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Abstract

A prototypic pediatric cancer that frequently shows activation of RAS signaling is embryonal 

rhabdomyosarcoma (ERMS). ERMS also show aberrant Hedgehog (HH)/GLI signaling activity 

and can be driven by germline mutations in this pathway. We show, that in ERMS cell lines 

derived from sporadic tumors i.e. from tumors not caused by an inherited genetic variant, HH/GLI 

signaling plays a subordinate role, because oncogenic mutations in HRAS, KRAS or NRAS 
(collectively named oncRAS) inhibit the main HH target GLI1 via the MEK/ERK-axis, but 

simultaneously increase proliferation and tumorigenicity. oncRAS also modulate expression of 

stem cell markers in an isoform- and context-dependent manner. In Hh-driven murine ERMS that 

are caused by a Patched mutation, oncHRAS and mainly oncKRAS accelerate tumor development, 

whereas oncNRAS induces a more differentiated phenotype. These features occur when the 

oncRAS mutations are induced at the ERMS precursor stage, but not when induced in already 

established tumors. Moreover, in contrast to what is seen in human cell lines, oncRAS mutations 

do not alter Hh signaling activity and marginally affect expression of stem cell markers.

Together, all three oncRAS mutations seem to be advantageous for ERMS cell lines despite 

inhibition of HH signaling and isoform-specific modulation of stem cell markers. In contrast, 

oncRAS mutations do not inhibit Hh-signaling in Hh-driven ERMS. In this model, oncRAS 

mutations seem to be advantageous for specific ERMS populations that occur within a specific 

time window during ERMS development. In addition, this window may be different for individual 

oncRAS isoforms, at least in the mouse.

Introduction

Rhabdomyosarcoma (RMS) is the most common type of soft tissue sarcoma in children 

with poor prognosis [1]. The major pediatric form is embryonal RMS (ERMS), which 

accounts for approximately 75% of RMS (reviewed by e.g. [2]). ERMS originate from 

muscle progenitor or stem cells [3–5] and contain cell populations with tumor-propagating 

or cancer stem cell (CSC) features (for review see [6]) that may explain their intratumoral 

heterogeneity [7, 8].

ERMS is a prototypic RAS-associated pediatric cancer. Indeed, individual oncogenic RAS 

(oncRAS) mutations affecting all three RAS genes (HRAS, KRAS and NRAS) occur in 

up to 42% of ERMS [9–11]. The current discussion hinges on whether oncRAS mutations 

are ERMS drivers or rather modifiers. In favor of the “driver-hypothesis” are studies in 

zebrafish [12] and genomic analyses including whole genome sequencing analysis [7, 10, 

11]. Moreover, patients with Noonan or Costello syndrome, which are caused by activating 

K-, N- or HRAS germline mutations, respectively, are predisposed to ERMS [13]. On the 

other hand, microarray-based data showing that a RAS signature exists together only with 
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signatures from other activated signaling pathways [5] and the fact that oncRAS mutations 

are found in ERMS only in combination with other mutations and do not lead to ERMS 

when occuring alone in the mouse [14–17] favor the “modifier-hypothesis”. Altogether 

oncRAS mutations seem to play a very important role in ERMS pathogenesis although their 

exact role still remains to be clarified.

Another pathway that is active in ERMS is Hedgehog (HH) signaling [18–20]. The major 

players of HH signaling are the HH ligands, the HH receptor Patched1 (PTCH), the PTCH 

interaction partner Smoothened (SMO) and GLI transcription factors. Aberrant activation of 

HH signaling leads to a variety of tumors including ERMS (reviewed by e.g. [21]). Indeed, 

inherited PTCH/Ptch mutations can result in ERMS formation both in humans and mice 

[22, 23]. The most reliable read-out of the pathway’s activity is the transcriptional level 

of GLI1 (reviewed by e.g. [24, 25]. We and others found that the expression of GLI1 and 

other HH targets is higher in ERMS compared to alveolar RMS (ARMS) [18, 19]. However, 

sporadic ERMS lack canonical HH signaling activity via the HH/PTCH/SMO/GLI axis [26, 

27] and GLI activity is apparently regulated in a non-canonical manner, which summarizes 

the regulation of GLI transcription factors by interaction with other signaling pathways 

including the RAS pathway (reviewed by e.g. [24, 28].

Here we compared the influence of oncH-, oncK- and oncNRAS mutations on ERMS 

growth in different experimental settings using human ERMS cell lines derived from 

sporadic ERMS and the Ptch+/- mouse model that develops ERMS-like tumors due to 

inherited Ptch mutations [23]. This allowed us to investigate the impact of oncRAS 

mutations on early and late ERMS stages and also on canonical or non-canonical HH/GLI

signaling in ERMS.

Results

OncRAS mutations can inhibit GLI1/GLI1 expression via the MEK/ERK axis in human 
ERMS cell lines

In order to investigate the impact of oncRAS mutations on non-canoncial HH/GLI 

signaling activity in established human sporadic ERMS, the RAS wildtype ERMS cell lines 

RUCH-2 and TE617.T were stably transduced with pMSCVpuro-HRASG12V, pMSCVpuro
KRASG12V, pMSCVpuro-NRASG12V or the pMSCVpuro empty vector (HRAS, KRAS, 

NRAS or pMSCV, respectively). DNA integration and cDNA expression was demonstrated 

by PCR and RAS protein expression (Fig. 1A, B; KRASG12V is HA-tagged and is larger 

than the endogenous KRAS protein). Unfortunately, HRAS and NRAS were expressed in 

the same TE617.T cell clone, probably due to inadvertent transduction with both vectors 

(Fig. 1B). Elevated RAS activity was verified by RAS activation assay (Fig. 1A, B).

Our results show that oncRAS mutations can negatively regulate GLI1 mRNA expression in 

RUCH-2 and TE617.T (Fig. 1C, D; results for TE617.T H-/NRAS are not significant). To 

investigate whether the two main RAS-downstream pathways are involved in suppression of 

GLI1, the cells were incubated with the AKT/mTOR inhibitor PI-103, the MEK inhibitor 

U0126 or the ERK inhibitor SCH772984 (see Fig. S1A, B, C for inhibitor functionality). 

Whereas PI-103 downregulated GLI1 in both control and oncRAS-transduced RUCH-2 cells 
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(Fig. 1E;), incubation of RUCH-2 oncRAS cells with U0126 or SCH772984 restored GLI1 
expression to basal levels of control cells (Fig. 1E). This was also seen in RD cells (Fig. 

S1B) that harbor a NRASQ61H mutation [29]. In TE617.T cells, PI-103 had no effect and 

MEK and/or ERK inhibit GLI1 expression independently of oncRAS, because U0126 and 

SCH772984 elevated GLI1 also in control cells (Fig. 1F). This might be due to mutations 

in MAP3K14/NIK or MAP3K1/MEKK1 of TE617.T cells, which result in an alternative 

splice variant or a threonine deletion at position 949, respectively (The Cancer Cell Line 

Encyclopedia [30]). The function of these changes is unknown. However, because these 

proteins can activate ERK [31, 32], these changes may have influenced the activity of ERK. 

Indeed, SCH772984-mediated pERK suppression was weaker compared to RUCH-2 cells 

(Fig. S1C).

To confirm that ERK is involved in GLI1 suppression, ERK1 and/or ERK2 expression 

was decreased in RUCH-2 KRAS cells by transient siRNA transfection. Indeed, even a 

partial ERK1 and/or ERK2 knockdown restores GLI1 expression to basal levels of pMSCV 

control cells (Fig. 2A; not completely restored by ERK2 knockdown), indicating that 

ERK suppresses GLI1. The data also show that the ERK knockdown does not influence 

PI-103-mediated downregulation of GLI1 (Fig. 2A). This implicates that the AKT axis 

rather activates GLI1 expression, at least in RUCH-2 KRAS cells. However, this situation 

is certainly much more complex, because in dependency of the cell line i) PI-103-mediated 

GLI1 suppression is associated with ERK phosphorylation (Fig. 2A; Fig. S1A, B, C), ii) 

ERK1 and ERK2 can influence phosphorylation of each other (Fig. 2A), and iii) U0126 and 

SCH772984 can impact AKT phosphorylation (Fig. S1A, B, C).

We also analyzed whether oncRAS alters the intracellular distribution of GLI1. However, 

oncRAS downregulated GLI1 protein regardless of the cellular compartment and 

SCH772984 upregulated GLI1 protein back to normal levels (Fig. 2B).

Together, oncRAS can suppress GLI1/GLI1 expression and thus HH signaling in ERMS, 

which can involve the MEK/ERK axis.

Despite attenuation of HH signaling activity, oncRAS mutations can increase proliferation 
and tumorigenicity of human ERMS cell lines

Next, we investigated the impact of oncRAS mutations on ERMS growth. BrdU 

incorporation in a timeframe of 72 h revealed a significant increase in proliferation of 

oncHRAS- and oncKRAS-, but not of oncNRAS-expressing RUCH-2 cells (Fig. 3A, left 

panel). Cell viability was not affected (Fig. 3A right panel). In TE617.T cells, proliferation 

rate and cell viability were significantly increased upon oncKRAS or oncH-/NRAS 

expression as measured in a timeframe of 24 h by BrdU incorporation and WST-1 assays, 

respectively (Fig. 3B). Cellular appearance was never affected (Fig. S1D). To evaluate 

the in vivo growth behaviour, control and oncRAS cell lines were transplanted into nude 

mice. Indeed, all oncRAS cell lines including oncNRAS-expressing RUCH-2 cells showed 

a significantly accelerated growth and end point weight (Fig. 3C, D). In general, GLI1 
expression remained downregulated compared to the corresponding control xenotransplants. 

GLI1-downregulation was significant for oncKRAS-expressing RUCH-2 and oncH-/NRAS 

expressing TE617.T xenotransplants (Fig. 3C, D). Although the exact roles of oncH- and 
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oncNRAS in TE617.T remains to be determined, the data demonstrate that oncRAS can 

accelerate proliferation and tumorigenicity of ERMS cell lines despite downregulation of 

HH signaling.

OncRAS mutations can alter the expression of stem cell markers of human ERMS cell lines 
in an isoform- and context-dependent manner

Because oncRAS can change the expression of cancer stem cell (CSC) markers [33], 

oncRAS-expressing RUCH-2 were analyzed in a pilot experiment for the activity of 

aldehyde dehydrogenase (ALDH) that is associated with self-renewal and tumor formation 

capacity in RD cells [34]. Indeed, as revealed by Aldeflour assay, oncRAS-expressing 

RUCH-2 cells showed a slight, but not significant increase in ALDHhigh cells compared to 

control cells (Fig. 4A). This was also seen on protein level (Fig. 4B). Next, we analyzed 

84 CSC-associated genes of a commercially available RT PCR array. Using arbitrary fold 

change cut-offs of >2 and <2, all oncRAS RUCH-2 cells showed upregulated CD34, 

CXCL8, ITGA6, LIN28B, MYC, TGFBR1 and WWC1, and downregulated ALCAM, 

BMP7 and DLL1 expression (Fig. 4C). All other genes did not meet the cut-off criteria 

or were differentially regulated by individual oncRAS isoforms like SOX2, which was 

upregulated by oncKRAS and oncHRAS, but not by oncNRAS (Fig. 4C). To investigate 

whether this expression pattern was retained after transplantation, MYC or SOX2 expression 

of oncKRAS and oncNRAS RUCH-2 xenotransplants was examined by qRT-PCR or 

immunhistological stainings, respectively. These approaches showed that MYC expression 

was no longer significantly elevated after transplantation (Fig. 4D) and that oncNRAS 

xenotransplants started to expressed SOX2 (Fig. 4E). The latter observation could explain 

why oncNRAS expressing RUCH-2 cells robustly grew in vivo (Fig. 3C), but hardly 

grew in vitro (Fig. 3A, right panel). Together, although the data are very preliminary, the 

experiments implicate that oncRAS modulate expression of CSC-associated genes in an 

isoform- and context-dependent manner.

Without affecting Hh signaling activity, oncHRAS or oncKRAS induction at the ERMS 
precursor stage in Ptch+/- mice accelerates tumor growth, whereas oncNRAS results in a 
more differentiated tumor phenotype

To test the influence of oncRAS mutations on growth and HH signaling activity in Hh

driven ERMS, oncRAS mutations were induced in ERMS of Ptch+/- mice, which are 

wildtype for Hras, Kras and Nras (oncRas mutations were excluded by sequencing). This 

model also allowed us to study the impact of oncRAS mutations on early and late ERMS 

stages.

Because ERMS of Ptch+/- mice highly express Myf5 [35, 36], the Myf5CreER Cre-driver 

[37] was used to conditionally activate oncRAS mutations in the tumors. The Myf5CreER 

Cre-driver’s activity in ERMS and at the 3 Ras loci was confirmed by lineage tracing using 

Ptch+/-R26R+/-Myf5CreER/+ mice (Fig. S2A) and by specific recombination assays (Fig. 

S2B; ERMS of Ptch+/-oncRasfl/+Myf5CreER/wt mice showing spontaneous recombination 

were excluded from the analyses), respectively. Additionally, tamoxifen-mediated effects on 

ERMS growth were excluded (Fig. S3A).
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Because germline mutations of oncHRAS and oncKRAS or oncNRAS do not result in 

ERMS or are lethal, respectively [14–17] and because ERMS in Ptch+/- mice are initiated 

before birth and become palpable at the earliest around 8 weeks of age [36], oncRAS 

mutations were induced in 4 weeks old Ptch+/-oncRasfl/+Myf5CreER/wt mice. This allowed 

for analysis of oncRAS-associated effects on already initiated ERMS precursor lesions.

ERMS development was monitored by palpation for 200 days and sacrificed mice 

were examined for non-palpable tumors. Compared to the controls, ERMS incidence 

(palpable and non-palpable ERMS) was significantly higher in tamoxifen-treated Ptch+/-

HRasfl/+Myf5CreER/wt and Ptch+/-KRasfl/+Myf5CreER/wt mice (Fig. 5A, B, Table 1). 

Although both oncHRAS and oncKRAS enforced tumor proliferation (Fig. 5A, B, right 

panels), only oncKRAS significantly decreased median overall or ERMS-free survival (only 

palpable ERMS; Fig. 5B, Table 1) and increased tumor multiplicity (mice with ≥ 2 ERMS; 

Table 1). In contrast, oncNRAS did not influence any of these parameters (Fig. 5C, Table 1).

Expression of the Hh downstream targets Gli1, Gli2, Ptch1 and Hhip (Fig. S3B, C, D) and 

of MyoD and MyHC (Fig. 5D, E, F) was not changed. However, in contrast to oncHRAS 

(Fig. 5D) or oncKRAS (Fig. 5E), oncNRAS significantly increased the expression of the 

early and late differentiation markers Myogenin and Tropomyosin 3, respectively (Fig. 5F; 

see Fig. S3E, F, G for immunehistochemical analyses of Tropomyosin 3 and MyHC). This 

went along with the appearance of multinucleated cells (Fig. 5G, right panel), which were 

rarely observed in the other cohorts (Fig. 5G, middle and left panels).

These data indicate that ERMS precursor lesions of Ptch+/- mice react differently to 

the induction of oncRAS isoforms. Thus, oncHRAS and oncKRAS mutations reinforce 

development of full-blown tumors, with oncKRAS being more aggressive. In contrast, 

oncNRAS apparently induces a more differentiated phenotype.

OncRAS mutations do not alter growth of already established ERMS of Ptch+/- mice

Next, oncRAS mutations were induced in mice with palpable tumors (approximately 0.5 cm 

diameter). As measured by μCT the sizes of all ERMS of the Ptch+/-oncRasfl/+Myf5CreER/wt 

cohorts were almost identical at onset of the study and after 7 weeks all tumors had grown 

(Fig. 6A, B, C, left panels). However, despite efficient Cre-mediated recombination (Fig. 

S2B) and enhanced intratumoral RAS activity (Fig. S4A), none of the oncRAS isoforms 

influenced ERMS growth (Fig. 6A, B, C; left panels). This was confirmed by the relative 

increase of individual tumor sizes and by Ki67 expression (Fig. 6A, B, C, middle and right 

panels). Moreover, the mutations had no impact on the expression of Hh and differentiation 

markers (Fig. S4B, C, D). Tamoxifen-mediated effects on tumor growth (Fig. S5 upper 

panel), expression of Gli1 and on myogenic differentiation markers (Fig. S5 lower panel) 

were also excluded.

These results suggest that none of the three oncRAS isoforms influences growth, 

proliferation or molecular characteristics of full-blown ERMS of Ptch+/- mice.
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OncRAS mutations do not affect expression of selected stem cell markers in ERMS of 
Ptch+/- mice

To test if oncRAS also regulates the expression of CSC genes in ERMS of Ptch+/- mice, 

the intratumoral protein level of ALDH1A1 was analyzed. ALDH1A1 protein expression 

was heterogeneous and did neither correlate with oncRAS induction at the precursor stage, 

(Fig. 7A) nor with induction at full-blown tumor stage (Fig. 7B). Equally, the CSC markers 

Cd34, Itga6, Myc, and Tgfbr1 that were upregulated by oncRAS in human ERMS cell lines, 

showed no significant differences compared to the controls (Fig. 7C, oncRAS-expressing 

ERMS derived from precursor lesions; Fig. 7D, ERMS that had received the oncRAS 

mutation at the full-blown stage; please note that Lin28b, Cxcl8 and Wwc1 were not 

detected in ERMS or skeletal muscle). Thus, in contrast to human ERMS cell lines, oncRAS 

mutations rather do not influence the expression of stem cell markers in ERMS of Ptch+/- 

mice, at least not in the bulk of the tumors.

Discussion

Our data show that oncRAS mutations are advantageous for specific ERMS precursor 

lesions (murine ERMS model) and ERMS cell lines (human ERMS model) and alter the 

expression of CSC markers in a context- and isoform-dependend manner. In addition, 

oncRAS can decrease GLI1/GLI1 expression in cell lines derived from sporadic ERMS. 

Because concomitantly cellular proliferation was increased, the data suggest that HH 

signaling is not the main driver of growth of sporadic ERMS, although ERMS cell lines 

are sensitive to the GLI1/2 inhibitor GANT61 [38]. However, oncRAS might override the 

need for other growth stimuli such as GLI1, because it is a very potent proliferative stimulus. 

This also has been shown in medulloblastoma, in which oncHRAS circumvents HH pathway 

dependency, drives tumor growth and enhances metastatic behavior [39].

In ERMS cell lines, the MEK-ERK axis of oncRAS is of great importance for inhibition 

of GLI1/GLI1 expression. This is similar to a report showing that the MEK-ERK arm is 

required for an oncKRAS-mediated block of GLI1 expression in fibroblasts and pancreatic 

carcinoma cell lines [40]. Interestingly, this block needs DYRK1B. Because DYRK1B i) is 

important for rhabdomyosarcoma growth [41], ii) can block HH signaling [40], and iii) is a 

novel ERK2 substrate [42], it is possible that ERK represses the HH pathway via DYRK1B. 

However, this is pure speculation and remains to be analyzed in the future.

In contrast, Gli1 expression was not suppressed by oncRAS mutations in the Ptch+/- model, 

which to some extent supports the importance of the Hh pathway for ERMS.

In the Ptch+/- ERMS model and similar to ERMS cell lines, oncHRAS and oncKRAS 

enforced tumor proliferation when induced at the ERMS precursor stage. However, 

oncKRAS was more aggressive and additionally decreased ERMS-free survival. Together 

with the fact that induction of oncNRAS at the early tumor stage did not alter ERMS growth 

behavior, our results show that the three oncRAS isoforms can have different functions in 

ERMS pathogenesis.
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When induced at the precursor stage in Ptch+/- mice, oncNRAS did not influence ERMS 

growth and induced differentiation and myogenin expression. This is surprising, because in 

human ERMS oncNRAS mutations are rather associated with an aggressive phenotype and 

are the most frequent oncRAS mutations [10, 11]. In addition, the endogenous NRASQ61H 

mutation in human RD cells inhibits myogenic differentiation by repression of myogenin 

[43]. This discrepancy may reflect species-specific differences in tumor pathobiology. It 

is also possible that the NrasG12D mutation is not functional in Ptch+/- mice. However, 

this assumption is unlikely because oncNRAS-associated murine ERMS show elevated 

RAS activity (see Fig. S4A) and because the NrasG12D allele induces malignancies 

in other models (e.g. see [44]). Our data rather argue for the conclusion that oncRAS

associated processes differ from each other in dependency on their occurrence during tumor 

development. This hypothesis is supported by the fact that none of the oncRAS mutations 

influenced tumor growth when induced at the advanced tumor stage in the Ptch+/- model. 

Therefore, it is possible that induction of the oncNRAS mutation at a different stage (e.g. 

at an earlier time point), when the prospective tumor cells are molecularly different and 

permissive to the respective mutation, may result in a more aggressive ERMS growth. This 

scenario would be similar to many other cancer-related mutations that can show cell type, 

cell differentiation and tumorigenesis-stage specificity (for review see [45]).

Similar to LOH of 11p15.5, oncRAS mutations are generally considered as ERMS founding 

lesions [7]. However, our data on human cell lines show that oncRAS mutations also 

function as “advantageous mutations” for already established ERMS cells. In addition, 

the mutations seem to enlarge the ALDHhigh populations that potentially belong to cancer

initiating cells in sarcoma [34, 46]. Furthermore, oncRAS mutations induce the expression 

of several CSC markers in RUCH-2 cells. Therefore, it is possible that oncRAS can enhance 

ERMS development and proliferation by pushing the cells into a CSC phenotype. However, 

this is hypothetical and needs verification.

We currently do not know why oncRAS mutations do not affect growth of full-blown 

ERMS in Ptch+/- mice. Similar to human ERMS cell lines that are also derived from 

full-blown ERMS, ERMS of Ptch+/- mice contain ALDH1A1+ subpopulations and express 

CSC markers, which however are not modulated by oncRAS. Again, this discrepancy may 

reflect species-specific differences in tumor pathobiology or could be related to active Hh 

signaling. Yet it is also well possible that the full-blown murine tumors grow independently 

of RAS signaling. We currently also do not know if ERMS precursor lesions of Ptch+/- 

mice contain cells that could be specifically targeted by oncRAS. However, this seems likely 

because oncHRAS and oncKRAS germline mutations per se do not lead to ERMS, at least 

not in the mouse [14–17]. Therefore, both mutations must have affected growth of already 

existing ERMS precursor lesions in Ptch+/- mice. This argues for the intriguing possibility 

that oncRAS mutations are not the ERMS-initiating event but are advantageous for already 

inititated ERMS lesions.

If oncRAS mutations are not the ERMS-initiating event, the alternative could be LOH of 

11p15.5, which is much more common and occurs in almost all ERMS (e.g. 24/25 fusion

negative RMS described by [7]). LOH of 11p15.5 is usually accompanied by uniparental 

di-to pentasomy [7] with loss of maternal genetic information and duplication of the paternal 
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one, which results in IGF2 overexpression [47, 48]. Interestingly, LOH or uniparental 

disomy of 11p15.5 are also seen in ERMS from patients with Costello Syndrome or Noonan 

Syndrome [13, 49, 50]. Together with the facts that i) oncRas mutations in mice do not result 

in ERMS, ii) almost all ERMS overexpress IGF2, and iii) Igf2 is indispensable for ERMS 

formation, at least in mice [51], it is possible that LOH of 11p15.5, and not an oncRAS 

mutation, is the ERMS initiating event. Whether this is true or not remains to be analyzed in 

future studies.

Material and Methods

Cell lines

The human ERMS cell lines RUCH-2 and TE617.T were transduced with pMSCVpuro 
vector (Clontech, #634401) containing RAS sequences derived from pCaggs-NRASG12V 

[52], a KRASG12V plasmid [40] or pBabe puro HRASG12V (Addgene plasmid #905).

Source of cell lines, culture conditions and detailed experimental procedures for standard 

methods (e.g. BrdU incorporation assay, WST-1 and Aldefluor assays, flow cytometry, 

xenografting and analysis of gene or protein expression) are described in the Supplementary 

Material and Methods section.

Animal experiments

Studies have been approved by the Lower Saxony State Office for Consumer Protection 

and Food Safety (file numbers 33.14.42502-04-13/1284, 33.9-42502-04-12/0805 and 

33.14.42502-04-17/2534). Numbers of used animals are included in the respective figures or 

tables.

We used nude (Crl:NU(NCr)-Foxn1nu, Charles River), Ptch+/- [35], Myf5CreER [37], 

Rosa26R-LacZ (R26R, JAX stock #002073, [53]) mice, and HRAS (FR-HRASG12V; [16]), 

KRAS (LSL-K-RASG12D; [54]) or NRAS (NRAS LSL-G12D [44]) - collectively named 

oncRasfl/+ - mice for the studies. Detailed breedings, cre-recombination upon tamoxifen 

injection, tumor monitoring, μCT measurements and immunohistochemical analyses are 

described in the Supplementary Material and Methods section. Utilized oligonucleotides and 

antibodies are depicted in Supplementary Tables S1 and S2, respectively.

Statistical analyses

Statistical tests done by Microsoft® Excel® 2016 or GraphPad Prism 6 are given in the 

respective figure legends. Data were considered significant when p < 0.05. All tests were 

two-sided and p-values were not corrected for multiple testing.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Impact of oncRAS mutations on GLI1 expression in RUCH-2 and TE617.T ERMS 
cells.
A, B) Expression of HRAS, KRAS, NRAS or pMSCV was confirmed by RT-PCR on cDNA 

level (top), Western blot analyses for RAS protein (middle) and RAS activity by RAS-GTP 

pulldown assay (n=2, bottom) in (A) RUCH-2 and (B) TE617.T cell lines. HSC70 was 

used as loading control. C, D) GLI1 qRT-PCR analyses of (C) HRAS-, KRAS-, NRAS

expressing RUCH-2 and (D) KRAS- or H-/NRAS-expressing TE617.T cells compared to 

respective pMSCV control cells. E, F) GLI1 qRT-PCR analyses of (E) HRAS-, KRAS- or 
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NRAS-expressing RUCH-2 and (F) KRAS- or H-/NRAS-expressing TE617.T cells treated 

with 3 μM PI-103-, 10 μM U0126- or 0.5 μM SCH772984 compared to pMSCV cells. 

DMSO-treated (1 μl/ml) cells served as controls. Data are shown as fold induction over 

the expression level of solvent-treated pMSCV control cells, which was set to 1. Bars 

show mean + SEM. * or $: significant compared to solvent-treated pMSCV control or 

solvent-treated oncRAS cell line tested by Mann-Whitney test. */$ p<0.05, **/$$ p<0.01, 

***/$$$ p<0.001, ****/$$$$ p< 0.0001.
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Figure 2. Impact of ERK on GLI1 expression in RUCH-2 cells.
A)GLI1 expression (top) and representative pERK/ERK and pAKT/AKT Western blot 

analyses (bottom) (n=2) of KRAS-expressing RUCH-2 cells after siRNA (100 nM each)

mediated ERK1 and/or ERK2 knockdown with and without PI-103 treatment (3 μM) 

compared to scramble (scr) siRNA transfected KRAS-expressing RUCH-2 and pMSCV 

control cells. HSC70 served as loading control. B) Representative Western blot analyses 

(n=5) (left) and respective densitometric analyses (right) of GLI1 expression in cytosolic 

and nuclear fractions of HRAS-, KRAS- and NRAS-expressing RUCH-2 cells with or 
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without SCH772984 treatment in comparison to solvent-treated pMSCV control. Lamin 

B1 or α-Tubulin served as loading controls for nuclear or cytosolic fractions, respectively. 

Bars: mean + SEM. * or $: significant compared to solvent-treated pMSCV control or 

solvent-treated oncRAS cell line tested by Mann-Whitney test. */$ p<0.05, **/$$ p<0.01, 

***/$$$ p<0.001, ****/$$$$ p< 0.0001.
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Figure 3. Impact of oncRAS on growth of RUCH-2 and TE617.T cells and on GLI1 expression 
after xenotransplantation.
A, B) BrdU-incorporation (left) and WST-1 cell viability (right) assays of (A) RUCH-2 

(n=3) and (B) TE617.T (n=7) cells stably expressing HRAS, KRAS, NRAS or H-/NRAS. 

C, D) Mean tumor volume (± SEM), -fold tumor weight and -fold GLI1 expression of (C) 

RUCH-2 and (D) TE617.T xenotransplants expressing KRAS (n=8 mice), NRAS (n=8 mice) 

or H-/NRAS (n=6 mice) compared to respective pMSCV control tumors of the same mice 

(controls were all set to 1 for -fold tumor weight and -fold GLI1 expression). Bars: mean + 

SEM. * significant by multiple unpaired t-test (tumor growth curve) or Mann-Whitney test 

(BrdU and WST assay, tumor weight, GLI1 expression) in comparison to pMSCV controls. 

* p<0.05, ** p<0.01, *** p< 0.001, ****p< 0.0001.
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Figure 4. Impact of oncRAS on expression of stem cell markers in RUCH-2 cells.
A) Percentage of Aldefluorhigh (ALDHhigh) subpopulations of RUCH-2 cells stably 

expressing HRAS, KRAS, NRAS or pMSCV (n=3) measured by flow cytometry. B) 
Representative Western blot (n=2) (left) and corresponding densitometric analyses (right) 

of ALDH1A1 expression in HRAS-, KRAS- and NRAS-expressing RUCH-2 cells in 

comparison to RUCH-2 pMSCV control cells. Protein lysate of murine liver served as 

positive control. C) Mean fold regulation of 84 cancer stem cell associated genes in HRAS-, 

KRAS- and NRAS-expressing RUCH-2 cells compared to RUCH-2 pMSCV cells (n=2). D) 
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MYC qRT-PCR analyses and E) anti-SOX2 antibody stainings and percentage of SOX2+ 

nuclei of KRAS and NRAS-expressing RUCH-2 xenotransplants (n=8 or n=3 for MYC 
qRT-PCR or SOX2 stainings, respectively) compared to respective pMSCV control tumors 

of the same mice (set to 1 for MYC qRT-PCR). Bars in A and D: mean + SEM. Scale bars: 

100 μm. Arrows: SOX2+ nuclei.
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Figure 5. Impact of oncRAS mutations on progression and differentiation of ERMS precursors 
in Ptch+/- mice.
A, B, C) ERMS development in (A) Ptch+/-HRasfl/+Myf5CreER/wt, (B) Ptch+/-

KRasfl/+Myf5CreER/wt or (C) Ptch+/-NRasfl/+Myf5CreER/wt mice injected with tamoxifen at 

an age of 4 weeks in comparison to the control. Numbers of animals and tumors included 

in the experiments are given in Table 1. From left to right: overall survival, ERMS-free 

survival (only palpable ERMS), total ERMS incidence (palpable and non-palpable ERMS) 

and percentage of Ki67+ nuclei in ERMS tissue sections. Ki67 staining was done on 10 - 

22 mice of each cohort. Statistical evaluation was done by Log-rank (Mantel-Cox) testing 

for Kaplan-Meyer curves and by Chi-square testing for tumor incidence. Dots represent 

the mean percentage of Ki67+ nuclei in individual tumors. D, E, F) qRT-PCR analyses of 

MyoD, Myogenin, Tropomyosin 3 and Myosin heavy chain (MyHC) in ERMS shown as 

fold expression of the same gene in normal muscle of the same mouse, which was set to 1. 

G) Representative H&E stainings of ERMS. Close up: multinucleated cells. Scale bars: 100 

μm or 20 μm (close up). For all experiments untreated mice served as controls. Bars: mean 
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± SEM; dots: individual tumors. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 compared 

to control Ptch+/-oncRasfl/+Myf5CreER/wt mice from the respective cohort and tested by 

non-parametric t-tests (Mann-Whitney).
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Figure 6. Influence of oncRAS mutations on established ERMS in Ptch+/- mice.
A, B, C) ERMS growth monitored by μCT measurements before and 7 weeks after 

tamoxifen-mediated induction of the oncRAS mutations in (A) Ptch+/-HRasfl/+Myf5CreER/wt 

(B) Ptch+/-KRasfl/+Myf5CreER/wt or (C) Ptch+/-NRasfl/+Myf5CreER/wt mice. At least 12 

animals were analyzed per cohort. Left: mean relative tumor volumes before and 7 

weeks after injection (ln: logarithmic scale). Middle: relative growth of individual tumors 

(logarithmic scale). Right: percentage of Ki67+ nuclei in the tumors. Solvent-treated mice 

served as controls. All ERMS of the same mouse were analyzed as individual tumors. Dots: 
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results for individual tumors. Statistical analyses of mean tumor growth or the individual 

tumor growth and the percentage of Ki67+ nuclei were done by Student’s t-tests or non

parametric t-tests (Mann-Whitney), respectively.
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Figure 7. Expression of stem cell markers in oncRAS-expressing ERMS from Ptch+/- mice.
A, B) Representative Western blots (left) and respective densitometric analyses (right) 

for ALDH1A1 protein levels of tamoxifen-treated Ptch+/-HRasfl/+Myf5CreER/wt, Ptch+/-

KRasfl/+Myf5CreER/wt or Ptch+/-NRasfl/+Myf5CreER/wt mice with oncRAS mutations induced 

at the precursor (A) or the full-blown stage (B) in comparison to control mice. C, D) 
qRT-PCR analyses of Cd34, Itga6, Myc and Tgfbr1 in ERMS with oncRAS induction 

at the ERMS precursor stage (C) or at the full-blown ERMS stage (D) shown as fold 

expression of the same gene in normal muscle of the same mouse, which was set to 1. Dots: 

values from individual tumors. Statistical evaluation was done by non-parametric t-tests 

(Mann-Whitney). Bars: mean ± SEM.
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Table 1
Mice analyzed for the impact of oncRAS on ERMS precursor lesions

Treatment
Number 

of 
animals

Median 
overall 
survival 
(range)

Healthy // 
early death

Mice with 
ERMS 

(palpable 
and non-
palpable)

Mice with 
palpable 
ERMS

Mice with ≥ 
2 ERMS 
(palpable 
and non-
palpable)

Median 
latency 
time of 

palpable 
ERMS

Further findings 
(number of 

animals)

Ptch+/-HRasfl/+Myf5CreER/wt

Control 30 200 days 
(65 – 211) 18 // 12 17 (57 %) 14 (47 %) 6 (20 %) 97 days

Cysts/Cavernous 
angioma(4), 

Medullo-
blastoma(3), 
Papilloma (1)

Tamoxifen 29 200 days 
(78 – 204) 19 // 9 22 (76 %) 19 (66 %) 6 (21 %) 85 days

Cysts/ Cavernous 
angioma(4), 

Medullo-
blastoma(1), 
Papilloma (1)

Ptch+/-KRasfl/+Myf5CreER/wt 

Control 21 200 days 
(83 – 209) 14 // 7 9 (43 %) 8 (38 %) 4 (19 %) 103 days

Cysts/ Cavernous 
angioma (2), 

Medullo-
blastoma (3)

Tamoxifen 24 122 days 
(69 – 204) 6 // 18 20 (83 %) 17 (58 %) 12 (50 %) 85 days

Cysts/ Cavernous 
angioma (4), 

Medullo-
blastoma (0)

Ptch+/-NRasfl/+Myf5CreER/wt 

Control 26 200 days 
(131 –212) 20 // 6 16 (62 %) 14 (54 %) 10 (38 %) 70 days

Cysts/ Cavernous 
angioma (4), 

Medullo-
blastoma (2)

Tamoxifen 26 200 days 
(76 – 206) 21 // 5 19 (73 %) 17 (65 %) 8 (31 %) 94 days

Cysts/ Cavernous 
angioma (6), 

Medullo-
blastoma (1)

Ptch+/- 

Control 24 200 days 
(60 - 208) 20 // 4 12 (50 %) 12 (50 %) 3 (13 %) 80 days

Cysts/ Cavernous 
angioma (5), 

Medullo-
blastoma (0)

Tamoxifen 26 200 days 
(90 – 209) 19 // 7 12 (46 %) 12 (46 %) 4 (15 %) 105 days

Cysts/ Cavernous 
angioma (4), 

Medullo-
blastoma (2)

The ERMS-like tumors develop mostly at the extremities. They may also develop in muscles of the belly and the back. Intraperitoneal localized 
tumors were discovered by manual palpation or upon autopsy, as were very small tumors. There were no significant differences in tumor locations 
between the genotypes. Medulloblastomas harm the animals. These mice were immediately sacrificed and checked for non-palpable ERMS.
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