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Abstract

Lung function is a heritable complex phenotype with obesity being one of its important risk 

factors. However, the knowledge of their shared genetic basis is limited. Most genome-wide 

association studies (GWASs) for lung function have been based on European populations, limiting 

the generalizability across populations. Large-scale lung function GWAS in other populations are 

lacking.

We included 100,285 subjects from China Kadoorie Biobank (CKB). To identify novel loci for 

lung function, single-trait GWAS were performed on FEV1, FVC, FEV1/FVC in CKB. We then 

performed genome-wide cross-trait analysis between the lung function and obesity traits (body 

mass index [BMI], BMI-adjusted waist-to-hip ratio, and BMI-adjusted waist circumference) to 

investigate the shared genetic effects in CKB. Finally, polygenic risk scores (PRSs) of lung 

function were developed in CKB and its interaction with BMI’s association on lung function were 

examined. We also conducted cross-trait analysis in parallel with CKB using 457,756 subjects 

from UK Biobank (UKB) for replication and investigation of ancestry specific effect.

We identified 9 genome-wide significant novel loci for FEV1, 6 for FVC and 3 for FEV1/FVC in 

CKB. FEV1 and FVC showed significant negative genetic correlation with obesity traits in both 

CKB and UKB. Genetic loci shared between lung function and obesity traits highlighted important 

pathways, including cell proliferation, embryo and tissue development. Mendelian randomization 

analysis suggested significant negative causal effect of BMI on FEV1 and on FVC in both CKB 

and UKB. Lung function PRSs significantly modified the effect of change-in-BMI on change-in­

lung function during an average follow-up of 8 years.

This large-scale GWAS of lung function identified novel loci and shared genetic etiology between 

lung function and obesity. Change-in-BMI might affect change-in-lung function differently 

according to a subject’s polygenic background. These findings may open new avenue for the 

development of molecular-targeted therapies for obesity and lung function improvement.

Introduction

Impaired lung function is associated with lung disease risk and mortality, such as chronic 

obstructive pulmonary disease (COPD) [1]. Clinical and epidemiological studies have shown 

many risk factors can affect lung function [2]. Among these risk factors, obesity has been 

one of the most rapidly growing public health issues with nearly tripled prevalence over the 

past 30 years [3]. Specifically, according to a population-based study on 121,965 subjects, 

obesity is associated with approximately 2 times higher risk of reduced lung function (e.g., 

forced expiratory volume in one second [FEV1] and forced vital capacity [FVC]) [4]. 

Obesity is also associated with increased risk of respiratory diseases, such as asthma and 

COPD [4, 5]. However, such findings have also raised new questions about whether the 

genetic risk factors can contribute to the coexistence of lung function reduction and obesity.

We and others have recently identified shared genetic architecture among respiratory 

diseases, including asthma and chronic obstructive pulmonary disease [6–9], indicating 

pleiotropic effects impacting both diseases. Lung function and obesity are both highly 
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heritable traits, with an estimated heritability up to 70% [10–14]. The inverse association 

between lung function and obesity suggested potential shared genetic risk factors between 

these conditions [15]. However, the knowledge of shared genetic basis to lung function and 

obesity is limited.

To date, most lung function genome-wide association study (GWAS) participants are 

of European descent [13, 14, 16, 17]; only few studies include a small number of 

non-European participants [18, 19]. Thus, large-scale GWASs based on non-European 

populations are critical to extend our understanding of the genetic heterogeneity across 

different populations [20, 21]. In addition, it is critical to understand the shared genetic 

architecture of lung function with other complex traits (e.g., obesity), which is robust to 

environmental confounding [22]. Thus, in the current study, we conducted a large-scale 

GWAS and cross-trait/cross-population analysis in China Kadoorie Biobank (CKB) and 

UK Biobank (UKB) to address 3 aims: (1) to identify novel genetic risk loci for lung 

function traits that include FEV1, FVC and FEV1/FVC in the Chinese population; (2) 

to investigate shared genetic effects between the lung function traits and obesity traits 

(body mass index [BMI], BMI-adjusted waist-to-hip ratio [WHRadjBMI], and BMI-adjusted 

waist circumference [WCadjBMI]) in both Chinese and European populations; and (3) by 

using both CKB and UKB follow-up cohorts, to investigate whether the baseline BMI and 

longitudinal change in BMI from baseline would affect lung function, taking into account 

the polygenic background of lung function.

Methods

Study design, settings and participants

The overall study design can be found in Figure 1. In brief, this study has two analytical 

stages. The first stage is to identify novel loci for lung function in the Chinese population 

by using single-trait GWAS analysis. The second stage is to investigate shared genetic 

effects between lung function and obesity by using cross-trait GWAS analysis in both 

CKB and UKB. The CKB study is a prospective cohort study of >500,000 participants in 

China. Details of the CKB have been described previously [23]. In brief, the CKB recruited 

512,715 adults aged 30-79 years from ten regions (Harbin, Qingdao, Suzhou, Liuzhou, 

Haikou, Henan, Gansu, Sichuan, Zhejiang, and Hunan) across China. All participants gave 

informed written consent. Questionnaire data, physical measurements, and blood samples 

were collected at the baseline survey during 2004-2008. Two follow-up surveys were 

taken in 2008 and during 2013-2014, respectively, which involved ~5% randomly chosen 

surviving participants.

The UKB study was described in detail elsewhere [7, 24]. In brief, the UKB study is 

a prospective cohort study of >500,000 participants living in the UK. In total, 503,325 

participants who registered in the National Health Service with ages ranging 40–69 

years were recruited out of 9.2 million mailed invitations. Baseline data were collected 

(2004-2008) using questionnaires, and anthropometric assessments were performed. In 

UKB, we restricted to subjects of European ancestry. All detailed genotyping, quality 

control, and imputation procedures are described at the UK Biobank website (http://

biobank.ctsu.ox.ac.uk). All participants provided informed consent to the UKB.
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Ascertainment of lung function and obesity traits

FEV1, FVC and FEV1/FVC were adjusted for age, age2, sex, height, smoking status (ever 

vs. never) and assessment center in a linear regression model [14]. The resulting residuals 

were inverse normal transformed [14].

BMI, measured or self-reported weight in kg per height in meters squared was adjusted 

for age, age2, sex, and assessment center in a linear regression model [14]. Waist 

and hip circumferences were also measured in CKB and UKB participants. The WHR 

and WC were adjusted for age, age2, BMI, sex and assessment center in a linear 

regression model. The resulting residuals were inverse normal transformed. The detailed 

physical measurement procedures can be found in Supplementary Appendix, CKB previous 

study [25] and UKB website (https://www.ukbiobank.ac.uk/wp-content/uploads/2011/11/

UK-Biobank-Protocol.pdf).

CKB genotyping procedure

The CKB has conducted three phases of genotyping. A custom-designed biobank array, to 

provide optimized genome-wide coverage for the Chinese population, was developed by 

University of Oxford’s Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU) 

in collaboration with Beijing Genomics Institute (BGI, Shenzhen, China) and Affymetrix 

Inc. (now Thermo Fisher Scientific, Santa Clara, California, USA). This 700K-SNP array 

was used to genotype ~32,000 CKB participants in the first phase. A revised and updated 

version of the original array which covers ~803K SNPs was used to genotype ~69,000 

participants in the second and third phase.

Variants with call rate>0.98, plate effect P>10−6, batch effect P>10−6, Hardy-Weinberg 

Equilibrium (HWE) deviations P>10−6 (combined 10 df χ2 test from 10 regions), 

minor allele frequency (MAF) difference from 1000 Genomes East-Asian frequencies<0.2, 

resulting in genotypes for 532,415 biallelic variants present on both array versions. The 

qualified genotypes for each chromosome were phased with SHAPEIT. Then, imputation 

was performed for each 5-Mb interval with IMPUTE 4 based on haplotypes derived from the 

1000 Genomes Phase III.

GWAS analysis

We selected variants that did not deviate from Hardy-Weinberg Equilibrium (P>1×10-12), 

per variant missing rates<10%, per-sample missing rate<10%, minor allele frequency 

(MAF)>1% and an imputation quality score>0.8. Detailed data summary, QC and 

imputation information can be found in the Supplementary Appendix. The genotype­

phenotype association test was carried out in 100,285 samples from CKB and up to 457,756 

from UKB. For lung function and obesity traits, we carried out linear mixed model (LMM) 

association analyses and adjusted for genotyping array, ten ancestry PCs in CKB and 

thirty ancestry PCs in UKB to assess association between the traits’ Z-scores and imputed 

genotype dosages under an additive genetic model by using BOLT-LMM v2.3 [26]. After 

association analysis, we applied PLINK clumping function to determine top loci that are 

independent to each other. Specifically, variants with P-value less than 1×10-5, has r2 more 

than 0.2 and less than 500 kb away from the peak were assigned to that peak’s clump. The 
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genes within each clump were identified by the overlap between gene regions and clump 

region. Novel loci were defined at two levels, clump and variant (Supplementary Appendix). 

In brief, if the independent clump region does not overlap with any loci in the GWAS 

catalog (search date: April 3, 2020) for the same trait, we defined it as a novel locus. If there 

is an overlap between clump region and GWAS catalog, we further checked if the sentinel 

variant is novel, which is defined by low linkage disequilibrium (LD) r2<0.2 between the 

sentinel variant and any variants within the clump region from GWAS catalog.

Cross-trait genetic correlation

We used cross-trait LD score regression (LDSC) to estimate genetic correlation between the 

causal effects of two traits (ranging from −1 to 1) based on summary statistics of each trait’s 

GWAS [27]. We specified LDSC to estimate the regression intercept to account for shared 

subjects between different traits’ GWAS [28]. We applied Bonferroni correction (P<0.05/9) 

to account for multiple testing in the LDSC analysis.

Sex specific genetic correlation

Previous studies showed the association between lung function and obesity could differ in 

male and female sex [29, 30]. Thus, we evaluated the genetic correlation between lung 

function and obesity in male and female sex separately.

Cross-population genetic correlation

To assess the genetic heterogeneity between Chinese and European populations, we also 

estimated genome-wide cross-population genetic correlation for lung function and obesity 

traits by applying S-LDXR [31] with the baseline-LD-X model annotations. We applied 

Bonferroni correction (P<0.05/6) to account for multiple testing in the S-LDXR analysis.

Cross-trait meta-analysis

Cross Phenotype Association (CPASSOC) combines effect estimate and standard error of 

the GWAS summary statistics to test hypothesis of association between the SNP with both 

traits [32]. A heterogeneous version of CPASSOC (SHet) was used in this study.

SHet is a cross-phenotype meta-analysis method based on fixed-effect model. It is more 

powerful when there is heterogeneous effect present across studies, which is common when 

testing multiple phenotypes [33]. SHet uses the sample size of a trait as the weight instead of 

using the effect standard error. It can also account for effect correlation due to overlapping or 

related subjects within and among different studies or cohorts.

Overrepresentation enrichment analysis

In order to understand the shared biological pathways between lung function and obesity, we 

extracted the genes from clumping procedure for both lung function and obesity and used 

the WebGestalt tool [34] to assess the enrichment of the identified genes in Gene Ontology 

(GO) biological pathway. If they are significantly enriched in both lung function and obesity, 

we consider them as the shared biological pathways. A false discovery rate (FDR) method 

was used to correct for multiple testing.
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Mendelian randomization (MR) analysis

We applied generalized summary data-based Mendelian randomization (GSMR) [35] under 

default settings to infer putative causal relationships between BMI and lung function traits 

from GWAS summary statistics. To avoid overlapping subjects in the MR analysis, we used 

BMI GWAS from Biobank Japan [BBJ] (n=158,284) [36] and the lung function GWAS from 

CKB; and we used the GIANT BMI GWAS (nmax=322,154) [12] and lung function GWAS 

from UKB. A more detailed description of the BBJ and GIANT GWAS data can be found 

in the Supplementary Appendix. Since GSMR requires a minimum of 10 LD-independent 

instruments with P-value less than 5×10-8, we restricted our analyses to traits that satisfy 

this criterion. Prior to running GSMR, we removed SNPs with strand-ambiguity, imputation 

quality score INFO<0.9, and in the HLA region (chr6:25-34M). We applied Bonferroni 

correction (0.05/6) to account for the number of trait pairs in the MR analysis.

Lung function polygenic risk score and BMI interaction (PRSlung function×BMI) analysis

We constructed the polygenic risk scores (PRSs) for three lung function traits using 

LDpred [37]. The details of PRS construction can be found in Supplementary Appendix. 

Besides, we constructed three additional lung function PRSs using weights of 279-SNPs 

reported by Shrine et al (only 275 SNPs were available in CKB data) [14]. To investigate 

interaction effect between lung function PRSs and baseline BMI or its longitudinal change 

(nCKB=21,791 and nUKB=12,019) on lung function, we fitted two linear regression models 

to test the PRSlung function×BMI effect as following:

Baseline model:

Lung functiont0 = BMIt0 + lung function PRS + BMIt0 × lung function PRS + otℎer convariates

Change model:

Lung functiont1 − Lung functiont0 = BMIt0 + BMIt1 − BMIt0 + lung function PRS + BMIt1 − BMIt0
× lung function PRS + otℎer convariates

where baseline (t0) is at 2004-2010 and follow-up (t1) is at 2012-2014; other covariates are 

PC1-PC10 for CKB and PC1-PC30 for UKB, age, age2, sex, standing height, smoking status 

(ever/never), genotyping array and assessment center. For baseline model, we set normal 

BMI and deciles 2-9 group as reference, for change model, we set BMI stable and deciles 

2-9 group as reference.

Results

GWAS and SNP-based heritability

The baseline demographic characteristics of the CKB and UKB cohorts are summarized in 

Table S1. GWAS results for all traits showed no evidence of inflation due to population 

stratification (Figures S1-S2). In CKB, LDSC estimates of SNP-based heritability on 

the observed scale were (mean ±SE) 13.07±0.88% for FEV1, 11.12±0.82% for FVC 

5.12±0.67% for FEV1/FVC, 21.77±1.23% for BMI, 8.72±0.83% for WHRadjBMI and 
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10.65±0.95% for WCadjBMI. We identified 28 genome-wide significant (P<5×10−8) loci for 

FEV1, 10 for FVC and 10 for FEV1/FVC (Figure 2). After comparing with GWAS Catalog 

results for FEV1, FVC and FEV1/FVC (Tables S2-S4), we determined a total of 18 novel 

loci for three lung function traits (Table 1). We further conducted the replication analysis 

for the novel loci in a recently published large-scale lung function GWAS (Table S5) [14]. 

A total of 11 loci were available in the Shrine et al.’s data. Among them, we found 4 were 

significant (P<0.05/13) with consistent effect size direction. The non-replicated loci were 

likely due to distinct effect allele frequency between CKB and Shrine et al. [14] (Table S5). 

For example, the MAF of sentinel SNP rs1861229 in CKB is 0.52, but 0.17 in Shrine et al.’s 

study. Among these previously reported loci showing genome-wide significant association 

with lung function in Shrine et al, AGER, AP4M1, DIS3L2, FAM13A, FGF10, HLA-DQA1 
and HTR4 are notable genes that play important roles in lung function. In terms of novel 

loci, we identified GPC5 as a novel gene for FEV1 (sentinel SNP: rs528366, P=2.30×10-8). 

In addition, we identified 20q11.23 as a novel region for FVC (sentinel SNP: rs6063386, 

P=5.00×10-10). The sentinel SNP is mapped to a long intergenic non-protein coding RNA 

(lncRNA), LINC00489. Among the novel loci for FEV1/FVC, two are within the 6p21.33 

region, the sentinel SNP was mapped to TNXB, which was known for its association with 

lung function traits (FEV1, FEV1/FVC) and COPD [38, 39]. The detailed summary statistics 

information of genome-wide significant loci for three lung function traits can be found in 

Tables S6-S8.

In UKB, LDSC estimates of SNP-based heritability on the observed scale were (mean±SE) 

20.13±0.76% for FEV1, 20.26±0.74% for FVC, 23.95±1.43% for FEV1/FVC, 27.41±1.07% 

for BMI, 13.88±0.94% for WHRadjBMI and 16.58±0.83% for WCadjBMI. The single-trait 

GWAS results are consistent with Shrine et al.’s study [14].

Genetic correlation between lung function and obesity traits

We investigated the genetic correlation between lung function and obesity traits in both CKB 

and UKB. As shown in Figure 3, we found that two lung function traits have significant 

negative genetic correlation with obesity traits in CKB (e.g., Rg =-0.26, P=5.99×10-9 for 

FEV1-WCadjBMI; Rg =-0.11, P=5.44×10-3 for FVC-BMI; and Rg =-0.28, P=2.24×10-10 

for FVC-WCadjBMI). We found that the genetic correlation is generally stronger between 

lung function and central obesity traits than BMI. The UKB genetic correlations also showed 

consistent findings with CKB in most of the trait pairs, though different for one trait pair 

(e.g., Rg =0.15, P=7.92×10-24 for FEV1/FVC-BMI in UKB, but not significant in CKB) 

(Figure 3). Sex-specific analyses found stronger genetic correlation between lung function 

and obesity traits in females than in males (Tables S9-S10). In addition, the cross-population 

genetic correlation analysis showed that one of these traits had an estimated cross-population 

Rg significantly less than 1 (Rgcross-population=0.86, P=3.76×10-6 for BMI) (Table S11).

Cross-trait meta-analysis

For the trait pairs that showed significant genetic correlation after Bonferroni correction (we 

also included BMI-FEV1 trait pair despite P=0.038), we applied CPASSOC for genome­

wide cross-trait meta-analysis to identify shared genetic variants among each trait pairs 

(Pmeta<5×10−8; single-trait P<1×10−5). A total of 6 trait pairs in CKB and 7 trait pairs in 
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UKB were included for the cross-trait meta-analysis. In CKB, after pruning, we found 7 

loci significantly associated with BMI and FEV1, 5 loci with WHRadjBMI and FEV1, 7 

loci with WCadjBMI and FEV1, 4 loci with BMI and FVC, 1 locus with WHRadjBMI 

and FVC, and 1 locus with WCadjBMI and FVC. Among these loci, we highlighted three 

shared loci since they were shared loci in multiple pairs of lung function and obesity 

traits. The first locus is DIS3L2 on 2q37.1 (BMI-FEV1, WCadjBMI-FEV1, BMI-FVC and 

WCadjBMI-FVC). The second locus is HLA-DQA1 (BMI-FEV1 and BMI-FVC). The third 

locus consists of several sentinel SNPs that were all mapped within 12p13.2, with genes 

including ATXN2 and ACAD10 (Table 3). Out of the 25 shared loci identified in CKB, five 

of them were also identified in the same trait pairs in UKB (Table 2 and Tables S12-S18).

Pathway analysis

To gain biological insights of the shared genes, we assessed the enrichment of the 

independent loci for each trait and the identified set of shared gene between lung function 

and obesity traits in Gene Ontology (GO) biological process categories and observed many 

significant enrichments in the UKB results (FDR: q <0.05 for both traits) (Table S19). 

Consistent with the gene function of shared loci, GO biological process highlighted several 

common pathways for lung function and obesity traits, such as cell proliferation, embryo, 

skeletal and tissue development, and regulation of gene expression. However, we did not 

observe any significant enrichment in the CKB results.

Mendelian randomization

We applied GSMR to perform causal inference between BMI and lung function traits. 

In the East Asian population analysis, we observed significant negative causal effect of 

BMI (per standard deviation) on FEV1 (bxy=-0.08, P=2.46×10-4), and on FVC (bxy=0.11, 

P=3.44×10-7) (Table 3). We did not observe significant causal effect of BMI on FEV1/FVC. 

On the reverse direction, we observed either small magnitude or non-significant causal 

effect.

PRSlung function×BMI analysis

We constructed seven PRS models from LDpred for each lung function trait and selected the 

PRS model with the highest discriminatory performance (R2) for interaction analysis (Table 

S20). We found a significant interaction between baseline BMI and PRS of FEV1/FVC 

on FEV1/FVC (P=0.011) (Figure 4A and Table S21). Generally, compared with the 

reference group, the bottom PRS decile+underweight group has the lowest FEV1. For 

FVC, the largest reduction can be found in bottom PRS decile+obese group. For FEV1/

FVC, we observed that the bottom PRS decile +underweight group has has the lowest 

FEV1/FVC, and overweight and obese groups have increases. In the change model, we 

found a significant interaction between change-in-BMI and PRS of FVC (P=0.038) on 

change-in-FVC or between change-in-BMI and PRS of FEV1/FVC (P=0.007) on change-in­

FEV1/FVC (Figure 4B and Table S21). Overall, compared with the reference group, BMI 

increase group had reduced FEV1 and FVC and the effect was largest in top PRS decile. For 

UKB, we did not find a significant interaction effect in baseline model. However, we found 

a borderline significant interaction between change-in-BMI and PRS of FVC (P=0.068) on 

change-in-FVC (Table S22 and Figure S3). Finally, we constructed additional lung function 
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PRSs using weights of 275-SNPs from Shrine et al.’s study [14] and did not find significant 

PRSlung function×BMI effect (Table S23 and Figure S4).

Discussion

To our knowledge, the current study is the largest GWAS of lung function in the Chinese 

population. We found strong genetic correlation and shared genetic loci between lung 

function and obesity traits. We replicated these Chinese findings in UKB and also identified 

population-specific genetic effects. We also found shared biological pathways between 

lung function and obesity traits, such as cell proliferation, embryo, skeletal and tissue 

development, and regulation of gene expression.

In this study, we identified 9 new loci for FEV1, 6 for FVC and 3 for FEV1/FVC. Of 

these, we highlighted a novel gene associated with FEV1, GPC5 on 13q31.3. GPC5 is a 

member of the glypican gene family. Evidence to date suggests that the main function of 

the glypicans is to regulate the signaling pathway of bone morphogenetic proteins, Wnt, 

hedgehog and fibroblast growth factors [40], which are involved in modulation of lung 

function [41], pulmonary fibrogenesis [42] and COPD pathobiology [43]. GPC5 was also 

found to contribute to an increased risk of lung cancer in never smokers [44]. For FVC, we 

also found a novel independent region, 20q11.23, where the sentinel SNP is mapped to a 

lncRNA, LINC00489, although the function of this region needs to be further investigated. 

For FEV1/FVC, we note that several independent loci were within the 6p21 region, which 

was known for its association with lung function traits (FEV1, FEV1/FVC) and COPD [38, 

39]. This region contains genes such as AGER, ATF6B, NOTCH4 and TNXB, of which 

AGER has been reported to play potential functional role in lung function [45]. AGER 

protein, a receptor for advanced glycation end-products (RAGE), is a multiligand receptor 

of the immunoglobulin super-family and interacts with distinct molecules implicated in 

homeostasis, development, inflammation, diabetes and neurodegeneration [45]. RAGE 

signals depend on the cell type and the context. RAGE expression increases following 

cigarette smoke exposure and is partially responsible for inducing the proinflammatory 

signaling pathways (e.g., NF-κB) [46]. In addition, we noticed two novel loci (mapped 

genes DIS3L2 and FGF10/FGF10-AS1) that are significant in both FEV1 and FVC, 

indicating their pleotropic effect between different lung function traits.

Our LDSC analysis showed strong genome-wide genetic correlation between lung function 

and obesity traits in both Chinese and European populations. We observed strong negative 

genetic correlation of obesity traits with FEV1 and FVC in both populations, but a 

non-significant genetic correlation between obesity traits and FEV1/FVC in the Chinese 

population. The genetic correlation results in the European population were consistent with 

those from the Chinese population, except for BMI-FEV1/FVC, which was also highly 

significant in the European population (Rg=0.15, P=7.92×10-24). Previous studies showed 

that FEV1 and FVC are reduced in the presence of obesity [47]. but FEV1/FVC ratio 

is usually unaffected [48]. There are several biological mechanisms that could potentially 

explain how lung function impairment and obesity are associated. First, the mechanical 

effects of obesity produce airway narrowing and closure, and increased respiratory system 

resistance. Compared to healthy weight individuals, airway narrowing in obesity correlates 
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with airway closure and airway hyperresponsiveness (AHR) [49]. Airway narrowing and 

closure lead to air trapping and ventilation inhomogeneity [50]. In addition, we found that 

the genetic correlation is stronger between lung function and central obesity than with 

global obesity. Compared with global obesity, which does not take account of the fat 

distribution, abdominal and thoracic fat are more likely to play a role on the lung function 

impairment. This is because they have direct mechanical effects on the diaphragm and chest 

wall expansion during forced inspiration [51, 52], a typical symptom of restrictive lung 

disease [53].

Cross-trait meta-analysis identified significantly independent loci shared between lung 

function and obesity traits. In the Chinese population, the locus DIS3L2 on 2q37.1 

was found to be shared between multiple lung function and obesity traits (BMI-FEV1, 

WCadjBMI-FEV1, BMI-FVC, and WCadjBMI-FVC in the Chinese population; WC-FVC 

in the European population). A previous study found DIS3L2 as a gene that contributes 

to an overgrowth syndrome (e.g., Perlman syndrome [54]), suggesting its critical role 

in the regulation of cell growth and division. Such function is also consistent with the 

findings from the pathway analysis, where the shared genes are mainly enriched in pathways 

related to cell proliferation, embryo, skeletal and tissue development. Notably, these shared 

pathways show the important role of growth for both lung function and obesity, and are 

partially distinct with a recent lung function GWAS study [14]. Unsurprisingly, we also 

found many loci in the HLA region that were shared by obesity traits and lung function 

in both populations. HLA is a gene complex that contains abundant pleiotropy for many 

complex diseases [6, 7, 9, 55], especially involved in immune related process [56]. In 

the European population, we also identified many shared loci between lung function and 

obesity traits. However, we found that most of the shared loci are distinct between the two 

populations.

Although the relationship between lung function and obesity was established in 

epidemiological studies [5, 15, 30, 57], it remains unclear whether obesity is a driving 

component in lung function or comorbidity of its presence. The MR estimates in the current 

study suggested a negative causal effect of BMI to FEV1 and FVC and a positive causal 

effect to FEV1/FVC. These estimates provide evidence that BMI might reduce lung function 

in both East Asian and European populations, although the causal relationship between BMI 

and FEV1/FVC can still be bi-directional. The results of causal association from BMI to 

lung function traits are consistent with Wielscher et al. showing negative causal associations 

of BMI with FEV1 and FVC and a positive causal association of BMI with FEV1/FVC 

[58]. Also, an observational study showed subjects with obesity have increased gastric and 

oesophageal pressures, which causes reduced lung function.

In this study, we found evidence of genetic heterogeneity in Chinese and European 

populations. At genome-wide level, the cross-population genetic correlation analysis showed 

that BMI had an estimated cross-population Rg statistically significant less than 1, indicating 

heterogeneity in genetic regulation BMI across Chinese and European populations. At 

variant level, the cross-trait meta-analysis showed majority of the shared variants are 

different in Chinese and European populations, which could be due to distinct genetic 
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background and sample size in the two populations, and also gene environment interaction 

[31].

Several recent lung function PRS studies have focused on the association between lung 

function PRS and COPD risk, and interaction with smoking status [14, 59]. Our study 

investigated the PRSlung function×BMI in both cross-sectional and longitudinal settings. Our 

interaction analysis showed that maintaining a normal BMI improved lung function and the 

beneficial effect is more profound in subjects with high lung function genetic profile. The 

results suggest that BMI might be a mediator of genetic effect on lung function, which is in 

consistent with the Mendelian randomization results showing that BMI is a causal risk factor 

of lung function. We also observed the top PRS group showed the most beneficial effect 

by BMI change. These findings have important implications for lung function improvement 

because they can provide potential intervention on BMI to individuals at risk before lung 

function reduction based on more precise risk stratification by using PRS.

We also acknowledge the limitations in current study. First of all, CKB GWAS sample size 

is only 1/4 of UKB’s. This leads to some findings that may not be directly comparable 

between two cohorts. Second, the FVC and FEV1/FVC measurements for Haikou and 

Qingdao regions (n=14,000) have may be biased in comparison with other eight regions in 

CKB. Thus, we further conducted the sensitivity analysis removing the two regions. The 

sensitivity analysis (Figures S5-S6) showed the effect sizes of FVC and FEV1/FVC novel 

loci were highly consistent with the primary analysis (using full GWAS cohort) although the 

P-values modestly increased after removing the two regions due to less power. In addition, 

the results of sensitivity analysis for genetic correlation are consistent with the primary 

analysis (Table S24). The CKB FEV1/FVC PRS has also been used in a recent study and 

showed consistent results compared with other independent ancestry groups [14]. Third, we 

chose to use the lung function spirometry measures with two time points in UKB (data fields 

3062 and 3063), thus the most cleaned lung function spirometry measures (data fields 20150 

and 20151) cannot be used. However, we showed our GWAS results are in consistent with 

Shrine et al’s results [14], which used the most cleaned lung function spirometry measures. 

Fourth, although the use of PRS allows researchers to effectively capture a useful fraction 

of genetic effects, the PRSlung function×BMI analysis remains susceptible to confounding or 

bias due to LD between SNP markers in the PRS model and the causal variants of BMI [60, 

61]. However, our sensitivity analyses showed that this potentially has little impact on the 

PRSlung function×BMI analyses and adjusting height is not likely to introduce collider bias 

between BMI and lung function association (Tables S25-S27). Finally, the LD patterns in the 

HLA region is highly complex and that the signals we reported are likely tagging the causal 

variants instead of actually being the causal variants due to the limitation of imputation data. 

Sequencing data is recommended to identify causal variants in HLA region.

In conclusion, the current study is the first large-scale GWAS study of lung function in 

the Chinese population. Our study extends existing knowledge of the genetic landscape of 

lung function traits by leveraging large-scale Chinese and European genetic cohorts. We 

applied single- and cross-trait analyses and identified novel loci for lung function traits 

in the Chinese population, shared genetic effects between lung function and obesity traits, 

genetic heterogeneity in Chinese and European populations and PRSlung function×BMI effect. 
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These new findings provide greater knowledge of the genetic basis of lung function in the 

Chinese population and shared genetics between lung function and obesity, which will foster 

subsequent translational, clinical and public health research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Take home message

The novel loci provide additional insights into the genetic basis of lung function. 

Understanding of shared genetic etiology between lung function and obesity may open 

new avenue for the development of molecular-targeted therapies for obesity and lung 

function improvement.
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Figure 1. Overall study design.
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Figure 2. 
Manhattan plot for genome-wide association analysis of 100,285 Chinese subjects in CKB 

cohort for three lung function traits, FEV1 (panel A), FVC (panel B), and FEV1/FVC 

(panel C). X-axis denotes the genomic position (chromosomes 1-22), Y-axis denotes the 

–log10(P-value) of association test and starts at –log10(P-value)=3. The most significant 

novel variant in each independent clump is highlighted in yellow orange diamond shape. 

Genes that are labeled in black font are previously reported, and genes that are labeled in red 
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font are novel. Asterisk on some genes means novel variant. Genome-wide significance level 

(P=5×10-8) is denoted by red line.
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Figure 3. 
Genome-wide genetic correlation between three lung function traits and three obesity traits 

in both CKB (panel A) and UKB (panel B) cohorts. The color of each box scales with 

the magnitude of the genetic correlation. Pairs of traits with nominal significant genetic 

correlation (p < 0.05) are marked by 1 asterisk, and pairs of traits with significant genetic 

correlation after correcting for multiple testing (p < 0.05/9) are marked by 2 asterisks. Boxes 

without labelling are trait pairs with non-significant genetic correlation.
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Figure 4. 
Relationship of three lung function PRSs distribution with BMI (panel A: baseline model; 

panel B: change model) in CKB. For baseline model, we set normal BMI and deciles 

2-9 group as reference, for change model, we set BMI stable and deciles 2-9 group as 

reference. For panel A, X-axis denotes different BMI categories by following definition: 

underweight: BMI <18.5 kg/m2; normal: BMI 18.5-24.9 kg/m2, overweight: BMI 25.0-29.9 

kg/m2, and obesity: BMI ≥30.0 kg/m2. Y-axis denotes the differences between lung function 

measurements for each group with the reference group. For panel B, X-axis denotes different 

BMI change categories. BMI decrease is defined as BMIt1-BMIt0 ≤ -1 kg/m2, BMI stable is 

defined as -1 kg/m2 < BMIt1-BMIt0 ≤ 1 kg/m2, and BMI increase is defined as BMIt1-BMIt0 

> 1 kg/m2. Y-axis denotes the differences between lung function measurements change (lung 

functiont1-lung functiont0) for each group with the reference group. The PRS groups were 

defined as: bottom decile, deciles 2–9, and top decile. The P-value on each plot represents 

the lung function and baseline BMI or BMI change interaction P-value from baseline or 

change models.
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Table 1
Eighteen novel loci associated with FEV1, FVC and FEV1/FVC in CKB

Trait Sentinel 
SNP Clump region N A1 A2 A1 

FREQ BETA SE P Genes within clump region

FEV1 rs145972739 chr1:200031115-200031115 1 A G 0.97 -0.083 0.015 4.90E-08 NR5A2

FEV1 rs1861229 chr2:102992079-103208610 28 A G 0.52 0.026 0.005 2.60E-08 IL18R1,IL18RAP,MIR4772,SLC9 A4

FEV1 rs28695435 chr2:232797462-233092939 181 G A 0.31 -0.029 0.005 1.40E-09 DIS3L2

FEV1 rs222482 chr2:42391012-42703861 188 C T 0.27 -0.028 0.005 4.70E-08 COX7A2L,EML4,KCNG3,LOC10 2723824

FEV1 rs112952987 chr2:42638788-42703942 21 G A 0.94 0.050 0.009 3.40E-08 KCNG3

FEV1 rs117331805 chr5:43813683-44687091 96 A G 0.94 -0.076 0.010 3.50E-15 FGF10,FGF10-AS1

FEV1 rs117675260 chr5:44474070-44623745 28 G A 0.96 -0.069 0.012 2.10E-08 Intergenic region

FEV1 rs528366 chr13:92381450-92572381 224 T C 0.78 -0.030 0.005 2.30E-08 GPC5

FEV1 rs77578670 chr15:51607186-51645049 23 C T 0.75 -0.028 0.005 4.60E-08 CYP19A1,GLDN

FVC rs143944819 chr2:232797462-233101499 185 A G 0.77 0.033 0.006 7.50E-09 DIS3L2

FVC rs6442039 chr3:46902129-47410564 158 C G 0.52 -0.025 0.004 2.00E-08 CCDC12,KIF9,KIF9-AS1,KLHL18,MYL3,NBEAL2,NR 
ADDP,PTH1R,SETD2

FVC rs78732306 chr5:44048662-44583962 177 T C 0.91 -0.068 0.008 5.10E-17 FGF10,FGF10-AS1

FVC rs28366282 chr6:32196697-32713674 1767 C T 0.76 0.035 0.005 3.30E-11 BTNL2,C6orf10,HCG23,HLA-DQA1,HLA-DQA2,HLA-DQB1,HLA­
DRA,HLA-DRB1,HLA-DRB5,HLA-DRB6

FVC rs139447342 chr6:32396905-32636434 661 C T 0.3 0.032 0.005 1.00E-09 HLA-DQA1,HLA-DQB1,HLA-DRA,HLA-DRB1,HLA-DRB5,HLA-DRB6

FVC rs6063386 chr20:36206453-36273380 127 C T 0.33 0.030 0.005 5.00E-10 LINC00489

FEV1/
FVC rs186784089 chr5:174393318-174393318 1 G A 0.99 0.120 0.022 4.70E-08 FLJ16171

FEV1/
FVC rs149101418 chr6:31944375-32113312 17 T G 0.55 0.035 0.005 7.50E-13 ATF6B,C4A,C4B,C4B_2,CYP21A1P,CYP21A2,FKBPL,STK19,TNXA,TNXB

FEV1/
FVC rs200214283 chr6:31976290-32133380 4 C T 0.9 -0.045 0.008 1.50E-08 ATF6B,C4A,C4B,C4B_2,CYP21A1P,CYP21A2,EGFL8,FKBPL,LO 

C100507547,PPT2,PPT2-EGFL8,PRRT1,STK19,TNXA,TNXB

Note: N is number of variants meet the criteria of P-value<1×10-5 and r2>0.2 within the clump region; A1 is effect allele; A2 is non-effect allele; 
BETA is BOLT-LMM regression effect size.
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Table 2
Twenty-five shared genetic loci between lung function (FEV1, FVC) and obesity (BMI, 
WHRadjBMI, WCadjBMI) traits in CKB

Trait pair Sentinel 
SNP Clump region N A1 A2 BETA1 P1 BETA2 P2 P Genes within clump region

Overlap 
with 
UKB

FEV1 and 
BMI

rs73995038 chr2:232797462-233165478 193 A G -0.027 2.40E-09 -0.024 1.30E-07 1.15E-15 DIS3L2 No

rs801170 chr5:139973696-140230371 303 C T 0.023 3.70E-07 0.022 7.20E-07 9.11E-13 CD14,DND1,HARS,HARS2,IK,MIR3655,NDUFA2,PCDHA1,PCDHA2,PCDHA3,PCDHA4,PCDHA5,PCDHA6,PCDHA7,PCDHA8,PCDHA9,TMCO6, 
VTRNA1-1,VTRNA1-2,VTRNA1-3,WDR55,ZMAT2 No

rs9271730 chr6:32397794-32667412 1728 G A 0.022 3.10E-06 0.029 3.30E-10 7.72E-15 HLA-DQA1,HLA-DQB1,HLA-DRA,HLA-DRB1,HLA-DRB5,HLA-DRB6 No

rs11066001 chr12:111629389-112119171 19 T C 0.024 7.60E-06 0.028 3.40E-07 1.99E-11 ATXN2,BRAP,CUX2,FAM109A,MIR6760,SH2B3 No

rs144504271 chr12:112140669-113117897 16 G A 0.028 1.00E-06 0.029 3.20E-07 1.88E-12 ACAD10,ADAM1A,ALDH2,ERP29,HECTD4,MAPKAPK5, MAPKAPK5-AS1,MIR6761,MIR6861,NAA25,PTPN11,RPL6,TMEM116,TRAFD1 No

rs2078863 chr12:111846028-112355472 137 T C 0.020 5.60E-06 0.020 9.50E-06 5.20E-10 ACAD10,ADAM1A,ALDH2,ATXN2,BRAP,MAPKAPK5,MAPKAPK5-AS1,MIR6761,SH2B3 No

rs5742653 chr12:102397730-102910374 339 C T 0.021 4.50E-06 0.022 1.10E-06 2.03E-11 CCDC53,IGF1,NUP37,PARPBP,PMCH No

FEV1 and 
WHRadjBMI

rs11066325 chr12:112834586-113150735 7 T C 0.036 2.00E-09 0.031 2.30E-07 5.44E-16 PTPN11,RPL6 No

rs3809297 chr12:111293470-111718231 88 G T 0.029 8.80E-07 0.026 6.80E-06 2.53E-11 CCDC63,CUX2,LOC100131138,MYL2 No

rs4646776 chr12:111886967-112678697 19 G C 0.037 5.60E-11 0.029 2.20E-07 1.51E-17 ACAD10,ADAM1A,ALDH2,ATXN2,BRAP,ERP29,HECTD4, MAPKAPK5,MAPKAPK5-AS1,MIR6761,MIR6861,NAA2 
5,SH2B3,TMEM116,TRAFD1 No

rs7175531 chr15:51415799-51556959 49 T C 0.027 1.60E-07 0.022 7.80E-06 2.01E-12 CYP19A1,MIR4713 No

rs6142351 chr20:33864484-34336720 302 G A -0.032 5.20E-11 -0.024 1.20E-06 5.03E-16 C20orf173,CEP250,CPNE1,EIF6,ERGIC3,FAM83C,FAM83C-AS1,FER1L4,GDF5,MMP24MMP24­
AS1,NFS1,RBM12,RBM39,ROMO1,SPAG4,UQCC1 Yes

FEV1 and 
WCadjBMI

rs12048493 chr1:149922960-149995265 4 A C -0.023 1.00E-06 0.022 6.10E-06 1.92E-10 OTUD7B Yes

rs6604614 chr1:218568359-218690948 71 C G -0.030 5.10E-09 -0.027 1.90E-07 1.06E-16 TGFB2 Yes

rs16828537 chr2:232797462-233211117 264 A G 0.033 3.90E-13 -0.025 3.30E-08 3.91E-19 DIS3L2 No

rs11066065 chr12:111846028-112824473 707 C G 0.025 2.20E-08 0.024 1.20E-07 1.92E-16 ACAD10,ADAM1A,ALDH2,A TXN2,BRAP,ERP29,HECTD4, MAPKAPK5,MAPKAPK5-AS1,MIR6761,MIR6861,NAA2 
5,SH2B3,TMEM116,TRAFD1 No

rs11066325 chr12:112834586-113150735 7 T C 0.053 6.70E-19 0.031 2.30E-07 5.08E-27 PTPN11,RPL6 No

rs4646776 chr12:111827203-112678697 31 G C 0.055 4.90E-23 0.029 2.20E-07 7.56E-31 ACAD10,ADAM1A,ALDH2,ATXN2,BRAP,ERP29,HECTD4, MAPKAPK5,MAPKAPK5-AS1,MIR6761,MIR6861,NAA2 
5,SH2B3,TMEM116,TRAFD1 No

rs78572043 chr12:111293470-111718231 94 A G 0.046 1.10E-13 0.029 2.70E-06 4.58E-20 CCDC63,CUX2,LOC100131138,MYL2 No

FVC and 
BMI

rs6730783 chr2:219890663-220051676 63 A G -0.023 2.00E-07 -0.021 4.00E-06 2.73E-12 CCDC108,CNPPD1,FAM134A,IHH,MIR3131,NHEJ1,SLC23A3 No

rs73995038 chr2:232797462-233201328 207 A G -0.027 2.40E-09 -0.024 7.10E-08 4.13E-16 DIS3L2 No

rs801170 chr5:139791506-140230371 327 C T 0.023 3.70E-07 0.022 1.30E-06 8.74E-13 ANKHD1,ANKHD1-EIF4EBP3,APBB3,CD14,DND1,EIF4EBP3,HARS,HARS2,I K,MIR3655,MIR6831,NDUFA2,PCDHA1,PCDHA2,PCDHA3, 
PCDHA4,PCDHA5,PCDHA 6,PCDHA7,PCDHA8,PCDHA 9,SLC35A4,SRA1,TMCO6,VT RNA1-1,VTRNA1-2,VTRNA1-3,WDR55,ZMAT2 No

rs9271730 chr6:32397794-32667412 2271 G A 0.022 3.10E-06 0.028 1.30E-09 2.21E-14 HLA-DQA1,HLA-DQB1,HLA-DRA,HLA-DRB1,HLA-DRB5,HLA-DRB6 No

FVC and 
WHRadjBMI rs2425059 chr20:33847253-34412049 326 T C 0.033 3.70E-11 0.022 9.10E-06 1.61E-14 C20orf173,CEP250,CPNE1,EIF6,ERGIC3,FAM83C,FAM83C-AS1,FER1L4,GDF5,MMP24,MMP24­

AS1,NFS1,PHF20,RBM12,RBM39,ROMO1,SPAG4, UQCC1 Yes

FVC and 
WCadjBMI rs16828537 chr2:232797462-233211117 257 A G 0.033 3.90E-13 -0.025 1.40E-08 5.78E-17 DIS3L2 Yes

Note: N is number of variants meet the criteria of P-value<1×10-5 and r2>0.2 within the clump region; A1 is effect allele; A2 is non-effect allele; 
BETA1 is lung function trait effect size; P1 is lung function trait P-value; BETA2 is obesity trait effect size; P2 is obesity trait P-value; P is 
cross-trait meta-analysis P-value. Overlap with UKB means if the cross-trait meta-analysis clump region is overlapped with the same trait pair 
results in UKB.
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Table 3
Estimates of causal effect size for BMI and lung function traits

Population Trait 1 Trait 2 Direction Causal effect size SE P nsnp

East Asian BMI

FEV1 → -0.0773 0.021 2.46E-04 68

← 0.0884 0.033 6.53E-03 17

FVC → -0.1084 0.021 3.44E-07 67

←* NA NA NA 6

FEV1/FVC → 0.0332 0.021 0.115732 69

←* NA NA NA 3

European BMI

FEV1 → -0.1057 0.012 4.65E-18 50

← 0.0250 0.012 0.0308 411

FVC → -0.1564 0.012 1.23E-37 50

← -0.0180 0.013 0.154475 379

FEV1/FVC → 0.1622 0.014 8.01E-33 48

← 0.0393 0.009 4.75E-06 599

Note: “→” refers to the trait 1→trait 2 causal direction; “←” refers to the trait 2→trait 1 causal direction; nSNP is number of SNPs in the 
instrumental variable; causal effect sizes are in unit of per standard deviation increase in exposure.

*
the FVC and FEV1/FVC GWASs do not have enough SNPs at the genome-wide significance level for constructing the instrument variable;
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