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Abstract

The rapid pace of innovation in biological imaging and the diversity of its applications have 

prevented the establishment of a community-agreed standardized data format. We propose that 

complementing established open formats like OME-TIFF and HDF5 with a next generation file 

format like Zarr will satisfy the majority of use cases in bioimaging. Critically, a common 

metadata format used in all these vessels can deliver truly findable, accessible, interoperable and 

reusable bioimaging data.

Biological imaging is one of the most innovative fields in the modern biological sciences. 

New imaging modalities, probes, and analysis tools appear every few months and often 

prove decisive for enabling new directions in scientific discovery. One feature of this 

dynamic field is the need to capture new types of data and data structures. While 

there is a strong drive to make scientific data Findable, Accessible, Interoperable and 

Reusable (FAIR 1), the rapid rate of innovation in imaging has resulted in the creation of 

hundreds of proprietary file formats (PFFs) and has prevented the unification and adoption 

of standardized data formats. Despite this, the opportunities for sharing and integrating 

bioimaging data and, in particular, linking these data to other "omics" datasets have never 
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been greater. Therefore, to every extent possible, increasing "FAIRness" of bioimaging data 

is critical for maximizing scientific value, as well as for promoting openness and integrity 2.

When working with a large number of PFFs, interoperability and accessibility are achieved 

using translation and conversion provided by open source, community-maintained libraries 

that produce an open, common data representation. On-the-fly translation produces a 

transient representation of bioimage metadata and binary data in an open format but must 

be repeated on each use. In contrast, conversion produces a permanent copy of the data, 

again in an open format, bypassing bottlenecks in repeated data access. As workflows and 

data resources emerge that handle terabytes (TB) to petabytes (PB) of data, the costs of on-

the-fly translation have become bottlenecks to scientific analysis and the sharing of results. 

Open formats like OME-TIFF 3 and HDF5 4 are often used for permanent conversion, 

but both have limitations that make them ill-suited for use cases that depend on very high 

and frequent levels of access, e.g., training of AI models and publication of reference 

bioimage datasets in cloud-based resources. For these situations, the community is missing 

a multidimensional, multiresolution binary container that provides parallel read and write 

capability, that is natively accessible from the cloud (i.e., without server infrastructure), and 

that has a flexible, comprehensive metadata structure (see Supplementary Note for more 

details).

To this end, we have begun building OME’s next-generation file format (OME-NGFF) as 

a complement to OME-TIFF and HDF5. Together these formats provide a flexible set of 

choices for bioimaging data storage and access at scale over the next decade and, potentially, 

a common, FAIR solution for all members of the biological imaging community -- academic 

and industrial researchers and imaging scientists, and academic and commercial technology 

developers.

Next-generation file formats

We use the term “Next-generation file formats” (NGFFs) to denote file formats which can 

be hosted natively in an object (or “cloud”) storage for direct access by a large number of 

users. Our current work, which we refer to as OME-NGFF, is built upon the Zarr format 
5 but heavily informed and connected to both TIFF and HDF5. We have compared the 

characteristics of these three open formats in Supplementary Table 1.

To date, the development of OME-NGFF has focused on pixel data and metadata 

specifications for multidimensional, multiscale images, high-content screening datasets, and 

derived labelled images. These specifications include support for “chunking”, or storage of 

parts of the binary pixel data in smaller files that support rapid access to the data from 

orthogonal views or different resolution levels (also known as “pyramidal data”). Labeled 

images, such as segmentation or classification masks can now remain in a common data 

structure with the original pixel data and metadata, providing a single mechanism for 

tracking the provenance of original and derived data allowing programmatic rather than 

manual management.
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We have also built multiple implementations of these specifications, demonstrating the 

usability and performance of these formats. bioformats2raw can be used for writing OME-

NGFF from standalone Java applications and omero-cli-zarr is available for exporting from 

OMERO 6. Reading is implemented in ome-zarr-py which has been integrated into the 

napari viewer 7, in Fiji via the MoBIE plugin 8, and finally via Viv-based vizarr for access 

in the browser 9. Permissively-licensed example datasets from the Image Data Resource 

(IDR) 10 have been converted into Zarr and stored in an S3 object storage bucket for public 

consumption (Extended Data Figure 1). Though OME-NGFF is still in development, each 

of these implementations is an example of how data access and application is simplified by 

having a universal data storage pattern. Current and future specifications are published under 

https://ngff.openmicroscopy.org/latest/.

Bioimage Latency Benchmark

To demonstrate how NGFFs complement available, open formats, we have built and 

published a benchmark -- bioimage-latency-benchmark -- that compares random, serial 

access speeds to uncompressed TIFF, HDF5, and Zarr files. These measurements provide 

an upper bound on the overhead that a user would experience accessing the formats using 

common libraries, tifffile, h5py and zarr-python respectively. Though future extensions to 

the benchmark are intended, we have focused on a single, serverless Python environment 

since one library -- fsspec -- can be used to access all three data formats across multiple 

storage mechanisms without the need for any additional infrastructure.

The benchmark includes instructions for running on Docker or AWS EC2 and contains 

all necessary code to regenerate representative samples for two established imaging 

modalities: large multi-channel two-dimensional images like the ones produced by cyclic 

immunofluorescence (CycIF) 11 and timelapse isotropic volumes typically generated by 

LSM 12. Each synthetic HDF5, TIFF and Zarr dataset was generated by first invoking the 

ImarisWriter, then converting the HDF5-based Imaris files into Zarr with bioformats2raw, 

and finally converting the Zarr to TIFF with raw2ometiff. All three datasets along with a 

1-byte dummy file for measuring overhead were placed in three types of storage: local disk, 

a remote server, and object storage. We measured the reading time of individual chunks for 

all four file types across the three storage systems. Figure 1 shows that as the latency of 

access grows, access times for monolithic formats like TIFF and HDF5 increase because 

libraries must seek the appropriate data chunk, whereas NGFF formats like Zarr provide 

direct access to individual chunks. In the 3D case, the TIFF data was too large to fit into 

local memory and the benchmark errored.

On local storage, access speeds for NGFF files were similar to HDF5 and both substantially 

outperformed TIFF. This matches previous results showing that a number of factors must 

be taken into account to determine the relative performance of HDF5 and Zarr 13. Together 

these results partially explain HDF5’s popularity for desktop analysis and visualization of 

LSM datasets.

However, on cloud storage, access speeds for NGFF files are at least an order of magnitude 

faster than HDF5. Parallel reads 14, supporting streaming of image data files from remote 
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http-based or cloud-based servers give performance similar to local disk access. Data 

streaming obviates the need for wholesale data download and is especially important for 

providing performant access to multi-TB datasets.

We note that our benchmark measures direct access to underlying storage. Additional 

applications, e.g., HSDS for HDF5 or OMERO for TIFF, may improve the performance 

of specific use cases, but add significant complexity to any deployment and make direct 

comparisons between the different data access regimes in Figure 1 difficult. Additionally, 

a key parameter in overall access times is the size of individual chunks. As chunk sizes 

decrease, the number of individual chunk files increases rapidly (See Extended Data Figure 

2). In this benchmark, we have chosen a compromise between chunk size and number of 

individual files. This illustrates a primary downside of NGFF formats: as the number of files 

increases, the time required for copying data between locations increases. Users will need 

to understand and balance these trade-offs when choosing between open, bioimaging file 

formats.

Outlook: Community Adoption

We assert that together low-latency, cloud-capable NGFF, TIFF and HDF5 can provide a 

balanced set of options that the community can converge upon, and slow the development of 

ever more file formats. To this end, OME is committed to building an interoperable metadata 

representation across all three file formats to ensure ease of adoption and data exchange (see 

Supplementary Note for more information).

When data is frequently accessed, e.g., as a public resource or a training dataset, 

upfront conversion will lead to overall time savings. In situations where object storage is 

mandated as in large scale public repositories, we encourage the use of OME-NGFF today. 

Alternatively, users needing to transfer their images may choose to store their data in a large 

single file like HDF5. OME-TIFF remains a safe option for those who rely on proprietary 

software for visualization and analysis, especially in digital pathology and other whole slide 

image applications, as many have been extended to both read and write this open standard. 

Each choice comes with benefits and costs, and individual scientists, institutions, global 

collaborations and public data resources need the flexibility to decide which approach is 

suitable. We encourage the community to choose from the most appropriate of the formats 

described above, secure in the knowledge that conversion is possible if it becomes necessary.

We foresee this being a critical strategy where data generated in advanced bioimaging 

applications is converted into an optimized format for downstream processing, analysis, 

visualization and sharing. All subsequent data access occurs via open data formats without 

the need for repeated, on-the-fly translation. We have begun implementing this workflow in 

the IDR (Extended Data Figure 1), alleviating the need for time consuming downloads and 

cross-referencing metadata and resulting in substantially more accessible and interoperable 

data. We look forward to working with other resources to further develop this policy. 

Further, as adoption of public image data resources increases, commercial vendors will 

hopefully engage with these efforts to support their customers, who are increasingly 

required to publish datasets as supplementary material. Moreover, some commercial imaging 
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companies are themselves building cloud-based data handling and analysis solutions 

(e.g., https://www.apeer.com), thus broadening the community of users who need cloud-

competent file formats.

Ultimately, we hope to see digital imaging systems producing open, transparent, in other 

words FAIR, data without the need for further conversion. Until that time, we are committed 

to providing the data conversion needs of the community. Following the same pattern 

established by bioformats2raw and raw2ometiff, we propose to meet this challenge via a set 

of migration tools allowing efficient data transformations between all data formats contained 

in this suite of interoperable formats. Additionally, as the specification evolves based on 

community feedback, the same migration tools will allow upgrading the scientific data 

generated by the bioimaging community to prevent the need for long-term maintenance of 

older data. Upcoming specifications include geometric descriptions of regions of interest, 

meshes, and transformations for correlative microscopy.

To provide the best chance of wide adoption and engagement, we are developing the 

formats in the open, with frequent public announcements of progress and releases 

of reference software and examples (https://forum.image.sc/tag/ome-ngff) and regular 

community meetings where we present work, source feedback, and encourage community 

members, including vendors, to participate in the specification and implementation. The 

community process is being developed and we welcome contributions from all interested 

parties on https://github.com/ome/ngff.

Methods

Bioimage latency benchmark: synthetic data generation

Imaging modality and dataset sizes—Synthetic datasets were generated for two 

established imaging modalities: a large multi-channel two-dimensional image typical 

of cyclic immunofluorescence (CycIF) 11 of XYZCT dimensions 64000×64000×1×8×1 

and a timelapse isotropic volume typical of LSM 12 of XYZCT dimensions 

1024×1024×1024×1×100.

For each modality, the chunk size of the benchmark dataset was chosen as the best 

compromise between the size of individual chunks and the total number of chunks in the 

Zarr dataset. To make this decision, the individual chunk size was computed against the 

total number of chunks for typical sizes ranging from 16 up to 1024 (see chunks.py15 and 

Extended Data Figure 2). Based on this, we chose a 2D chunk size of 256×256 for the 

CycIF-like dataset and a 3D chunk size of 32×32×32 for the LSM-like dataset. Note that due 

to the planar limitation of TIFF, the LSM dataset was stored as 2D TIFF tiles of size 32×32 

but the benchmark loaded 32 tiles to measure the total access time.

All data was stored uncompressed to keep chunk sizes consistent for the random generated 

data. Note that with the default aws s3 cp command, data upload decreased from over 

100MiB/s for the single HDF5 file to under 20MiB/s for the Zarr dataset.
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Dataset generation—The HDF5 version of each synthetic dataset was first generated 

by using the ImarisWriter library 16 (version 2021-04-07) with a version of the 

ImarisWriterTest example 16,17 modified to allow setting the desired chunk size and generate 

gradient images rather than random data. This HDF5-based Imaris file was converted into 

Zarr using a modified version of bioformats2raw 0.2.6 with support for chunks using a “/” 

dimension separator 18. Finally the Zarr was converted into TIFF with a modified version 

of raw2ometiff 0.2.6 allowing it to consume Zarr filesets with a “/” dimension separator 19. 

Both modifications have been released since in bioformats2raw 0.3.0 and raw2ometiff 0.3.0.

For the CycIF-like dataset, this conversion generated a single 86G TIFF file, a single 86G 

HDF5 file and a Zarr dataset composed of 700k files of 86G in total. For the LSM-like 

dataset, the conversion generated a single 300G TIFF file, a single 229G HDF5 file and a 

Zarr dataset of 4.3M files of 264G in total.

Bioimage latency benchmark: measurements and results

Measurements—All three datasets along with a 1-byte dummy file for measuring 

overhead were placed in three types of storage: local disk, a remote server, and object 

storage. We measured the reading time of individual chunks for all four file types across the 

three storage systems.

A random sequence of 100 chunk locations was chosen for the benchmark. All 100 chunks 

were loaded from each file in the same order. The time taken to retrieve the chunk, 

independent of the time taken to open a file or prepare the remote connection, was recorded.

Raincloud plots—Raincloud plots 20 combine three representations (split-half violin 

plots, box plots, raw data points) so that the true distribution and the statistical parameters 

can be compared. Split-half violin plots show a smoothed version of a histogram with a 

kernel density estimate (KDE). This type of plot is useful to determine, at a glance, if the 

mean is lower or higher than the median depending on the skewness of the curve. Box 

plots show the median and the boundaries of quartiles on either side of the median of the 

distribution to determine statistical differences at a glance. Below each box plot, the raw data 

points are additionally plotted with slight vertical jittering to avoid overlaps.

All code for reproducing the plots and the runs both locally with Docker or Amazon EC2 

instances are available under a BSD-2 license on Zenodo 15.
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1 Extended Data

Extended Data Fig. 1. Maximizing re-use by allowing popular tools to access bioimaging data in 
the cloud.
An example of using NGFFs for promoting the distribution of public image datasets. 

Selection of current tools streaming different portions of the same SARS-CoV-2 virus image 

at various resolutions directly from S3 storage at the European Bioinformatics Institute 

(EBI). Original data from Lamers et al. is available in IDR while the converted data is 

available on Zenodo.21-23.
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Extended Data Fig. 2. Effect of Chunk Size on Chunk Number
For each modality, the chunk size of the benchmark dataset was chosen as the best 

compromise between the size of individual chunks and the total number of chunks in the 

Zarr dataset. The plots above show typical power of 2 chunk sizes: between 32 and 1024 for 

the 2D data and between 16 and 128 for the 3D data.

We chose a 2D chunk size of 256×256 for the CyIF-like dataset and a 3D chunk size of 

32×32×32 for the LSM-like dataset. Note that due to the planar limitation of TIFF, the LSM 

dataset was stored as 2D TIFF tiles of size 32×32 but the benchmark looped over 32 tiles to 

measure the access time of the same chunk size.
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Extended Data Fig. 3. Conversion tools provide an alternative to continual, on-the-fly translation 
of PFFs.
Figure shows workflows for file format access. (A) The classical approach to access images 

produced by an acquisition system is to use a library like Bio-Formats to translate the 

proprietary file format (PFF) and produce an in-memory copy of the imaging data on-the-

fly. This translation needs to be repeated on every use. (B) With the existence of open, 

community-supported formats, converting PFFs becomes the most cost-efficient method 

for long-term storage and sharing of microscopy data. bioformats2raw and raw2ometiff, 

described below, parallelize the creation of an open format, OME-TIFF, by using an 

intermediate format consisting of many, individual files each with one chunk of the original 

image data.

Extended Data Fig. 4. Unification of metadata specifications will allow interoperability between 
TIFF, HDF5, and Zarr.
Each proposed container (TIFF, Zarr, HDF5) can be used interchangeably to store pixel data, 

but trade-offs described in this manuscript can be used to determine what is the best target. 

TIFF is ideal for interoperability in digital pathology and other 2-dimensional domains since 

the format is widely accessible by established open source and proprietary software. In 

higher-dimensional domains, HDF5 and Zarr are better suited. HDF5 will likely be preferred 

for local access. If data is intended for sharing in the cloud, Zarr will likely be preferred. 

High throughput image analysis will benefit from the lower-latency access to data in HDF5 

and Zarr. If original image data is paired with derived representations like pixel or object 

classification, a shared structure in HDF5 or Zarr is likely the best choice.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Editor’s summary

OME’s next-generation file format (OME-NGFF) provides a cloud-native complement 

to OME-TIFF and HDF5 for storing and accessing bioimaging data at scale, and works 

toward the goal of findable, accessible, interoperable and reusable bioimaging data.
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Figure 1. Chunk retrieval time is less sensitive to data location with next-generation file formats.
Random sampling of 100 chunks from synthetically generated, 5D images measures access 

times for three different formats on the same file system ("local", green), over HTTP using 

the nginx web server ("http", orange), and using Amazon’s proprietary S3 object storage 

protocol ("s3", blue) under two scenarios: (A) a whole-slide CycIF imaging dataset with 

many large planes of data (x=64k, y=64k, c=8) and chunks of 256×256 pixels (128 KB) and 

(B) a time-lapse LSM dataset with isotropic dimensions (x=1024, y=1024, z=1024, t=100) 

and chunks of 32×32×32 pixels (64 KB). See the Methods for more information.
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