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Abstract

Accumulating evidence in adults has shown that curiosity and surprise enhance memory via 

activity in the hippocampus, prefrontal cortex, and dopaminergic areas. Based on findings of 

how these brain areas and their inter-connections develop during childhood and adolescence, 

we discuss how the effects of curiosity and surprise on memory may develop during 

childhood and adolescence. We predict that the maturation of brain areas potentially related 

to curiosity elicitation (hippocampus, anterior cingulate cortex [ACC], prefrontal cortex) and 

protracted development of hippocampal-PFC and ACC-PFC connectivity lead to differential 

effects of curiosity and surprise on memory during childhood and adolescence. Our predictions 

are centered within the PACE (Prediction-Appraisal-Curiosity-Exploration) Framework which 

proposes multiple levels of analyses of how curiosity is elicited and enhances memory.
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Introduction

Curiosity, the desire to acquire new information, is often described as an epistemic emotion 

and is accompanied by positive affect [1]. It has been shown to be a powerful driver 

of learning, especially in children [2]. In educational settings, curiosity for scientific 

knowledge is a major motivation for long-term involvement in STEM subjects and 

predicts academic performance [3,4]. Experiencing and expressing higher curiosity during 

kindergarten predicts academic achievement in primary school, with an even larger influence 

in children from families with lower socio-economic status [5]. But what are the neural 

underpinnings underlying the positive effects of curiosity on learning and memory, and how 

do they develop? Answers to this question would ultimately allow us to design tailored 
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educational approaches to optimally harness how curiosity differently affects learning 

across development. Furthermore, a neuroscientific approach to study curiosity development 

offers a unique opportunity to investigate how neural mechanisms underlying learning are 

modulated by the drive to learn and the satisfaction that comes from learning the desired 

information.

A plethora of research has consistently demonstrated that infants and young children explore 

their environment actively in systematic ways, likely to be driven by a drive to reduce 

uncertainty and to close knowledge gaps - both key markers of curiosity [6–9]. In addition, 

the educational literature has emphasized the cognitive and affective mechanisms promoting 

school-aged children’s and adolescents’ long-lasting interest and curiosity in such domains 

as mathematics or physics [10–12]. Yet, we have a limited understanding of how different 

levels of curiosity affect children’s learning because hardly any studies to date have directly 

measured curiosity or asked children to report on their states of curiosity. Thus, children’s 

(subjective) desire to learn and satisfaction in experiencing desired information has rarely 

been taken into account when examining curiosity-based learning. However, a fledgling line 

of research in psychology and neuroscience on curiosity in young adults (i.e., 18-30 years of 

age) has consistently demonstrated how pre-information curiosity, post-information interest, 

and surprise enhance learning and memory in adults [13–18]. These studies have been 

employing a trivia paradigm in which participants anticipate answers to general knowledge 

questions that are associated with varying levels of curiosity about the answer. Using an 

age-appropriate version of the trivia paradigm, we recently investigated how curiosity and 

surprise affect memory in children between 10 and 14 years [19]. We found that younger 

children (10-12 years) and adolescents (12-14 years) demonstrated enhanced memory for 

answers to trivia questions for which they were curious relative to answers to trivia questions 

about which they were not curious. Furthermore, we found that adolescents - but not 

children - showed better memory for answers to trivia questions that they judged as more 

interesting than initially expected. These initial results suggest that states of curiosity can 

indeed be harnessed to facilitate learning in children and adolescents. However, they also 

point to potential differences in the underlying mechanisms of how positive surprise affects 

learning across development.

To better understand how curiosity-based learning might develop, we turn to theoretical 

ideas and current findings in cognitive neuroscience for this opinion piece. In adults, 

cognitive neuroscience research has started to differentiate the components and neural 

circuits associated with curiosity-based learning, thereby bridging the fields of memory 

and motivation [14,15,20–22]. Of note, these two rich fields have mostly been studied in 

isolation, especially in children. Therefore, we aim to close this gap by integrating recent 

findings and theoretical ideas on the neural mechanisms of curiosity with findings from 

developmental cognitive neuroscience to identify candidate mechanisms facilitating the 

differential effects of curiosity and interest on learning and memory across development.
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The Prediction, Appraisal, Curiosity, and Exploration (PACE) Framework 

and its relationship to child and adolescent development

An emerging field in neuroscience on curiosity has started to elucidate the neural 

underpinnings underlying states of curiosity in hon-human primates as well as humans (for 

reviews, see [13,21,23–25]. Across different experimental manipulations of curiosity (e.g., 

trivia questions, magic tricks, blurred images, or morbid stimuli), studies in humans have 

consistently shown that states of curiosity elicit activity in dopaminergic circuit regions, 

specifically in the ventral striatum [14,15,20,22,26–28]. In addition, one study has shown 

that the enhancing effects of curiosity on human long-term memory are supported by activity 

in the ventral striatum and hippocampus suggesting enhanced hippocampus-dependent 

memory formation via interactions with the dopaminergic circuit [15] (see also, [22]).

Recently, Gruber and Ranganath (2019) proposed a framework that integrates the 

emergent research on curiosity, drawing from a broad range of evidence and theoretical 

models from psychology and neuroscience on how novelty and prediction errors trigger 

exploration and information-seeking [21]. Specifically, Gruber and Ranganath proposed 

that the effects of curiosity on memory can be understood as emerging from a cycle 

that involves Prediction errors, Appraisal, Curiosity, and Exploration (PACE). This 

framework proposes that curiosity is first triggered by significant prediction errors, in 

particular hippocampus-dependent contextual prediction errors and anterior cingulate cortex-

dependent informational prediction errors. While prediction errors in the hippocampus are 

proposed to generally result from encountering novel or unexpected contexts, prediction 

errors in the anterior cingulate cortex (ACC) depend on cognitive conflict resulting from 

previous knowledge. PACE suggests that these prediction errors are appraised via lateral 

prefrontal cortex (PFC) mechanisms as an indicator of information that could be valuable in 

the future. This cycle enhances memory encoding through increased attention, exploration, 

and information-seeking via the dopaminergic circuit and enhances hippocampus-dependent 

memory of curiosity-related information [21]. Below, we outline how the proposed 

processes within the PACE framework might help to ultimately better understand the 

development of curiosity and its effect on memory.

Age differences in context-based and information-based prediction errors

Hippocampal context-based prediction errors

It has been proposed that the hippocampus forms cognitive maps that allow one to generate 

predictions based on past experiences with similar contexts and situations [29]. Violations of 

such generated predictions, in turn, may lead to hippocampal responses that can potentially 

trigger exploration to resolve this uncertainty and to refine cognitive maps [29]. Thus, 

the hippocampus can be seen as providing the foundation for curiosity through novelty- 

or contextbased prediction errors that lead to an inherent drive for curiosity-stimulated 

exploration [21]. Consistent with findings on how the hippocampus supports exploratory 

eye movements related to prediction errors and novelty [30–32], it has been shown that eye 

movements related to curiosity predict exploration and attention towards novel information 

[33,34]. Furthermore, one study investigated individual differences in the strength of one 
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major anatomical pathway connecting the hippocampus with the PFC - the fornix - and 

its relationship with curiosity [35]. The authors found that individual differences in the 

microstructure of the fornix predicted specifically diversive curiosity - a curiosity trait that is 

related to broad exploration triggered by novel events [35,36].

Consistent with these findings in young adults, infants show visual preferences for exploring 

novel objects, and young children prefer to explore objects if they do not have complete 

understanding of their functioning [37,38]. At the same time, the hippocampus continues to 

develop in early and middle childhood and supports improvements in memory precision and 

flexibility [39]. Continued hippocampal maturation may thus contribute to age differences 

in the ways in which context-based prediction errors stimulate curiosity in younger 

children. In addition, studies in young adults have shown that surprising information elicits 

functional connectivity between the hippocampus and the PFC [40–42]. Critically, there are 

developmental differences in connectivity between the hippocampus and the PFC (e.g. via 

the fornix or the uncinate fasciculus), which may also contribute to age differences in how 

hippocampus-mediated prediction errors elicit curiosity. The uncinate fasciculus continues 

to develop throughout middle childhood [43] and the strength of the uncinate fasciculus 

microstructure correlates with age-related increases in the ability to modulate attention 

towards relevant information in children (7-11 years) [44]. Furthermore, a longitudinal study 

[45] using resting-state functional magnetic resonance imaging found that hippocampus-

PFC functional connections only emerged by 13 years of age, suggesting that the transition 

to adolescence may be an important period for the development of the connections between 

the hippocampus and the PFC.

Therefore, hippocampal context-based prediction errors may support the computation of 

unexpected or novel contextual information which may provide the foundation for curiosity 

in childhood and adolescence. This process may differ from that observed in adults because 

the relevant functions of the hippocampus and its connections to other subcortical and 

cortical networks are still developing. While we expect that hippocampal maturation would 

represent the major source of age differences in hippocampal prediction errors earlier in 

childhood, changes in hippocampal-PFC connections in the transition to adolescence are 

expected to make greater contributions to curiosity and its effect on memory later in child 

development.

Information-related prediction errors in the ACC

While the hippocampus might compute contrasts in map-like representations elicited by 

prediction errors, PACE further proposes that the ACC supports the cognitive conflict that is 

experienced due to information-based prediction errors and information gaps [21]. This idea 

is in line with the theoretical conceptualization of information gaps in terms of cognitive 

conflict [46] and the neuroscientific literature that has shown enhanced ACC and lateral PFC 

activity when participants experience cognitive conflict (e.g., [47,48]), including increased 

ACC activity during the tip-of-the-tongue experience - a phenomenon that has been related 

to high levels of curiosity [49,50]. Consistent with the proposed ACC-related cognitive 

conflict component within the PACE framework, several studies have shown involvement 

of the ACC when humans and non-human primates await or choose information associated 
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with high curiosity, potentially supporting the idea that the ACC might signal information 

gaps due to cognitive conflicts that can trigger curiosity [15,22,26–28,51].

During development, age differences in information-related prediction errors supported by 

the ACC may contribute to differences in whether and how such prediction errors stimulate 

curiosity. While some signatures of cognitive conflict are present even in infancy [52], the 

ACC continues to mature in childhood and adolescence [53]. In particular, the amplitude 

of the error-related negativity (ERN), an EEG component associated with the detection and 

processing of cognitive conflict, increases with age between 8 and 19 years [54]. Thus, 

protracted development in the neural circuits supporting conflict processing could alter how 

information-related prediction errors affect the stimulation of curiosity during development. 

In particular, ACC input associated with conflict monitoring may play an important role 

in stimulating appraisal-based processes in the lateral PFC. Although Fandakova and 

colleagues [55] found that 8-12 year old children engaged the ACC and anterior insula 

more strongly during inaccurate and uncertain responses, only 10-12-year-olds but not 8-10-

year-olds recruited the lateral PFC more strongly for decisions to report uncertainty. Further 

longitudinal analyses demonstrated that 8-10-year-olds who exhibited greater activation of 

regions associated with cognitive conflict at a first assessment showed greater increases 

in PFC activation for uncertain responses 1.5 years later [55]. Consistent with findings of 

protracted network segregation in childhood [56–58], this initial evidence might suggest 

that input signals from regions associated with cognitive conflict might contribute to 

the development of more differentiated appraisal in PFC that would ultimately lead to 

curiosity. Thus, one hypothesis for future research is that experiencing more information-

related prediction errors in a given domain earlier in childhood may contribute to faster 

development of more efficient PFC-based appraisal.

Taken together, after experiencing information gaps due to cognitive conflicts, children 

and adolescents may become more likely to engage in more differentiated curiosity-driven 

exploration with increasing age as ACC-based conflict processing improves and contributes 

to the development of more efficient/differentiated PFC-based appraisal.

Protracted development of appraisal supported by the lateral PFC

The PACE framework lays out that context- and information-based prediction errors do not 

elicit curiosity in an obligatory manner, but that prediction errors are appraised involving 

lateral PFC functions [21] (see also, [59,60]). According to PACE, appraisal of prediction 

errors can lead to different degrees of curiosity or alternatively to anxiety-related inhibition 

if one does not have sufficient capability to resolve the uncertainty [21,61]. Consistent with 

the idea of prefrontal appraisal processes, several neuroimaging studies in young adults 

have shown lateral PFC activity along with activity in dopaminergic mesolimbic regions 

when curiosity is elicited [14,15,27,28] (for reviews, see [21,23]). These findings suggest 

that PFC-based appraisal may be needed to stimulate dopaminergic functions to modulate 

hippocampus-dependent learning.

Lateral PFC is among the brain regions that shows protracted maturation up to young 

adulthood [62–64]. Gray matter volume in lateral PFC increases in early childhood, 

followed by thinning starting around age 9-10 years and continuing through adolescence 
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[65]. A recent study provided hints that structural changes in the PFC are related to the 

development of appraisal processes [66]. This longitudinal study examined metamemory 

development in children between 7 and 15 years. Metamemory - the ability to appraise, 

self-reflect, and regulate learning and memory outcomes - continued to improve over 

time aligned to structural changes in the PFC. These findings based on the appraisal of 

memory retrieval suggest that appraisal processes may develop throughout adolescence, 

reflecting protracted PFC maturation (see also [55]). Thus, across development curiosity 

may be elicited to a different degree based on the maturational status of lateral PFC. 

More specifically, if appraisal processes are still developing in younger children, we expect 

that (1) they show less lateral PFC modulation by context-based and/or information-based 

prediction errors and (2) are overall more likely to report higher curiosity rather than 

differentiating between information associated with high vs. low curiosity as older children 

and adults do. Evolutionarily, there might be an obligatory drive for curiosity in early 

development or at least an inherent bias towards curiosity over anxiety (cf. [29]) as 

prefrontal appraisal processes are still maturing. The protracted development of appraisal 

processes aligned to PFC maturation may be one neural mechanism enabling an extended 

exploratory childhood period [67], in which context- and information-related prediction 

errors may trigger curiosity directly. Future research is necessary to test these hypotheses, 

but they are consistent with observations that younger children are more likely to show 

greater interest across a variety of different academic domains, whereas older children have 

fewer, but clearly differentiated domains of interest [68]. On the neural level, our hypotheses 

are consistent with research demonstrating that the extent to which lateral PFC activity 

selectively supports task-relevant versus task-irrelevant information increases with age in 

8-13 year-olds [44].

Taking a neuroscientific approach to the development of appraisal processes in service of 

curiosity and learning can offer unique insights into the interactions of processes associated 

with the drive to learn (related to dopaminergic circuit functions) and learning itself (related 

to the hippocampus and memory circuits more generally). For example, our findings that 

showed that information prediction errors enhanced memory in adolescents more strongly 

than in children [19] point to an interaction between the developing PFC appraisal processes 

and dopaminergic neuromodulation of hippocampus-dependent memory. These interactions 

are particularly prominent in guiding learning in adolescence [69–71] and may enhance 

curiosity-based learning. In younger children in contrast, the satisfaction associated with 

learning may emerge from direct triggering of curiosity by context- and information-related 

prediction errors. These ideas are consistent with postulated changes in the extent to 

which cognitive and affective components (cf., [68,72]) drive curiosity-based learning 

in development. Ultimately, a neuroscientific approach to the development of appraisal 

processes in curiosity-based learning will offer unique insights into how these processes 

interact with the drive to learn within the dopaminergic system and hippocampus-based 

learning and exploration. In addition, future research might eventually point to optimal ways 

to harness curiosity-based learning across child development.
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Conclusion

The PACE framework offers an excellent starting point for investigating how brain 

maturation contributes to curiosity and its effects on learning in childhood and adolescence. 

First, we expect that hippocampus- and ACC-related prediction errors (i.e., via novelty and 

information gaps, respectively) and their effects on curiosity-driven exploration underlie 

age differences during development due to the ongoing development of these structures. 

Second, based on the different maturational trajectories of the hippocampus and the ACC, 

we propose that younger children will show differences to adults in hippocampus-related 

novelty prediction errors and how they stimulate curiosity. In contrast, older children 

and adolescents are expected to show differences to adults primarily in ACC-related 

prediction errors due to cognitive conflict. Finally, as the lateral PFC and its connections 

to hippocampus and ACC continue to develop, we expect more refined PFC-based appraisal 

for different strengths of prediction errors which parallels the development of more 

differentiated curiosity profiles on the behavioral level.
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Highlights

• Curiosity enhances memory via the hippocampus, prefrontal cortex, and 

ventral striatum

• Development of curiosity and its effect on memory in childhood/adolescence 

not well understood

• Maturation of curiosity-promoting brain functions might contribute to 

increasing benefits of curiosity for learning

• Harnessing curiosity in education might need differential approaches across 

child development
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Figure 1. Predictions on the neural correlates of curiosity elicitation during development.
Our predictions are centred within the PACE (Prediction, Appraisal, Curiosity, and 

Exploration) Framework which proposes multiple levels of analyses of how curiosity 

is elicited and how it enhances memory (Gruber & Ranganath, 2019). In the PACE 

Framework, curiosity is triggered by significant prediction errors in the hippocampus 

and the anterior cingulate cortex (ACC). While prediction errors in the hippocampus 

are proposed to generally result from encountering novel or unexpected contexts (i.e., 

contextual prediction errors), prediction errors in the ACC are triggered by cognitive 

conflict resulting from previous knowledge (i.e., informational prediction errors). PACE 

suggests that these prediction errors are appraised via lateral prefrontal cortex (PFC) 

mechanisms in order to evaluate whether the information could be valuable in the future. 

When curiosity is triggered, a PACE cycle enhances memory encoding through increased 

attention, exploration, and information-seeking via the dopaminergic circuit, leading to 

enhanced hippocampus-dependent memory of curiosity-related information. We predict that 

in young children (left graph) due to ongoing development of the hippocampus and the 

ACC (indicated by green arrows), hippocampus- and ACC-dependent prediction errors will 

elicit curiosity in a rather obligatory manner without a strong contribution of PFC-related 

appraisal processes (indicated by green dashed lines). In older children (middle graph), we 

expect that age differences in curiosity will primarily result from ongoing development 

of ACC, PFC along with hippocampal-PFC and ACC-PFC connections (indicated by 

green arrows and dashed lines, respectively). In adolescents (right graph), protracted PFC 

development along with connections between the PFC and dopaminergic circuit areas (i.e., 

ventral striatum and SN/VTA) are proposed as the key mechanisms eliciting curiosity. 

While brain development in these age groups is not limited to the highlighted regions and 

their connections, we only depicted those aspects that are proposed to drive corresponding 

differences in curiosity.

Gruber and Fandakova Page 13

Curr Opin Behav Sci. Author manuscript; available in PMC 2022 July 11.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts


	Abstract
	Introduction
	The Prediction, Appraisal, Curiosity, and Exploration (PACE) Framework and its relationship to child and adolescent development
	Age differences in context-based and information-based prediction errors
	Hippocampal context-based prediction errors
	Information-related prediction errors in the ACC
	Protracted development of appraisal supported by the lateral PFC

	Conclusion
	References
	Figure 1

