiatric disorders.

Materials and Methods

Gene sets

FMRP binding statistics were obtained from Darnell et al (2011) [1], a study of mRNA­

FMRP interaction sites in mouse (P11-P25, male) cortical polyribosomes based on 

crosslinking immunoprecipitation (CLIP) combined with high-throughput RNA sequencing. 

From 30 999 transcripts, we filtered the data to include only genes detected in the sample 

(chi-square score > 0), selecting only those (N = 8925) for which binding statistics could be 

obtained. For these genes, we converted Mouse Entrez IDs to human Entrez IDs via their 

shared HomoloGene ID, obtained from Mouse Genome Informatics Vertebrate Homology 

database release 6.10 (HOM_AllOrganism.rpt, 8th January 2018). Genes that did not convert 

to a unique protein-coding human homologue (N = 330) were excluded. The remaining 

8595 genes were ranked by their FMRP binding confidence P-value and the top 8400 were 

split into 21 bins of 400 genes which we tested for a relationship between FMRP binding 

confidence and schizophrenia association. Bin size was selected to balance statistical power 

with our objective to monitor variance across FMRP binding confidence thresholds.
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Functional enrichment analyses were performed using the set of 842 FMRP targets (reported 

FDR < 0.01 in Darnell et al, 2011) [1] that has been widely used in previous enrichment 

studies [11, 12].

For comparison, additional FMRP binding statistics were obtained from three recent studies 

[4, 25, 26]. From a study of hippocampal CA1 pyramidal neurons [25], 10 532 genes were 

ranked by CLIP score and the top 10 400 split into 26 bins of 400 genes.

Data describing FMRP binding in human frontal cortex were taken from Tran et al (2019) 

[26]. For each replicate, exonic enhanced CLIP peaks were mapped to genes. Genes were 

then assigned the P-value corresponding to that of the most significant peak. 2764 genes 

identified in both replicates were selected and re-assigned the smallest gene P-value across 

replicates. These genes were ranked accordingly and split into 6 bins of 400 and 1 bin of 364 

genes.

Lastly, we obtained FMRP binding statistics from human embryonic kidney (HEK) 293 

cells [4]. For wildtype FMRP isoforms, exonic binding sites derived from photoactivatable 

ribonucleoside-enhanced CLIP were mapped to genes. Each gene was assigned the highest 

PARalyzer peak score from all exonic peaks. 4736 genes common to both isoforms were 

selected and re-assigned the smallest gene P-value across isoforms. Genes were ranked by 

confidence and divided into 11 bins of 400 genes and 1 bin of 336 genes.

Samples

Common variants—All genetic data were obtained from published case-control studies. 

Schizophrenia genome-wide association study (GWAS) common variant summary statistics 

were taken from the Pardiñas et al (2018) study [11] based on a sample of 40 675 cases 

and 64 643 controls. Bipolar disorder GWAS data were provided by a recent Psychiatric 

Genomics Consortium (PGC) study [27], consisting of 20 352 cases and 31 358 controls 

from 32 cohorts of European descent. Major depressive disorder GWAS summary statistics 

were taken from a PGC meta-analysis of 135 458 cases and 344 901 controls from seven 

independent cohorts of European ancestry [22]. Alzheimer’s Disease GWAS data were 

obtained from the International Genomics of Alzheimer’s Project (IGAP) “Stage 1” meta­

analysis totalling 17 008 case and 37 154 control subjects [28].

Rare coding variants—Exome sequencing-derived rare coding variant data from a 

Swedish schizophrenia case-control study [16] were obtained from the NCBI database 

of genotypes and phenotypes (dbGaP). After excluding individuals with non-European or 

Finnish ancestry, and samples with low sequencing coverage, we retained exome sequence 

in 4079 cases and 5712 controls for analysis.

De novo coding variants — De novo mutations were derived [29, 30] from previously 

published exome sequencing studies of, collectively, 3444 schizophrenia-proband parent 

trios [12, 30–38] (Supplementary Table 1).

Copy number variants—Copy number variant (CNV) data were compiled from the 

CLOZUK and Cardiff Cognition in Schizophrenia samples (11 955 cases, 19 089 controls) 
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[39, 40], as well as samples from the International Schizophrenia Consortium (3395 

cases, 2185 controls) [41] and the Molecular Genetics of Schizophrenia (2215 cases, 2556 

controls) [42], giving a total of 17 565 case and 24 830 control subjects. Genotyping, CNV 

calling and quality control information can be found in the original reports [39–45].

Gene set association analysis

Schizophrenia, bipolar disorder, major depressive disorder and Alzheimer’s disease GWAS 

single nucleotide polymorphisms (SNPs) were filtered to include only those with a minor 

allele frequency ≥ 0.01. SNP association P-values were combined (SNP-wise Mean model) 

into gene-wide P-values in MAGMA v1.06 [46], using a window of 35 kb upstream and 10 

kb downstream of each gene to include proximal regulatory regions. The European panel 

of the 1000 Genomes Project [47] (phase 3) was used as a reference to account for linkage 

disequilibrium. Gene sets were tested for enrichment for association with each disorder 

using one-tailed competitive gene set association analyses in MAGMA, which compares the 

mean association of genes from the gene set to those not in the gene set, correcting for gene 

size, linkage disequilibrium and SNP density. The default background was all protein-coding 

genes.

Case-control exome sequencing data were analysed using Hail (https://github.com/hail­

is/hail). We annotated variants using Hail’s Ensembl VEP method (version 86, http://

oct2016.archive.ensembl.org/index.html) and defined loss-of-function variants as nonsense, 

essential splice site and frameshift annotations and nonsynonymous variants as loss-of­

function, missense and inframe insertion and deletion mutations. For gene set enrichment 

tests, we focused on ultra-rare singleton loss-of-function and nonsynonymous variants, 

that is those observed once in all case-control sequencing data and absent from the 

non-psychiatric component of ExAC [48]. Enrichment statistics were generated using a 

Firth’s penalized-likelihood logistic regression model that corrected for the first 10 principal 

components, exome-wide burden of synonymous variants, sequencing platform and sex.

De novo variant gene set enrichment was evaluated by comparing the observed number of 

de novo variants in a set of genes to that expected, which was based on the number of 

trios analysed and per-gene mutations rates [49, 50]. Gene set enrichment statistics for de 
novo variants were generated by using a two sample Poisson rate ratio test to compare the 

enrichment of de novo variants within the gene set to that observed in a background set of 

genes.

CNV analyses were restricted to CNVs at least 100 kb in size and covered by at least 

15 probes. Gene set association was tested by logistic regression, in which CNV case­

control status was regressed against the number of set genes overlapped by the CNV, with 

covariates: CNV size, genes per CNV, study and chip type. To correct for P-value inflation, 

empirical P-values were obtained by calculating the fraction of random size-matched sets of 

brain-expressed [1] genes that yielded an association as or more significant.

Multiple testing was corrected for using the Bonferroni method.
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Pathway analysis

For gene ontology enrichment analyses, functional annotations of each gene were compiled 

separately from the Gene Ontology (GO) [51] and Mouse Genome Informatics (MGI) 

Mammalian Phenotype (MP) [52] databases (July 4th 2018). GO annotations were 

filtered to exclude genes with the following evidence codes: NAS (Non-traceable Author 

Statement), IEA (Inferred from Electronic Annotation), and RCA (inferred from Reviewed 

Computational Analysis). GO or MP terms containing fewer than 10 genes were then 

excluded. For all pathway analyses, genes were restricted to those expressed (chi-square 

score > 0) in the mouse brain tissue used by Darnell et al 2011 [1]. Enrichment of FMRP 

targets for each GO/MP term was assessed by Fisher’s exact tests, with the contrast group 

being all remaining expressed genes. Following separate Bonferroni correction for 8270 

GO terms or 4606 MP terms, significantly (P < 0.01) overrepresented terms were subjected 

to a competitive refinement procedure to resolve the effects of highly overlapping gene 

membership between terms. During refinement, terms were re-tested for overrepresentation 

in FMRP targets following the removal of genes from the term with the highest odds ratio in 

Fisher’s exact test. Terms that were no longer significant upon re-test (unadjusted P > 0.01) 

were dropped. This was done repeatedly, such that genes from the remaining term with the 

highest odds ratio on each repeat were removed in addition to those removed on previous 

iterations.

In primary analyses of genetic association, brain-expressed [1] genes from all 

overrepresented GO / MP terms (following refinement) were grouped together and divided 

into those targeted and those not targeted by FMRP, and compared to a background of 

brain-expressed genes. In secondary analyses, genes from each individual overrepresented 

term were divided in the same way and tested for association using all protein-coding genes 

as a comparator. P-values were Bonferroni corrected for the number of functional terms 

being tested at each stage of analysis.

We performed a number of tests to investigate the relative enrichments for association 

between two sets of genes, one a subset of the other. For common variant association, we 

used the conditional analysis function provided by MAGMA. For rare or de novo coding 

variants, we compared the effect sizes of the subset of genes with that of the larger set after 

excluding members of the subset. For the rare coding variant case control analyses, this was 

done by performing a z-test of beta values, whilst for de novo variant analyses, a two-sample 

Poisson rate ratio test was used.

In cases where enrichment for genetic association was compared between non-overlapping 

gene sets, a z-test of beta values (common and rare variants) or a two-sample Poisson rate 

ratio test (de novo variants) was used.

Results

The relationship between FMRP binding confidence and enrichment for association with 
schizophrenia

Common variant analysis—We investigated the enrichment for common variant 

association with schizophrenia in bins of expressed [1] genes (N = 400 per bin) grouped by 
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their ranking of mRNA-FMRP binding confidence. These gene set association analyses were 

performed using MAGMA, in which effects of gene size and SNP density are controlled for 

within a multiple regression model [46]. Bins containing genes with greater FMRP binding 

confidence were more enriched for association with schizophrenia (Figure 1a), with only the 

top three bins being significantly associated (bin 1: corrected P = 2.3 × 10-5; bin 2: corrected 

P = 1.5 × 10-5; bin 3: corrected P = 0.030).

Rare and de novo coding variant analysis—FMRP targets have likewise been 

associated with schizophrenia through rare genetic variants [12–17]. We used exome 

sequencing data to determine which bins of genes were associated with schizophrenia 

through rare and de novo coding variants. In the case-control analysis of rare variants, 

notably, the same top three bins enriched for GWAS signal were the only bins to be 

significantly enriched for association with schizophrenia through rare loss-of-function 

variants (bin 1: corrected P = 1.3 × 10-5; bin 2: corrected P = 0.0035; bin 3: corrected 

P = 0.034) (Figure 1b) and only the top bin was significantly enriched for loss-of-function de 
novo variants (corrected P = 0.0033) (Figure 1c). To examine the contribution from missense 

and inframe insertion-deletion variants, we repeated the analyses using all nonsynonymous 

variants. The top two bins were significantly enriched for de novo nonsynonymous variants 

(bin 1: corrected P = 2.65 × 10-5; bin 2: corrected P = 0.0021) (Figure 1e). In analyses of 

rare nonsynonymous variants (Figure 1d) the topmost bin harboured the most association 

with schizophrenia but did not exceed the multiple-testing threshold.

Copy number variant analysis—Since risk to schizophrenia is also conferred through 

structural genetic variants [39, 43, 53, 54] in the form of deletions or duplications of large 

sections of DNA, we investigated whether CNVs from patients with schizophrenia are 

enriched for genes within bins of probable FMRP targets compared to control subjects. 

Following logistic regression analysis, no bins surpassed the threshold for significance 

(Figure 1f) and the same was true if we examined deletions and duplications separately 

(Supplementary Figure 1).

Alternative FMRP targets datasets—The mouse cortex-derived FMRP targets [1] 

analysed above have been the most commonly studied in the psychiatric genetics literature, 

although FMRP binding statistics from alternative tissues, species and cell populations have 

been described. We observed that bins containing genes with high FMRP binding confidence 

in each of mouse hippocampal CA1 pyramidal neurons [25], human frontal cortex [26] 

and HEK293 cells [4], were significantly enriched for common variant association with 

schizophrenia (Figure 1g,m,s) (bin 1, CA1 neurons: corrected P = 3.9 × 10-4; bin 1, human 

frontal cortex: corrected P = 1.7 × 10-7; bin 1, HEK293 cells: corrected P = 0.011).

Beyond common variation, the most highly ranked genes for FMRP binding in CA1 

pyramidal neurons were similarly enriched for rare loss-of-function variants (bin1: corrected 

P = 3.5 × 10-7), loss-of-function de novo variants (bin1: corrected P = 0.0046) and de novo 
nonsynonymous variants (bin1: corrected P = 0.0083) (Figure 1h,i,k).

Gene sets containing high-confidence FMRP targets derived from human cortex samples 

were enriched for rare variants in cases compared to controls (bin 1, nonsynonymous: 
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corrected P = 0.0077; bin 1, loss-of-function: corrected P = 0.016) (Figure 1n,p). However, 

a lack of low-confidence FMRP target bins, due to the nature of the eCLIP data, limited 

our ability to draw conclusions concerning the specificity of these associations to the high­

confidence binders. The highest ranked bin was not enriched for case de novo variants (bin 

1, nonsynonymous: corrected P = 1.0; bin 1, loss-of-function: corrected P = 0.75) (Figure 

1o,q).

The top ranked gene set defined from HEK293 cells was also associated with schizophrenia 

through de novo loss-of-function variants (bin 1: corrected P = 1.6 × 10-4) (Figure 1u). The 

same bin was not significantly associated through rare variants; bin 2 was the only gene set 

to be significantly enriched for rare loss-of-function variants (corrected P = 0.021) (Figure 

1t).

Consistent with analyses of gene sets from mouse cortex, bins of genes derived from FMRP 

binding in the alternative tissues harboured no association with schizophrenia through CNVs 

(Figure 1l,r,x).

To summarise, we find that across multiple types of genetic variant and multiple definitions 

of FMRP targeting, sets of genes more likely to be bound by FMRP harbour greater 

enrichment for genetic association with schizophrenia.

Refining schizophrenia association of FMRP targets through functionally defined 
subgroups

Partitioned genetic association by overrepresented functional annotations—
Many proteins translated from mRNA targets of FMRP have synaptic functions [1]. In 

turn, substantial evidence shows that genes encoding proteins with synaptic functions are 

enriched for genetic association with schizophrenia [11–13, 24, 45, 55]. To further explore 

the importance of FMRP-dependent translational regulation to the association of genes with 

schizophrenia, we separated the 842 FMRP target genes, as determined by Darnell et al [1], 

into subgroups defined by overrepresented functional categories.

Molecular pathways were derived using pathway analysis (Figure 2) with GO 

(Supplementary Table 2) and MP terms (Supplementary Table 3). The resulting 189 GO 

terms and 118 MP terms were refined to identify terms independently overrepresented 

among FMRP targets. This procedure left a total of 35 independent overrepresented terms 

(Supplementary Table 4).

To assess the contribution to genetic association of the property “FMRP binding”, versus 

that of these functional ontologies, we created a superset (N = 1596) of brain-expressed 

genes which are included in at least one of the 35 functional terms overrepresented for 

FMRP targets. FMRP targets from this set (N = 401) were strongly enriched for common 

variant association (β = 0.29, corrected P = 3.7 × 10-6), whilst genes not targeted by FMRP 

(N = 1195) were not (β = 0.066, corrected P = 0.13) (Table 1). FMRP targets that were 

not included in any of the 35 terms (N = 438) were also significantly associated (β = 0.17, 

corrected P = 0.0063). The burden of rare variants and de novo variants in cases showed 

Clifton et al. Page 7

Mol Psychiatry. Author manuscript; available in PMC 2021 October 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



the same pattern of association, being only enriched in the sets that included FMRP targets 

(Table 1), regardless of superset membership.

In direct comparisons of effect sizes from analyses of each type of genetic variant, 

FMRP targets annotated by overrepresented functional terms were not more enriched for 

association with schizophrenia than unannotated FMRP targets (common variants: P = 

0.081; rare loss-of-function variants: P = 0.25; rare nonsynonymous variants: P = 0.47); de 
novo nonsynonymous variants: P = 0.39; de novo loss-of-function variants: P = 0.80). Thus, 

FMRP targets are enriched for schizophrenia association independently of membership of 

functional categories (when taken as a whole).

Association of FMRP targets from individual GO and MP terms—We next sought 

to determine from which of the individual overrepresented functional terms FMRP targets 

capture genetic association with schizophrenia, and whether association is further enriched 

within FMRP targets from any single overrepresented term, compared to the complete 

FMRP targets set. Several functionally-defined subsets of FMRP targets were significantly 

associated with schizophrenia through common variation (Table 2), whilst genes not 

targeted by FMRP were not associated except for those belonging to the term, calcium 
ion transmembrane transporter activity (Supplementary Table 4). However, of the genes in 

that set, those targeted by FMRP were associated with a significantly greater effect size (P = 

0.0088) than those not targeted. The calcium ion transmembrane transporter activity fraction 

of FMRP targets (N = 25) remained significantly associated with schizophrenia even after 

conditioning on all FMRP targets (Supplementary Table 4), implying that this functionally­

defined subset of FMRP targets is more enriched for association with schizophrenia than 

FMRP targets as a whole. No other term captured FMRP targets with a significantly greater 

enrichment of genetic association than the full FMRP targets gene set.

Rare loss-of-function variants from patients with schizophrenia were enriched in FMRP 

targets from two terms (abnormal spatial learning, abnormal motor coordination/balance) 

(Supplementary Table 5), whilst no association was found between rare coding variants 

in non-targeted genes from each term and schizophrenia. None of these subsets harboured 

significantly more enrichment for case variants than all FMRP targets.

None of the subsets tested captured a significant burden of case de novo nonsynonymous 

variants. Conversely, enrichment for de novo loss-of-function variants was observed for 

FMRP targets of two terms (learning, abnormal spatial learning) (Supplementary Table 6), 

which was not reflected by any subsets not targeted by FMRP.

Overall, these analyses suggest that the overrepresentation of FMRP targets is the property 

that best captures genetic association of these biological pathways with schizophrenia, not 

the biological pathway itself.

Genetic association of FMRP targets in other psychiatric disorders

Schizophrenia shares substantial genetic susceptibility with bipolar disorder and major 

depressive disorder [56–59] and FMRP targets have been previously associated through 

common variation with major depressive disorder [22]. For comparison across disorders, we 
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tested the enrichment of FMRP targets bins for association with major depressive disorder 

and bipolar disorder using common variant data from GWAS. In both sets of analyses, 

there was a clear relationship between mouse cortex FMRP binding confidence and genetic 

association (Figure 3b,c). The topmost bin, containing genes most likely to be FMRP 

targets, was the most strongly enriched for association with bipolar disorder (corrected P = 

1.4 × 10-6) and major depressive disorder (corrected P = 2.5 × 10-4). Conversely, no bins 

were significantly enriched for association with Alzheimer’s Disease (Figure 3d), implying 

a degree of specificity to the association of high-confidence FMRP targets to psychiatric 

versus neurodegenerative disorders.

These analyses were repeated for bins of FMRP targets derived from other sources. 

Consistent with our previous observations, we found that the most highly ranked genes from 

FMRP binding in mouse CA1 pyramidal neurons were also the most strongly enriched for 

association with bipolar disorder (corrected P = 8.3 × 10-4) and major depressive disorder 

(corrected P = 0.011) (Figure 3f,g). Highly ranked bins of FMRP targets defined in human 

frontal cortex showed association with bipolar disorder (bin 1: corrected P = 0.034) but less 

with major depressive disorder (bin 1: corrected P = 0.14) (Figure 3j,k). No bins derived 

from binding in HEK293 cells surpassed significance for association with bipolar disorder or 

major depressive disorder (Figure 3n,o). Genetic association with Alzheimer’s disease was 

not enriched in highly ranked gene sets from any tissue type.

We investigated functionally-annotated subgroups of FMRP targets for association with 

bipolar disorder and major depressive disorder. Beyond background association from brain­

expressed genes, FMRP targets from mouse cortex annotated for membership of the 

35 overrepresented pathways were strongly associated with bipolar disorder (β = 0.23, 

corrected P = 1.6 × 10-5) and major depressive disorder (β = 0.21, corrected P = 1.6 × 
10-5), whilst genes from the same functional terms not targeted by FMRP harboured no 

significant association (bipolar disorder: β = 0.037, corrected P = 0.38; major depressive 

disorder: β = 0.031, corrected P = 0.49) (Table 3). A similar picture was observed for 

individual overrepresented GO / MP terms. FMRP targets from 4 terms (calcium ion 
transmembrane transporter activity, abnormal nest building behavior, abnormal spatial 
learning and abnormal seizure response to inducing agent) were significantly associated 

with bipolar disorder. Notably, genetic association of FMRP targets from these 4 terms 

was common to schizophrenia and bipolar disorder. FMRP targets from 1 term (abnormal 
synaptic vesicle morphology) were significantly associated with major depressive disorder 

(Supplementary Table 4). FMRP targets belonging to the term abnormal nest building 
behavior (N = 12) were more highly enriched for association with bipolar disorder than 

FMRP targets as a whole. No subsets of FMRP targets were significantly more enriched for 

association with major depressive disorder than the full FMRP targets set (Supplementary 

Table 4).

Discussion

In this study we show that genes with high probability of being targets of FMRP are 

enriched for association with schizophrenia, bipolar disorder and major depressive disorder. 

We also show that it is the property of being an FMRP target that better captures the 
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genetic association, rather than membership of other gene sets that are both associated with 

schizophrenia and enriched for targets of FMRP.

Only bins of genes with high FMRP binding confidence were enriched for association 

with schizophrenia through common variation, exome sequencing-derived rare variation 

and exome sequencing-derived de novo rare variation. This same relationship was reflected 

across multiple FMRP binding datasets, and in analyses of bipolar disorder and major 

depressive disorder. Our observations are consistent with previous gene set analyses of 

FMRP targets in the context of schizophrenia [11–15] and major depressive disorder [22], 

but whilst FMRP targets have been previously linked to bipolar disorder through rare coding 

variants [60], our findings provide novel evidence linking FMRP targets to bipolar disorder 

through common variation.

Despite the evidence implicating FMRP targets in psychiatric disorders [11–15], the 

overrepresentation of long, brain-expressed genes with synaptic functions has led to 

concerns over the validity of the link to FMRP [23]. It is therefore important to stress that 

the methods used here, and previously [11], correct for, or are unaffected by, gene length. 

Furthermore, whilst association was derived from expressed mRNAs in mouse brain, it did 

not generalize to bins of brain-expressed genes with low FMRP binding confidence.

Consistent with previous pathway analysis [1], we note that a substantial proportion of 

FMRP targets have functions related to synaptic activity, anatomy or development. FMRP 

activity is regulated in response to neuronal activity [61–64], and is an important mediator 

of synapse development [65–67], synaptic plasticity [68–70], learning and memory [71–

73]. Genetic and functional studies have highlighted the relevance of perturbed synaptic 

plasticity in psychiatric disorders [12, 27, 44, 45, 74–76], although we find that the risk 

conferred by variants affecting such pathways overrepresented among FMRP targets is 

concentrated within the fraction of genes targeted by FMRP. Hence, despite the convergence 

of psychiatric risk on synaptic pathways [12, 24, 27, 75–77], the association of FMRP 

targets was not attributed to these overrepresented annotations. Instead, it appears that 

there is a degree of specificity to this risk, such that genes regulated locally by FMRP 

during activity-induced synaptic plasticity, required for development or learning, are most 

relevant to psychiatric disorder. Whilst it could be argued that a further, larger set of 

genes could account for the enrichment of genetic association observed in FMRP targets, a 

recent schizophrenia GWAS [11] emphasised the independence of the association, notably 

as the only gene set that was associated independently of genes defined by loss-of-function 

intolerance.

It should be noted that other synapse-related gene sets are enriched for association with 

psychiatric disorders independently of FMRP targets [11]. Here we found that, whilst 

strongest for genes targeted by FMRP, genes involved in calcium ion transmembrane 
transporter activity held independent association with schizophrenia. However, the strongly 

associated, albeit small, intersection between genes from this set and FMRP targets 

contained a stronger enrichment of schizophrenia common variant association than FMRP 

targets (or indeed the GO term) as a whole. This is consistent with previous evidence for 

association of calcium channels with schizophrenia [10, 11, 13], yet additionally suggests 
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that FMRP captures a subset of genes related to calcium ion transport in which common 

variant association is concentrated. The regulation of calcium channel activity by FMRP 

may be an important area of continued investigation, in the context of schizophrenia.

We demonstrate that high-confidence FMRP target gene sets derived from multiple sources 

are associated with schizophrenia and other psychiatric disorders. Beyond the commonly 

studied gene set from mouse cortex [1], highly ranked genes derived from studies of FMRP 

binding in human frontal cortex [26], mouse hippocampal CA1 pyramidal neurons [25] and 

HEK293 cells shared the enrichment for genetic association, albeit with differing profiles 

of association across types of genetic variant. Our observations from mouse cortical tissue 

were, perhaps unsurprisingly, most consistently mirrored by mouse pyramidal neurons, 

whilst gene sets formed from FMRP binding statistics in human cortex and HEK293 

cells conferred risk to schizophrenia through different combinations of mutation type. 

Furthermore, in comparisons across psychiatric disorders, high-confidence FMRP targets 

in HEK293 cells were enriched for common variant association with schizophrenia, but 

not bipolar disorder or major depressive disorder. However, it is notable that variability in 

the number of genes for which FMRP binding statistics were available may influence our 

findings. Differences in the study design and methods employed by the research groups 

could modify the capture or ranking of mRNA targets. Additional investigation of FMRP 

target conservation across species, tissues and cell types using a unified methodology will 

facilitate the partitioning of genetic association among them.

High-confidence FMRP targets were not enriched in CNVs from schizophrenia cases when 

compared to CNVs from controls. Whilst FMRP targets have been consistently implicated 

in schizophrenia from analyses across other types of genetic variant, studies of structural 

variation in schizophrenia have shown only modest association for FMRP targets [45, 54, 

78]. However, deletions at the 15q11.2 locus encompassing the FMRP interactor, CYFIP1 – 

required for FMRP-dependent translational regulation [5, 79] – are associated. Notably, case 

CNVs have been shown to be enriched for components of synaptic signalling complexes 

[45, 55], which, together with the current findings, suggests that not all synaptic signalling 

pathways associated with schizophrenia are under the regulation of FMRP.

Our observations resonate with the growing body of literature challenging the biological 

validity of viewing major psychiatric disorders as discrete entities with independent genetic 

aetiology [80–83]. There is considerable overlap between the genetic risk attributable to 

schizophrenia, bipolar disorder and major depressive disorder [56–59]. The present (and 

published) findings highlight that FMRP targets are a point of biological convergence. 

Additional evidence suggests that genetic association of FMRP targets may extend also to 

autism [18–21] and attention-deficit hyperactivity disorder [84].

Our findings highlight a set of genes regulated through a common mechanism that harbour 

risk across several psychiatric disorders. However, there is still a degree of uncertainty as 

to precisely which mRNAs are regulated by FMRP. Multiple studies have examined this, 

each yielding overlapping, yet distinct sets of FMRP targets [1, 4, 25, 26, 85–88]; some of 

the variability likely originating from tissue-specificity. When performing pathway analyses 

with genomic data, many studies, including this one, have obtained FMRP targets from 
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an investigation of mRNA-FMRP interaction sites in mouse cortical polyribosomes [1], 

in which membership was assigned by applying a stringent cut-off to a continuous scale 

of binding confidence, likely resulting in some false positives and more false negatives. 

Moreover, binding by FMRP may not equate to translational repression in the cell, which 

requires additional contribution from binding partners CYFIP1 and eIF4E, within a protein 

complex[5]. As well as regulating protein synthesis, FMRP is reported to have other roles, 

including the mediation of mRNA stability and dendritic transport [9, 89, 90]. Each of these 

processes may be relevant to psychiatric risk and this line of research will benefit from 

further validation of FMRP-regulated mRNAs.

Whilst highly heritable, the emergence of schizophrenia, bipolar disorder and major 

depressive disorder is in most cases attributable to joint effects of genetic and environmental 

risk factors. Likewise, environmental factors influence cognitive and behavioural deficits 

in people with fragile X syndrome [91, 92]. Consistent with genetic observations, a 

convergence on synaptic dysfunction is also described in studies of non-genetic and 

epigenetic factors contributing to psychiatric disorders [93]. However, the interaction 

between FMRP function and environmental exposures in the context of psychiatric 

disorders has not been studied. Continued investigation of liability to psychiatric disorders 

deriving from FMRP targets could benefit from examining these relationships, both across 

neurodevelopment and during adult plasticity.

Our results serve to strengthen the evidence that a population of genes targeted by FMRP, 

many of which have synaptic functions, are affected by genetic variation conferring risk 

to psychiatric disorders, including schizophrenia, bipolar disorder and major depressive 

disorder. We conclude that targeting by FMRP is currently the most suitable functional 

annotation to reflect the origin of these associations and represents a common mode of 

regulation for a set of genes contributing risk across several major psychiatric presentations.
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Figure 1. 
Schizophrenia association of gene sets ranked by FMRP binding confidence in four tissue 

types. Data of FMRP binding were derived from crosslinking immunoprecipitation studies 

of mRNA targets in mouse cortex, mouse hippocampal CA1 pyramidal neurons, healthy 

human frontal cortex and human embryonic kidney (HEK) 293 cells. Genes were ranked 

by FMRP binding confidence and grouped into bins of 400 genes. Presented are -log10(P), 

where the P-value is derived from gene set association analysis using the genetic variant type 

shown. CNV analyses were corrected for P-value inflation using random size-matched sets 
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of expressed genes. Rare coding variants were derived from case-control exome sequencing 

studies of schizophrenia and defined as variants observed once in all sequenced samples and 

never in the non-psychiatric component of ExAC. Loss-of-function (LoF) variants include 

nonsense, splice site and frameshift mutations. Nonsynonymous (NS) variants include 

loss-of-function and missense variants. Dotted lines indicate a threshold for statistical 

significance after correction for the number of bins. SNPs, single nucleotide polymorphisms; 

CNVs, copy number variants.
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Figure 2. 
Pathway analysis workflow. Predominant functional subsets of FMRP targets were tested 

for genetic association with psychiatric disorders. GO, gene ontology; MP, mammalian 

phenotype; FDR, false discovery rate.
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Figure 3. 
Common variant association of FMRP target bins with schizophrenia, bipolar disorder, 

major depressive disorder and Alzheimer’s disease. Data of FMRP binding in four tissue 

types were derived from the sources shown. Shown is -log10(P-value) following common 

variant gene set association analysis of bins of 400 genes ranked by FMRP binding 

confidence. Dotted lines represent a threshold for statistical significance after correction 

for the number of bins. Data presented in panels a, e, i and m are duplicated from Figure 1.
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Table 1

Partitioning FMRP targets genetic association by overrepresented functional annotation. GO and MP 

functional terms independently overrepresented among FMRP targets were merged, then divided by FMRP 

targets membership. Genes not brain-expressed were removed. Background association originating from brain 

expression was controlled for within gene set association analyses. Shown are the resulting effect sizes (β 
or Rate Ratio) and P-values (P). For each variant type, P-values were Bonferroni adjusted for 3 tests. SNPs, 

single nucleotide polymorphisms; LoF, loss-of-function; NS, nonsynonymous.

Gene set N
Common SNPs Rare variants De novo variants

β P β P Rate Ratio P

Genes exclusive to 
functional terms 1195 0.066 0.13 LoF: 0.010 NS: 

0.015 LoF: 1.0 NS: 1.0 LoF: 0.89 NS: 
0.98 LoF: 1.0 NS: 1.0

Overlapping genes 401 0.29 3.7 × 10-6 LoF: 0.43 NS: 
0.052

LoF: 3.5 × 10-5 

NS: 0.14
LoF: 1.50 NS: 

1.24
LoF: 0.085 NS: 

0.014

Genes exclusive to 
FMRP targets 438 0.17 0.0063 LoF: 0.34 NS: 

0.025
LoF: 0.0023 NS: 

0.92
LoF: 1.64 NS: 

1.35
LoF: 0.024 NS: 

1.2 × 10-4

Mol Psychiatry. Author manuscript; available in PMC 2021 October 14.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Clifton et al. Page 23

Table 2

GO and MP terms overrepresented among FMRP targets derived from mouse cortex which capture a 

significant (Padj < 0.05) portion of the common variant genetic association with schizophrenia. Shown are 

effect sizes (Beta) and P-values (P) in gene set association analysis of genes targeted, or not targeted, by 

FMRP. P-values were Bonferroni adjusted (P.adj) for 35 terms.

Term
Genes not FMRP targets Genes FMRP targets

N Beta P P .adj N Beta P P .adj

Calcium ion transmembrane transporter activity 
(GO:0015085)

91 0.419 4.7 × 10-4 0.017 25 1.080 6.9 × 10-6 2.4 × 10-4

Abnormal motor coordination/balance (MP:0001516) 538 0.104 0.028 0.97 117 0.463 2.8 × 10-5 9.6 × 10-4

Abnormal seizure response to inducing agent 
(MP:0009357)

125 0.190 0.043 1.0 42 0.710 1.1 × 10-4 0.0038

Abnormal spatial learning (MP:0001463) 141 0.161 0.057 1.0 61 0.569 1.4 × 10-4 0.0049

Growth cone (GO:0030426) 50 0.245 0.077 1.0 27 0.854 1.7 × 10-4 0.0060

Abnormal nest building behaviour (MP:0001447) 15 0.265 0.22 1.0 12 1.290 2.0 × 10-4 0.0071

Abnormal excitatory postsynaptic currents (MP:0002910) 60 0.177 0.12 1.0 35 0.715 3.5 × 10-4 0.012

Axon part (GO:0033267) 108 0.134 0.12 1.0 54 0.505 6.6 × 10-4 0.023
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Table 3

Partitioning FMRP targets common variant association by overrepresented functional annotation. Analyses 

were performed using a background of brain-expressed genes to account for background association. Shown 

are the effect sizes (β) and P-values (P) from gene set association analyses using MAGMA. For each disorder, 

P-values were adjusted for 3 genes sets using the Bonferroni method. Data for schizophrenia are repeated from 

Table 1.

Gene set N
Schizophrenia Bipolar disorder Major depressive disorder

β P β P β P

Genes exclusive to functional terms 1195 0.066 0.13 0.37 0.38 0.031 0.49

Overlapping genes 401 0.29 3.7 × 10-6 0.23 1.6 × 10-5 0.21 9.7 × 10-5

Genes exclusive to FMRP targets 438 0.17 0.0063 0.14 0.0074 0.15 0.0026
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