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Abstract

Objective: We performed a systematic review to summarize the efficacy and safety
of in utero stem cells application in preclinical models with myelomeningocele
(MMC).

Methods: The study was registered with PROSPERO (CRD42019160399). We
searched MEDLINE, Embase, Web of Science, Scopus and CENTRAL for publications
articles on stem cell therapy in animal fetuses with MMC until May 2020. Publi-
cation quality was assessed by the SYRCLE's tool. Meta-analyses were pooled if
studies were done in the same animal model providing similar type of stem cell used
and outcome measurements. Narrative synthesis was performed for studies that
could not be pooled.

Results: Nineteen and seven studies were included in narrative and quantitative
syntheses, respectively. Most used mesenchymal stem cells (MSCs) and primarily
involved ovine and rodent models. Both intra-amniotic injection of allogeneic am-
niotic fluid (AF)-MSCs in rat MMC model and the application of human placental
(P)-MSCs to the spinal cord during fetal surgery in MMC ovine model did not
compromise fetal survival rates at term (rat model, relative risk [RR] 1.03, 95% CI
0.92-1.16; ovine model, RR 0.94, 95% CIl 0.78-1.13). A single intra-amniotic in-
jection of allogeneic AF-MSCs into rat MMC model was associated with a higher
rate of complete defect coverage compared to saline injection (RR 16.35, 95% ClI
3.27-81.79). The incorporation of human P-MSCs as a therapeutic adjunct to fetal
surgery in the ovine MMC model significantly improved sheep locomotor rating
scale after birth (mean difference 5.18, 95% Cl 3.36-6.99).

Conclusions: Stem cell application during prenatal period in preclinical animal

models is safe and effective.
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Key Points

1 | INTRODUCTION

Myelomeningocele (MMC) is a severe congenital malformation of the
central nervous system resulting from an incomplete closure of the
neural tube during the third-fourth week of embryonic development.*
The prevalence of MMC varies greatly among geographical areas
ranging from 0.3 to 59.0 cases per 10,000 births.2 MMC is charac-
terised by the protrusion of the neural placode and its meninges
through a malformed vertebral arch and skin defect. The condition can
be detected by prenatal ultrasound scan as early as the first trimester;
however, the majority of cases are diagnosed during the second
trimester (anomaly) ultrasound scan.>* Apart from preventive therapy
using periconceptual vitamins such as folic acid, current management
following prenatal diagnosis may include termination of pregnancy,
postnatal or more recently fetal surgery.’ The rationale for fetal repair
before birth is that MMC is a ‘progressive’ condition with cumulative
spinal cord functional loss throughout gestation, as demonstrated in
clinical and animal studies.®® Fetal surgery can arrest this deteriora-
tion and improve the patients' ability to walk unaided at 30-month
old.”"** However, the benefit of the surgery to bladder function is still
under review.?71¢ Despite these improvements, there are several
shortcomings of fetal surgery. Although the number of centres offer-
ing fetal surgery for MMC has been increasing,*’ global availability is
still limited. Furthermore, fetal surgery is usually performed in the late
second trimester, between 23 and 26 weeks' gestation, to reduce the
risk of chorioamniotic membrane separation and associated preterm
birth.1®1? Moreover, fetal surgery is not a cure. When considering
patient outcomes at 30-month-old age; for example, approximately
half of the fetal treated patients have to rely on clean intermittent
catheterization to pass urine and more than half cannot walk without
the aid of orthosis.*%*2

Additional interventions during fetal life such as the use of stem
cells, may improve the shortcomings of fetal surgery. Stem cell
transplantation, particularly of mesenchymal stem cells (MSCs), have
been reported in both animal and clinical studies for spinal cord
injury.2°=22 |n clinical cases of individuals suffering from spinal cord

What's already known about this topic?

e Myelomeningocele (MMC) is a severe congenital malformation of the central nervous
system causing lifelong sensory and motor impairments, bowel and bladder dysfunctions,
and orthopaedic disabilities

e Fetal surgery for MMC reduces ventriculoperitoneal shunt requirement, increase the ability
to walk of the affected children.

What does this study add?

o Safety and efficacy evidence of in utero stem cell application in preclinical MMC settings

e The application of in utero mesenchymal stem cells is safe and effective in inducing defect

coverage and improve motor function in small and large animal models, respectively

injury, stem cell therapy improves light-touch and pinprick sensory
function, bladder function and also increases the score of the daily
living activities when compared to patients who receive only reha-
bilitation.?? For treatment of MMC, in utero stem cell therapy has
been reported to improve outcome in several animal studies, but as
yet no human trials have been conducted.

Several animal models have been used to evaluate pathophysi-
ology and treatment options for MMC. These models can be divided
into surgically and non-surgically induced models. All ovine, rabbit and
chick models involve surgical manipulation; laminectomy and resection
of dura mater, to create an MMC-like lesion.?>?# In contrast, in the rat
model, the lesion is induced by gavaging retinoic acid to pregnant dams
early in gestation. Retinoic acid is a well-known teratogen that disrupts
the process of neural tube closure leading to the MMC defect in the
pups.2® All of the aforementioned models, both surgical and non-sur-
gical, have been applied to study feasibility, safety and efficacy of in
utero stem cell transplantation for MMC.

In this study, we systematically reviewed the application of stem
cells in preclinical animal models of MMC with regards to their
safety, efficacy and to justify the possibility of translation into a

clinical study.

2 | MATERIALS AND METHODS

This systematic review was conducted according to the Preferred
Reporting Items for Systematic Review and Meta-analyses guidelines
(www.prisma-statement.org).2® Our protocol was registered with the
International Prospective Register of Systematic Reviews (PROS-
PERO; CRD42019160399) before commencement.

2.1 | Literature search strategy

An electronic literature search was performed in MEDLINE
(PubMed), Embase, Web of Science, Scopus and the Cochrane Library


http://www.prisma-statement.org/
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from inception until May 2020. The search strategy included both
Medical Subject Headings term and free text words (Data S1). Topic-
related reviews were manually searched to retrieve additional rele-
vant articles. Endnote X9 (Thomson Reuters) was used to remove
duplicate studies based on names of the authors, titles, and year of
publications.

2.2 | Inclusion and exclusion criteria

The population was MMC animals receiving an in vivo, in utero
application of stem cells. The intervention included any type of stem
cells; embryonic stem cells (ESCs), pluripotent stem cells (IPSCs),
neuronal stem cells (NSCs), neural crest stem cells (NCSCs) and
MSCs. Comparator group was animals receiving only fetal surgery,
saline injection or no treatment at all. Studies were excluded if stem
cells were administered after birth or was published in non-English
language. Outcomes examined were related to safety, survival and
efficacy as described below. No date restrictions were applied.
Editorial comments, review studies and publications without full-text

accessibility were excluded.

2.3 | Study selection

Titles and abstracts were independently screened and selected for
relevance by two reviewers (Yada Kunpalin and Sindhu Sub-
ramaniam). A full-text review was performed for all the selected
studies based on the aforementioned criteria. Any disagreement was
resolved through discussion with a third reviewer (Silvia Perin). In
case of overlapping studies, only the most recent publication was
included.

2.4 | Data extraction

A predefined pro forma was created by the reviewers before data
extraction. Extracted information included year of publication, types
of animal model, number of animals, sample randomization and
gestation age (GA) when the defect was created. Treatment infor-
mation included source and types of stem cells, dosage, type of ve-
hicles, controls and GA when stem cells were administered, and GA
at euthanasia. Extracted outcomes were animal survival rate, defect
coverage, spinal cord histopathology and neurological function.

Corresponding authors were contacted for further/missing data.

2.5 | Quality appraisal

Risk of bias was independently assessed by Yada Kunpalin and
Sindhu Subramaniam by the Systematic Review Centre for Labora-

tory Animal Experimentation's (SYRCLE's) tool for animal

DIAGNOSIS-WILEY— L%

interventional studies.?” Discrepancies between the reviewers were

resolved through consensus by the third reviewer (Silvia Perin).

2.6 | Data synthesis and statistical methods
Meta-analyses were performed only if studies were consistent with
regards to the type of animal model, stem cells and outcome mea-
surements. For studies that could not be pooled, we present a
narrative data synthesis with descriptive statistics.

Meta-analyses were carried out using the software provided by
the Cochrane Collaboration, Review Manager (RevMan) version 5.3.
Quantification of the heterogeneity across the included studies was
assessed by chi-squared value test and inconsistency index (1?). I? of
>50% and <0.1 of a value of chi-square were deemed to have sig-
nificant heterogeneity.?® Consequently, a random-effect model was
used to analyse the data; otherwise, the fixed-effect model was
applied. In terms of animal survival rate and MMC defect coverage
rate, the results were represented by relative risk (RR). For Sheep
Locomotor Rating (SLR) scale, the improvement was displayed with

mean difference.

3 | RESULTS

3.1 | Study selection

Electronic and manual search yielded 648 records published from
inception until May 2020; 86 from MEDLINE (PubMed), 217 from
Embase, 132 from Web of Science, 210 from Scopus and none from
the Cochrane Library. Additional records were retrieved from manual
search of reference lists and directly from previous publications of
research groups. After removing duplicates, the remaining 358 re-
cords were screened for relevant titles and abstracts. Of these, 304
records were excluded as irrelevant (Figure 1). A total number of 54
records were reviewed as full-text, of which 26 studies were included
in the qualitative synthesis. Reasons for exclusion were insufficient
information (conference abstract/poster presentations or article
comments (25%, 7/28), inadequate study design (review/book chap-
ter) (43%, 12/28), no in vivo animal study included (21%, 6/28), no
stem cells application (7%, 2/28) and postnatal stem cell therapy only
(4%, 1/28; Figure 1).

3.2 | Risk of bias assessment

Risk of bias of the included studies is shown in Figure 2. The majority
of the studies had a high risk of bias owing to selective outcome
reporting (23.1%, 6/26), inadequate description of sequence gener-
ation (19.2%, 5/26), allocation concealment (19.2%, 5/26) and care-
giver/researcher blinding (19.2%, 5/26). None of the included studies

completely described information regarding animal housing and/or
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Records identified through Records identified through

database searching other sources

(n=645) (n=3)

NS

Non-duplicate records screened
(n=358)

Excluded as irrelevant
(n=304)

v

Full-text articles excluded (n= 28)

] [ Eligibili ][ Screeni ] [ Idemiﬁcation]

Included

AN

Full-text articles assessed
for eligibility »| = Conference abstracts/posters or article comments (n=7)

(n=54) * Review and book chapter (n=12)
= No animal study (n=6)
= No stem cell application (n=2)
= Postnatal stem cell therapy (n=1)

v
Studies included in
qualitative synthesis
(n=26)

Studies included in Studies included in
quantitative synthesis narrative synthesis
(n=7) (n=19)

FIGURE 1 Flow diagram of illustrated study selection (adapted from preferred reporting items for systematic reviews and meta-analysis

[PRISMA])?**

0 30% 40%

X

10% 20%
Sequence generation
Baseline characteristics
Allocation concealment
Random housing

Blinding (caregivers)

Random outcome assessment
Blinding (assessor)
Incomplete outcome data
Selective outcome reporting

Other sources of bias

mYes mNo

50%

60% 70% 80% 90% 100%

Unclear

FIGURE 2 Risk of bias assessment by SYRCLE's risk of bias tool for animal studies® [Colour figure can be viewed at wileyonlinelibrary.com]
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random/blinding method for outcome assessment as per recom-
mended by ARRIVE guidelines.??

3.3 | Study characteristics

The characteristics of the included studies, such as type and source
of stem cells, animal models and available outcomes, are shown in
Table 1.39755 Most studies used MSCs (77%, 20/26), with the placenta,
amniotic fluid and bone marrow as the source of cells. Xenogeneic
stem cell transplantation with human cells (ESCs, NCSCs, bone
marrow [BM]-MSCs, amniotic fluid [AF]-MSCs, placental [P]-MSCs)
was performed in almost half of the studies (46%, 12/26). The majority
of animal models studied were rat strains (58%, 15/26; Wistar, Spra-
gue Dawley or Lewis) all of which had MMC created using retinoic acid
(40 or 60 mg/kg). Studies in ovine (27%, 7/26) all used surgical creation
of MMC between 75 and 112 days GA. Chicken embryo was assessed
in three studies (11%, 3/26) with MMC created surgically at
Hamburger and Hamilton stage 18-19. One study was performed in
the rabbit (4%, 1/26) with MMC surgically created at E18-19 days. All
included studies evaluated animals immediately after term delivery
and/or up to 24 h after birth.

3.4 | Animal survival

Twenty-one studies reported data on animal survival after in utero

30-82,36-39.41-51.54 13 (62%) of them presented

stem cell application,
data on survival rates in both control and treatment groups. Overall,
there was no significant effect of stem cell application on animal
survival rates (Table 2). Meta-analysis was possible in four studies in

13941743 and three

the retinoic acid-induced fetal rat MMC mode
studies in a surgical ovine MMC model.>®**5% The results showed
that in the rat MMC model, when compared to saline injection, intra-
amniotic injection of allogeneic AF-MSC at E17 of gestation, did not
affect animal survival (RR 1.03, 95% ClI 0.92-1.16; Figure 3A).
Similarly, animal survival was not different in MMC sheep
receiving application of human second trimester P-MSCs to the
spinal cord during fetal surgical closure of the MMC defect
(compared to the control group undergoing fetal surgery alone

(RR 0.94, 95% Cl 0.78-1.13; Figure 3B).

4 | EFFICACY OF TREATMENT

41 | Coverage of the MMC defect

Outcomes following defect coverage were reported in 13
studies.30-3236-41:43-46 The coverage was evaluated in a number of
ways (Table 3) such as gross complete defect coverage with
microscopic confirmation, absolute defect area at birth, and
adjusted defect length to original incision length and body length.

The most commonly used stem cells for this purpose were MSCs

DIAGNOSIS-WILEY— L%

(76.9%, 10/13); almost half of the studies were human xenogeneic
transplantation (38.5%, 5/13). Studies were conducted exclusively in
small/medium-size animal models; 69.2% (9/13) in rat species,
23.1% (3/13) in chicken embryos and 7.7% (1/13) in rabbit species.
Outcomes of defect coverage are summarized in Table 3.

Meta-analysis of defect coverage was possible in four studies in
the retinoic acid-induced fetal rat MMC model where there was
allogeneic intra-amniotic injection of AF-MSCs from normal rat fe-
tuses at E17. Stem cell injection was associated with a higher likeli-
hood of complete defect coverage when compared to control saline
injection (RR 16.35, 95% Cl 3.2-81.79)%7 %1 (Figure 3C). One further
study comparing the application of placental MSCs (P-MSCs) to that
of AF-MSCs in the same retinoic acid-induced fetal rat MMC model
at the same stage of gestation, demonstrated that there was no
difference in defect coverage (complete coverage; AF-MSC 10.7% vs.
P-MSCs 5.3%, p = 0.41).** In the surgically created rabbit model of
MMC, intra-amniotic injection of allogeneic AF-MSCs on the day of
MMC surgical creation (E22-23 days) significantly increased the
likelihood of defect coverage, with 50% of the animals showing some
degree of defect coverage; however, none had complete coverage.*®

In terms of human xenogeneic transplantation, one study found
that intra-amniotic injection of human AF-MSCs in the retinoic acid-
induced fetal rat MMC model at E17 significantly reduced the area of
the MMC defect compared to saline injection (Table 3).% Another
study demonstrated that in utero transplantation of 3-dimensional
(3D) skin generated from human AF-derived iPSCs resulted in more
rats having some degree of defect coverage compared to no trans-
plantation (Table 3).%

4.2 | Spinal cord histopathology and function

There were 11 studies reporting the effect of stem cells on spinal
cord histopathology and/or function with almost all using MSCs
(90.1%, 10/11); 63.6% (7/11) of
MSCs 3435:38:44:47.50-55 Eata| surgical ovine and retinoic acid-induced
fetal rat models of MMC were used in 54.5% (6/11) and 45.5% (5/11)

of the studies, respectively. Improvement of spinal cord outcomes are

studies applied human

shown in Table 4. Meta-analysis to study the spinal cord function was
possible in five studies in the surgically created ovine model of MMC
(Figure 3D). Incorporation of P-MSCs at the time of MMC fetal
surgical closure improved motor function of the lower limbs
compared to fetal surgery alone, as determined by SLR scale (mean
difference 5.18, 95% Cl 3.36-6.99; Figure 3D). The density of large
neurons was also found to be increased with the intervention
(Table 4).

In small animal models, injection of adult rat BM-MSCs at E16
into the spinal cord of retinoic acid generated fetal rats with MMC,
was associated with a reduction in spinal cord cell death assessed by
TUNEL analysis at E20 (death cells; 4.8 + 0.3% vs. 8.9 + 0.6%,
p< 0.05),%* and an increase in the number of sensory neurons in the
dorsal root ganglion (334 + 1.9% vs. 25.3 + 1.6%, p < 0.01).%°

The intervention also improved corticospinal tract communication to



KUNPALIN ET AL

Q
o

PRENATAL

WILEY-DIAGNOSI

290

VN

9.0

00

LL0

€60

ST0

VN
VN
00T
007
VN
VN
VN
VN

€80

850

€L0

500>

S00<

S00<

anjeAa d

VN

(%S5°68) 6T/LT

(%8°T€)
LOT/¥E

(%6°€6) 99/29

(%6°8L) 8E/0€

VN
VN
(%00T) 8¢/8¢C
(%00T1) €2/€C
VN
N
VN
N

(%C'89)
¢Z/ST ‘8 Aod

(%6°8L)
6T/ST ‘9 A0d

(%€°€8)
81/ST ‘¥ AOd

AN ‘8 A0d
AN ‘9 aod
AN ‘¥ Aod

|o13uo0)

(%00T1) 0Z/0C

(%¥°98) ¢2/6T

(%E7€) SOT/9€

(%L£68) 8L/0L

(%€8L)
S11/06 ‘SOSW-d

(%0°68)
€//59 ‘SOSW-4V

(%1 7€) ¢8/82
(%1¥S) LE/OT
(%00T1) ¢€/2e
(%00T) 0€/0€
(%S°TS) ¥ET/69
(%9°08) ¢L/8S
(%8'18) ¢T/8T
(%6°LL) S6T/2ST

(%2°59)
€2/ST ‘8 AOd

(%¥'TL)
T2Z/ST ‘9 AOd

(%6°8L)
61/ST ‘v AO0d

dN £ Aod
AN ‘G dod
AN ‘€ dod

juswijeas)

(%) N/u ‘@34 [eAIAING

$OSd!
PaALISP-4Y uewny wouy
upjs gg/ied Asymeqg-andeuds

SOSW
-4V uewnpH/jes Asmeq-andelds

SOSN-4V
184 SIMa7/3ed As|me-anseuds

SOSW-4V
184 SIMa7/3ed As|me-anse.ds

SOSIN-d PUB SOSIN-4V
JeJ sIMa7/3ed As|me-anseuds

SOSIN-4V
Jed siMa7/3ed Asime-anseuds

SOSN-4V 184 SIMd7/3ed SIMST
SOSIN-ING 3ed Je3sip\/3ed JelsIp
SDSIN-ING 1ed Jeisipn/Ied JelsSIp
SDSIN-ING 1ed Jeisipn/ied Jelsipp
SOSIN-ING 18J JeISIM/3ed JelSIM
SOSN-ING 38 Je3sip/ied Jelsipy

SDSIN-ING 184 JeISIM/1EL JEISIA

$DS3 UewnH/oAiquia usXdIYD

$DS3 UewnH/oAlquia usdIYD

1193 wa3s/|apow [ewuy

(sy)LTOT ‘edemifey]

(r)6TOZ 0V

()0C0T ‘MozeT

(e»8T0T ‘U31US

1y»)9T0C Buag

(65)BGTOT ‘1810l
e €T0C ‘auany
(899020T ‘1OM
(£)B0T0T ‘1B
(999702 11
(5e)5T0C BN
we?70T 1
€)c10Z 1

(169002 ‘937

(05)700T 937

Joyine 3saiq

uoljedjjdde |20 Wa)s Jajje [BAIANS jewiuy Z 379V L



KUNPALIN ET AL

PRENATAL

(Continued)

TABLE 2

Survival rate, n/N (%)

p value

Control

Treatment

Animal model/Stem cell

First author

0.74

5/15 (33.3%)

10/35 (28.6%)

New Zealand rabbit/New

Shieh, 20194¢)

Zealand rabbit AF-MSCs

0.85

6/7 (85.7%)?

8/9 (88.8%)

QOvine/Mice cerebellum NSCs

Fauza, 20087

NA

NA

2/2 (100%)

Ovine/Human NCSCs derived

Saadai, 2013%?

from iPSCs

1.00

6/6 (100%)?

6/6 (100%)

Ovine/Human P-MSCs

Wang, 20159

1.00

1/1 (100%)*

2/2 (100%)

Ovine/Human P-MSCs

Brown, 2016®%

0.55

8/8 (100%)?

Ovine/Human P-MSCs 19/22 (86.4%)

Vanover, 2019%4

Abbreviations: AF-MSCs, amniotic fluid-derived mesenchymal stem cells; CRL, crown-rump length; NA, not available; NR, exact data are not retrievable after contact with corresponding author; P-MSCs,

placental-derived mesenchymal stem cells; POD, postoperative day.

2Fetal MMC surgical repair as a control group.

DIAGNOSIS-WILEY— L2

the anterior tibialis muscle, demonstrated by a rise in motor evoked
potentials (0.26 4+ 0.02 mV vs. 0.18 + 0.02 mV, p < 0.05) and a
shorter latency period (22.8 &+ 0.3 ms vs. 25.4 & 0.8 ms, p < 0.05).%®

One study has studied the direct injection of mouse-derived
NCSCs into the spinal cord of fetal lambs with surgically created
MMC at approximately gestational day 125 did not improve limb
motor function after birth (2/6%, 33% vs. 2/8%, 25%, p = 0.73).%
Although the cells did not differentiate, xenogeneic cells were able to
engraft and produce the neurotrophic factors glial cell line-derived
neurotrophic factor and brain-derived neurotrophic factor.*”
Another study demonstrated that human xenogeneic NCSCs deliv-
ered to fetal ovine spinal cord via nanofibrous scaffold survived and
integrated with host neurons. These cells made up 35%-70% of

neurons in the examined area.*’

5 | DISCUSSION

This systematic review summarizes 26 studies in a narrative syn-
thesis and nine studies by meta-analysis in the evaluation of the
safety and efficacy of stem cell transplantation in animal models of
MMC. We found that a variety of stem cells types, delivery tech-
nigues and animal models had been used. Overall the results suggest
beneficial benefits of stem cells on animal survival, defect coverage
and spinal cord function. Safety data represented by animal survival
rates were reassuring; both for intra-amniotic injection of allogeneic
AF-MSCs in the fetal rat model and the application of P-MSCs to the
spinal cord during fetal surgical MMC closure in the MMC lamb
model did not compromise fetal survival at term. In terms of efficacy,
a single injection of allogeneic AF-MSCs into the intra-amniotic
cavity of fetal rats was associated with a higher rate of complete
defect coverage compared to injection of saline. In addition, the
incorporation of human P-MSCs as a therapeutic adjunct to fetal
surgical MMC closure in the ovine model, when compared with fetal
surgery alone, significantly improved the motor function of the
newborn lambs.

Current clinical fetal surgery approaches are highly invasive and
may come (too) late for (full) recovery. This is the rationale for less
invasive approaches, such as intra-amniotic injection of stem cells, to
assist in defect coverage early in gestation. In addition, this approach
may complement several shortcomings of fetal surgery as not all
MMC fetuses are eligible for fetal surgery and not all fetal centres
offer this service. The concept of intra-amniotic injection of alloge-
neic AF-MSCs from normal fetuses to induce MMC defect coverage
has been shown efficacious in the fetal rat MMC model.2?~4143 |n
most of the included studies, the coverage occurred by means of
rudimentary skin development. The mechanism behind this may
resemble how MSCs improve cutaneous wound healing via their
differentiation and paracrine effects, which are vital in all stages of
the healing process.>®®” Although in the rat model, complete
coverage occurred in almost one third of the animals with a single
injection of AF-MSCs, none was documented in the larger rabbit

model and there was no data regarding neurological improvements.
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(A) AF-MSCs Control Risk Ratio Risk Ratio
Study or Subgroup  Events Total Events Total Weight M-H, Fixed, 95% Cl Year M-H, Fixed, 95% CI
Dionigi, 2015a 28 8 0 0 Not estimable 2015
Feng, 2016 65 73 30 38 28.1% 1.13(0.94,1.35] 2016 T
Shieh, 2018 70 78 62 66 47.9% 0.96(0.87,1.05] 2018 L
Lazow, 2020 36 105 34 107 240% 1.08(0.74,1.58] 2020 ——
Total (95% CI) 256 211 100.0%  1.03[0.92, 1.16] $
Total events 171 126
2= = = 2 = [ + + + + i
Heterogeneity: Chi’ = 3.46, df = 2 (P = 0.18); I = 42% b1 o2 o 3 1T

Test for overall effect: Z = 0.55 (P = 0.58) Favor control Favor experiment

(B) P-MSCs Control Risk Ratio Risk Ratio
Study or Subgroup  Events Total Events Total Weight M-H, Fixed, 95% Cl Year M-H, Fixed, 95% CI
Wang, 2015 6 6 6 6 3L7% 1.000.75, 1.34] 2015
Brown, 2016 2 2 1 1 88% 1.00(0.39,2.58] 2016
Vanover, 2019 19 2 8 8 59.5% 0.90[0.71,1.14] 2019
Total (95% Cl) 30 15 100.0%  0.94(0.78, 1.13]

Total events 27 15
Heterogeneity: Chi* = 0.34, df = 2 (P = 0.84); I = 0%
Test for overall effect: Z = 0.65 (P = 0.51)

[ + + T 1 + 1
0.1 0.2 05 1 2 5 10
Favor control Favor experiment

(C) AF-MSCs Control Risk Ratio Risk Ratio (D) P-MsCs Control Mean Difference Mean Difference
Study or Subgroup _ Events Total Events Total Weight M-H, Fixed, 95% CI M-H, Fixed, 95% CI Study or Subgroup  Mean  SD Total Mean SD Total Weight IV, Fixed, 95% Cl Year IV, Fixed, 95% CI
Dionigi, 2015a 9 38 0 36 31.3% 18.03(1.09,298.81) & Wang, 2015 1 37 6 433 213 6 28.3% 6.67(3.25,10.09] 2015 —
Dionigi, 2015b 6 28 0 21 347% 9.86(0.59, 165.88] T &/ Brown, 2016 115 35 2 70 1 Not estimable 2016
Feng, 2016 13 28 0 22 34.0% 21.41[1.34,341.43] — Kabagambe, 2018 12.38 3.94 8 767 45 6 16.2% 4.71(0.19,9.23] 2018 T
Lazow, 2020 0 2 0 14 Not estimable Vanover, 2019 13.64 3.11 11 825 474 8 23.3% 5.39(1.63,9.15] 2019 _——

Galganski, 2019 1244 362 18 85 441 10 32.2% 3.94(0.74,7.14] 2019 T
Total (95% CI) 114 93 100.0% 1635 [3.27,81.79] i
Total events 28 0 Total (95% CI) 45 31 1000%  5.18(336,699) L 2
- Chit = =20= P = i - - J =136,df=3(P=072); 1= ——
Heterogeneity: Chi’ = 0.16, df = 2 (P = 0.92); F = 0% o1 01 T 100 Heterogeneity: Chi* = 1.36, df = 3 (P = 0.72); I = 0% t o

Test for overall effect: Z = 3.40 (P = 0.0007) Favor contral Favor experiment

Testforoveralleffect 2 = 5.58 (7 < 0.00001) Favor contral Favor itervention

FIGURE 3 Meta-analysis. (A) Meta-analysis of fetal rat survival at term after intra-amniotic injection of allogenic amniotic fluid-derived
mesenchymal stem cells or saline at E17.57:37-41 Myelomeningocele (MMC) was created in all studies using retinoic acid. (B) Meta-analysis of
fetal lamb survival at term after application of human second trimester placental (P)-mesenchymal stem cells (MSCs) during fetal surgical
closure of MMC compared to fetal surgical closure alone.***?>2 MMC was surgically created in these studies at Gestational Age (GA) 75-
77 days; fetal surgical closure was performed 25 days later (GA 100-102 days). (C) Meta-analysis of defect coverage in the retinoic acid-
induced fetal rat MMC model. Intra-amniotic injection of allogenic amniotic fluid-derived mesenchymal stem cells at E17 significantly

increased the likelihood of total defect coverage compared to saline injection.

37-3941 (D) Meta-analysis of spinal cord function in the surgical

fetal ovine model of MMC determined by sheep locomotor rating scale, after fetal surgery in conjunction with the application of human
placental-derived mesenchymal stem cells compared to fetal surgery alone*®-°%>253 [Colour figure can be viewed at wileyonlinelibrary.com]

In light of this, the efficacy of intra-amniotic AF-MSCs to induce
defect coverage and eventually to improve neurological functions
remains to be evaluated in both small and large animal models. This is
important if we consider that, in rodents and rabbits, the volume of
intra-amniotic cavity and the gestation are respectively smaller and
relatively shorter than in the ovine and/or eventually the human. The
use of large animal models will provide further information that can
be translated in future clinical trials; for example, the technique for
stem cell delivery, the determination of appropriate stem cell dosage
and the number of injections required to achieve a complete defect
coverage.”® As the intra-amniotic volume of humans is much larger
than that of the rat, improvements in a technique or vehicle to deliver
stems needs further development in order to promote cell survival,
migration and attachment. The longer gestational period in large
animal models would also allow information on medium-to-long term
effects of MSCs such as cell engraftment and characterisation of
regenerated skin layers.

The rationale for incorporating stem cells as an adjunct to fetal
surgery is to regenerate the ‘already damaged’ spinal cord as even
after fetal surgery, more than half of children with MMC were unable
to walk without orthoses.’? In this systematic review, we found a
significant improvement in motor function of the lower limbs in
newborn lambs receiving P-MSCs during fetal surgical closure of the
MMC defect. Recovery of spinal cord function by MSC therapy is
supported by evidence from a recent clinical meta-analysis in adults
suffering from spinal cord injury. The study showed that subarach-
noid or intravenous injection of MSCs into those patients, improved
the overall spinal cord injury scale, sensory and bladder functions

when compared with rehabilitation therapy alone.?? It is postulated

that MSCs rescue neural regeneration via their paracrine effects. In
fetal MMC animal models, the cells were shown to modulate the
neuroinflammatory response, exert neurotrophic effects and pro-
mote angiogenesis through the secretion of growth factors, cytokines
and extracellular vesicles.>?°

Although our findings are encouraging for clinical translation,
further work is needed to determine the optimal source and dose of
P-MSCs with appropriate toxicology studies before moving to a
phase 1 clinical trial of P-MSCs as an adjunct to fetal surgery. Using
autologous AF-MSCs for clinical treatment is also a feasible option as
the majority of MMC fetuses are diagnosed in the second trimester,
and women who wish to proceed to fetal surgery are mandated to
undergo an amniocentesis to determine fetal karyotype.® Hence,
amniotic fluid would be available for MSC isolation in most cases. A
recent review provides more details about the experiments in each
study and comes to a similar conclusion.®*

Our systematic review is limited for two reasons. First, we only
included studies published in English language which may omit
eligible studies reported in other languages. Second, studies included
in this review carry a high risk of bias due to lack of detail on
randomization, allocation and treatment concealment and lastly se-
lective outcome reporting. Although, the majority of included studies
considered animal baseline characteristics, very few explicitly
described the method of randomization and/or concealment applied
in their studies. Furthermore, none of the studies provide adequate
information on animal housing and further care. For this reason, we
encourage authors to enhance the quality of their scientific reports
by following the guidance of the ARRIVE guidelines.?? Ultimately, as
with all translational research, there is an inevitable risk that the
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benefits of stem cell application would be overestimated owing to

2 o
2 s publication bias.
kS
©
) ks
2 <
£ S )
I g 6 | CONCLUSIONS
z
_ g E Intra-amniotic injection of allogeneic AF-MSCs is safe and effective
a g T E2 in inducing MMC defect coverage in small animal models; however,
@ ~ = v o= . . .
£ 41 . = 4; 2z there are no data in large animal models. Transplantation of human
" o U =
% < ° < Sg P-MSCs to the spinal cord of fetal lambs with MMC, as an adjunct to
k5 5 5 T g . . . .
5 fetal surgery, is also safe and effective in enhancing lower limb motor
S X s
o]
i B j v function of newborn lambs after delivery.
§ E _ é 'g Although our findings are encouraging for clinical translation,
53 5§ Z 2 there are several concerns that needed to be addressed. Further
v
| ¢ . = 9
sl & 3 § ) § work on neurological functional outcomes (beyond 24 h) after
28 _g birth and the response of the fetal immune system to allogeneic
3 m © 3
3
s 3 3 . x B82 stem cell transplantation should also be taken into consideration.
a o s} O & «©
=3
o <Zf % Apart from that, an optimum stem cell source and an appropriate
[
g RS delivery device should be established before moving forward to
E ﬁ qé ?E“ clinical trial.
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