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Abstract

Children with and without dyslexia differ in their behavioural responses to visual information, 

particularly when required to pool dynamic signals over space and time. Importantly, multiple 

processes contribute to behavioural responses. Here we investigated which processing stages are 

affected in children with dyslexia when performing visual motion processing tasks, by combining 

two methods that are sensitive to the dynamic processes leading to responses. We used a diffusion 

model which decomposes response time and accuracy into distinct cognitive constructs, and 

high-density EEG. 50 children with dyslexia (24 male) and 50 typically developing children (28 

male) aged 6 to 14 years judged the direction of motion as quickly and accurately as possible 

in two global motion tasks (motion coherence and direction integration), which varied in their 

requirements for noise exclusion. Following our pre-registered analyses, we fitted hierarchical 

Bayesian diffusion models to the data, blinded to group membership. Unblinding revealed reduced 

evidence accumulation in children with dyslexia compared to typical children for both tasks. 

Additionally, we identified a response-locked EEG component which was maximal over centro-

parietal electrodes which indicated a neural correlate of reduced drift-rate in dyslexia in the motion 

coherence task, thereby linking brain and behaviour. We suggest that children with dyslexia tend 

to be slower to extract sensory evidence from global motion displays, regardless of whether noise 

exclusion is required, thus furthering our understanding of atypical perceptual decision-making 

processes in dyslexia.
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Introduction

It has long been suspected that visual processing relates to the reading difficulties 

characterising developmental dyslexia (e.g., Hinshelwood, 1896; Lovegrove et al., 1980). 

One visual function that develops atypically in those with dyslexia is visual motion 

processing: an important ability contributing to scene segmentation, depth perception and 

object recognition (Braddick et al., 2003). Difficulties in global motion tasks requiring 

integration over space and time have been widely reported in dyslexia (Benassi et al., 2010). 

Typically, participants are required to detect or discriminate coherently moving signal dots 

amongst randomly moving noise dots (Newsome & Paré, 1988). In this ‘motion coherence’ 

task, dyslexic individuals tend to have elevated psychophysical thresholds, requiring higher 

proportions of signal dots to perform at the same level of accuracy as those without dyslexia 

(Benassi et al. 2010). The nature of the relationship is still being debated, with some 

researchers proposing a causal relationship between motion sensitivity and reading ability 

(Boets et al., 2011; Gori et al., 2016; but see Goswami, 2015; Joo et al., 2017; Olulade et al., 

2013; Piotrowska & Willis, 2019).

Atypical global motion processing in dyslexia may reflect reduced sensitivity to rapid 

temporal information originating from deficiencies in the magnocellular system (Livingstone 

et al., 1991; Stein, 2001, 2019; Stein & Walsh, 1997) or related dorsal stream (Braddick 

et al., 2003; Hansen et al., 2001), which are particularly specialised for motion perception 

(Livingstone & Hubel, 1988). Alternative accounts suggest that dyslexic individuals have 

difficulty filtering out the randomly moving noise dots in motion coherence tasks (“noise 

exclusion”; Conlon et al., 2012; Sperling et al., 2006) or difficulties integrating over space 

and time (Benassi et al., 2010; Hill & Raymond, 2002; Raymond & Sorensen, 1998).

Despite focusing on the sensory parameters of visual motion stimuli, these accounts give 

little consideration to the dynamic processes leading to atypical behavioural responses 

in dyslexia, and particularly, whether decision-making processes are affected. Here we 

explicitly modelled the decision-making process using a popular cognitive model of 

accuracy and response time: the diffusion model (Evans & Wagenmakers, 2020; Ratcliff, 

1978; Stone, 1960). The decision is modelled as a noisy evidence accumulation process 

from a starting point towards one of two decision bounds (Figure 1). This modelling 

approach will help identify the locus of atypical processing in dyslexia, with two further 

advantages. First, the resulting parameters may be more sensitive to group differences than 

accuracy or response time alone (Stafford et al., 2020) and second, the parameters relate 

well to neural measures (Kelly & O’Connell, 2013; Manning et al., 2021a; Turner et al., 

2015). Accordingly, we combined the diffusion model with a neural measure sensitive to 

the dynamic processes contributing to behavioural responses (EEG), bridging brain and 

behaviour.

The diffusion model was recently applied to motion coherence performance in children with 

varying reading abilities (O’Brien and Yeatman, 2020). Poorer reading was related to lower 

drift-rates, wider decision bounds, and more intra-individual variability in starting point and 

non-decision time. Therefore poor readers accumulated motion evidence more slowly and 

responded more cautiously than good readers.
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Here, we used diffusion models to identify the processing stages affected in children with 

dyslexia across two global motion tasks. The first task was a standard motion coherence 

task (cf. O’Brien & Yeatman, 2020). The second task was a direction integration task not 

used before with dyslexic individuals, whereby dot directions are sampled from a Gaussian 

distribution, with difficulty manipulated via the standard deviation of the distribution. In this 

task, the optimal strategy is to average over all dots, with no noise exclusion requirement. 

The reason for presenting both tasks to children with dyslexia was to determine whether 

differences in model parameters are found for both motion tasks, suggesting a general 

motion-processing deficit (cf. magnocellular/dorsal deficit; Braddick et al., 2003; Stein, 

2001), or whether differences in model parameters are found particularly for the motion 

coherence task, reflecting noise exclusion difficulties (Conlon et al., 2012; Sperling et al., 

2006).

Methods

Pre-registration

We pre-registered our inclusion criteria and analysis plan before completing data collection 

and before commencing analyses (https://osf.io/enkwm). When analysing the data we used 

a blind modelling approach to ensure that modelling decisions were not biased by our 

hypotheses. Our pre-registered primary research questions and hypotheses were:

1. Do children with dyslexia have reduced drift-rates in a motion coherence 
task compared to typically developing children? We hypothesised that children 

with dyslexia would have reduced drift-rates in the motion coherence task 

compared to typically developing children, in line with the results of O’Brien and 

Yeatman (2020) and reports of reduced motion coherence sensitivity in dyslexic 

individuals (Benassi et al., 2010).

2. Do children with dyslexia have reduced drift-rates in a direction integration 
task compared to typically developing children? If children with dyslexia show 

difficulties with all global motion tasks (in line with impaired magnocellular/

dorsal stream functioning; Braddick et al., 2003; Stein, 2001), then we would 

expect children with dyslexia to have a reduced drift-rate in this task as well. 

Instead, if the performance of children with dyslexia in a motion coherence 

task is limited solely by difficulties with noise exclusion (Conlon et al., 2012; 

Sperling et al., 2006), we would expect to see no difference between children 

with and without dyslexia in this task, as it does not require segregating signal 

dots from randomly moving noise dots.

3. Do children with dyslexia show increased boundary separation? We hypothesised 

that children with dyslexia would have wider boundary separation compared 

to typically developing children in both tasks, following O’Brien and Yeatman 

(2020).

4. Do children with dyslexia show increased non-decision time? We hypothesised 

no group differences in overall non-decision time in either task, following 

O’Brien and Yeatman (2020).
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Participants

We collected data from 50 children with dyslexia and 60 typically developing children 

who met our inclusion criteria. Specifically, participants were required to be aged 6 to 14 

years (inclusive), have verbal and/or performance IQ scores above 70 (measured using the 

Wechsler Abbreviated Scales of Intelligence, 2nd edition [WASI-2]; Wechsler, 2011) and to 

have normal or corrected-to-normal acuity, as measured using a Snellen acuity chart (with 

binocular acuities of 6/9 or better for children aged 6 to 8 years and 6/6 or better for 

children aged 9 to 14 years). Children in the dyslexia group were required to have a dyslexia 

diagnosis (or be in the process of obtaining one, n = 1), and to have a reading and spelling 

composite score of 89 or below, which was computed by averaging the standard scores 

for the spelling subtest of the Wechsler Individual Achievement Test (WIAT-III; Wechsler, 

2017) and the Phonological Decoding Efficiency subtest of the Test of Word Reading 

Efficiency (TOWRE-2; Torgesen et al., 2012). A cut-off of 89 was chosen to correspond to 

1.5 standard deviations below the mean of typically developing children in a similar study 

(Snowling et al., 2019a, 2019b). Children in the typically developing group were required 

to have composite scores above 89 and to have no diagnosed developmental conditions. 

Datasets from an additional 4 typically developing children were excluded due to poor visual 

acuity (n = 1), having a composite score of 89 or below (n = 2), or failing to pass criterion on 

the task (n = 1), and datasets from an additional 11 children with dyslexia were excluded due 

to poor visual acuity (n = 2) or having a composite score above 89 (n = 9).

We then selected 50 typically developing children to best match the children with dyslexia 

in terms of age and performance IQ using the R MatchIt package (Ho et al., 2011), so that 

the final dataset included 50 children with dyslexia (24 male) and 50 typically developing 

children (28 male). As shown in Table 1, the children with dyslexia had slightly higher 

ages and lower IQ values on average than the typically developing children. EEG data 

were collected during task performance in 47 typically developing and 44 children with 

dyslexia (although EEG data were available only in the motion coherence task for one child 

with dyslexia and one typically developing child). The EEG data from these participants 

were included in a paper investigating responses locked to the onset of coherent motion in 

typically developing children and children with autism or dyslexia (Toffoli et al., 2021), and 

the larger group of 60 typically developing children were used to form the comparison group 

in an autism study (Manning et al., 2021b).

Apparatus

The tasks were presented on a Dell Precision M3800 laptop (2048 x 1152 pixels, 60 

Hz) using the Psychophysics Toolbox for MATLAB (Brainard, 1997; Kleiner, Brainard 

& Pelli, 2007; Pelli, 1997). EEG signals were collected using 128-channel Hydrocel 

Geodesic Sensor Nets connected to Net Amps 300 (Electrical Geodesics Inc., OR, USA) 

and NetStation 4.5 software. A photodiode attached to the monitor independently verified 

stimulus presentation timing. Participants used a Cedrus RB-540 response box (Cedrus, CA, 

USA).
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Stimuli

Stimuli were 100 white, randomly positioned dots (diameter 0.19˚) moving at 6˚/s within 

a square aperture (10˚ x 10˚) on a black background, with a limited lifetime of 400 ms. 

Each trial had a fixation period, a random motion period, a stimulus period, and an offset 

period, with a red fixation square (0.24˚ x 0.24˚) presented throughout (see Figure 2). 

By presenting random (incoherent) motion before the stimulus period, we could dissociate 

evoked responses to directional motion from pattern- and motion-onset evoked potentials. 

The start of the stimulus period was highlighted to participants with an auditory tone. In 

the motion coherence task, directional motion (leftward or rightward) was introduced in a 

proportion of ‘signal’ dots, while the remainder of the dots continued to move in random 

directions. In the direction integration task, the directions of dots in the stimulus phase were 

distributed according to a Gaussian distribution with a mean leftward or rightward direction. 

The fixation period, random motion period and offset period had jittered durations within 

a fixed range, while the stimulus period was presented until a response or 2500 ms had 

elapsed. The offset period continued the directional motion to temporally separate motion 

offset from the response.

Experimental task procedure

Children completed motion coherence and direction integration tasks within child-friendly 

games (based on Manning et al., 2019, 2021a). Using animations, participants were told that 

fireflies were escaping from their viewing boxes, and they were asked to tell the zookeeper 

which way the fireflies were escaping. There were 10 ‘levels’ of the game. Levels 1-5 

corresponded to one task (either motion coherence or direction integration), and Levels 

6-10 corresponded to the other task, with the order of tasks being counterbalanced across 

participants. Levels 1 and 6 were practice phases, and the remaining 4 levels for each 

task were experimental blocks. In the motion coherence task, difficulty was manipulated 

by varying the proportion of coherently moving dots, and in the direction integration task, 

difficulty was manipulated by varying the standard deviation of the Gaussian distribution 

from which the dot directions were sampled.

In the practice phases, four demonstration trials were presented with no random motion 

phase and an unlimited stimulus phase, so that the experimenter could explain the task. 

Participants reported stimulus direction using a response box. The first two demonstration 

trials were ‘easy’ (100% coherence or 1˚ standard deviation), and the last two were more 

difficult (75% and 50% coherence, or 10˚ and 25˚ standard deviations). Following the 

demonstration trials, there were up to 20 criterion trials with a coherence of 95% or a 

standard deviation of 5˚. These trials introduced the random motion phase. Participants were 

told that the fireflies would be going “all over the place” at first, and that they must wait for 

an alarm (auditory beep) before deciding which way the fireflies were escaping. A time limit 

was enforced, with visual feedback presented on the screen if participants did not respond 

within 2500 ms (“Timeout! Try to be quicker next time!”). Feedback on accuracy was given 

for responses made within the time limit (“That was correct!”, or “It was the other way that 

time”). When participants met a criterion of four consecutive correct responses, no more 

criterion trials were presented. Next, there were eight practice trials of increasing difficulty 

(motion coherence task: 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%; direction integration 
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task: 5˚, 10˚, 15˚, 20˚, 30˚, 40˚, 50˚, 60˚) with feedback as before. Level 1 was repeated for 

one typically developing child and 2 children with dyslexia who did not meet the criterion of 

four consecutive correct responses on the first attempt, but passed on the second attempt.

Levels 2-5 and 7-10 each contained 38 trials, with 9 repetitions of each of two difficulty 

levels (motion coherence task: 30%, 75%; direction integration task: 70˚, 30˚ SD), for each 

motion direction (leftward, rightward), and an additional 2 catch trials presenting 100% 

coherent (0˚ SD) motion. The experimental phase for each task therefore consisted of 152 

trials. No trial-by-trial feedback was presented during the experimental phase, apart from a 

‘timeout’ message if no response was made within 2500ms after stimulus onset. At the end 

of each level, participants were given points for their speed and accuracy in the preceding 

block (computed by (1 / median response time) * the number of correct responses * 2, 

rounded to the nearest integer). If participants obtained a score under 10, a score of 10 

points was given to maintain motivation. Trials were presented automatically, although the 

experimenter could pause and resume trial presentation if necessary. The experimental code 

can be found here: https://osf.io/fkjt6/.

General procedure

The procedure was approved by the Central University Research Ethics Committee at the 

University of Oxford. Parents provided written informed consent and children gave verbal or 

written assent. All children took part at the University of Oxford apart from one child with 

dyslexia who was seen at school without EEG. During the experimental tasks, participants 

sat 80cm away from the computer screen in a dimly lit room. For children who participated 

with EEG, we fitted the net prior to the experiment and ensured that electrode impedances 

were below 50 kΩ. EEG data were acquired at a sampling rate of 500Hz with a vertex 

reference electrode.

Children were closely monitored by an experimenter sitting beside them. The experimenter 

provided general encouragement and task reminders, pausing before the start of a trial if 

needed (e.g., to remind the child to keep still). Children had short breaks at the end of 

each ‘level’ and a longer break at the end of the first task (at the end of ‘level 5’). During 

the longer break, electrode impedances were re-assessed for children wearing EEG nets. 

Children marked their progress through the levels using a stamper on a record card. The 

children also completed a Snellen acuity test, the WASI-2, the TOWRE-2 and the spelling 

subtest of the WIAT-III. The whole session took no longer than 2 hours and children were 

given a gift voucher to thank them for their time.

Diffusion model analysis

Initially, a blinded analysis was conducted to ensure that modelling decisions were made 

without being biased by the hypotheses under test. The first author (CM) prepared a blinded 

dataset in which group membership was randomly permuted (see also Dutilh et al., 2017) 

and one of the authors (NJE) ran diffusion model analysis on this blinded dataset.

Prior to modelling, trials with response times under 200 ms were removed (corresponding 

to 0.20% of trials in the typical group and 0.24% of trials in the dyslexia group). Trials 

without a response (i.e., no response made within the 2500ms deadline) were modelled as 
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non-terminating accumulation trajectories, with the probability of a non-response occurring 

being the survivor function for the model at the time of the 2500 ms deadline (Evans et 

al., 2018; Howard et al., 2020; Ulrich & Miller, 1994). These trials accounted for 1.02% of 

the data in the typical group and 1.26% of the data in the dyslexia group. We fit the data 

from each task with hierarchical, Bayesian diffusion models with 5 parameters: 1) average 

drift-rate across difficulty levels v.mean, 2) boundary separation a, 3) non-decision time ter, 
4) difference in mean drift-rate between difficulty levels v.diff, and 5) starting point z. The 

stochastic noise within the model (s) was fixed at 0.1 to solve a scaling problem within the 

model, as per convention (Ratcliff, 1978). There were 3 hyperparameters for each parameter 

reflecting the mean (μ) and standard deviation (σ) across the two groups and the difference 

between groups (δ). Importantly, this parameterization allowed us to explicitly set priors on 

the differences between groups, which was the key effect of interest within the current study. 

More specifically, the priors were:

Data level:

ypi ∼ diffusion ap, zp, Terp, vpi, s

Parameters:

ap ∼ N+ μa ± δa, σa
zp/ap ∼ TN0, 1 μz ± δz, σz

Terp ∼ N+ μTer ± δTer, σTer
vp1 − vp2 ∼ N μv . diff ± δv . diff, σv . diff
vp1 + vp2

2 ∼ N μv . mean ± δv . mean, σv . mean
s = 0.1

Hyperparameters:

μa ∼ N+(0.2, 0.2)
μz ∼ TN0, 1(0.5, 0.2)
μTer ∼ N+(0.3, 0.3)
μv . diff ∼ N(0, 0.1)

μv . mean ∼ N(0.3, 0.3)
σa, σz, σTer, σv, diff, σv . mean ∼ Γ(1, 1)

δa, δz, δTer, δv.diff, δv.mean ∼ N(0, 0.01)

where y reflects the data, and subscripts p and i reflect the participant and difficulty level 

respectively. The priors for the μ and σ parameters were based on those used in previous 

studies implementing hierarchical diffusion models (e.g., Evans & Brown, 2017; Evans & 

Hawkins, 2019; Evans et al., 2019), and the priors for the δ parameters were based on 

the “moderately informative priors” used for the differences between conditions in Evans 

(2019). We used a differential evolution Markov chain Monte Carlo algorithm (DE-MCMC; 

Ter Braak, 2006; Turner, Sederberg, Brown, & Steyvers, 2013) to sample from the posterior 

with 15 interacting chains, each with 4000 iterations, the first 1500 of which were discarded 
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as burn-in. We also implemented a migration algorithm (see Turner, Sederberg, Brown, 

& Steyvers, 2013), where chains were randomly migrated every 14 iterations between 

iterations 500 and 1100. We calculated Bayes factors through the Savage-Dickey ratio. 

Where we found evidence of group differences, we established the population effect size by 

dividing the posterior of the group difference (δ) by the posterior of the population standard 

deviation (σ).

As shown in Table 1, the children with dyslexia were on average slightly older and of 

lower IQ than the typically developing children. As pre-registered, the first author (CM) 

ran a default Bayesian t-test using the BayesFactor R package (Morey & Rouder, 2018) 

which revealed weak, inconclusive evidence for the absence of group differences in age (BF 

in support of group differences = 0.33; Jeffreys, 1961). As we know that diffusion model 

parameters change with age (Manning et al., 2021a), and as we couldn’t conclusively rule 

out group differences in age, we also ran models which partialled out the effects of age from 

all of the parameters (using the residuals from the line of best fit between age and each of 

the parameters), in addition to our standard models. In our pre-registered analysis plan we 

decided not to control for performance IQ as it may relate to both group membership and 

decision-making in cognitively relevant ways (Dennis et al., 2009). The analysis files were 

posted on the Open Science Framework prior to unblinding (https://osf.io/nvwf7/), at which 

point all models were re-run on the unblinded dataset with correct group membership.

EEG analysis for joint modelling

We ran exploratory analysis on the unblinded dataset to investigate links between drift-rate 

and EEG activity. EEG data were band-pass filtered between 0.3 and 40 Hz in NetStation 

and then exported for further processing in MATLAB using EEGLAB functions (Delorme 

& Makeig, 2004). We downsampled each participant’s data to 250 Hz and selected only the 

data between the first fixation onset and the last offset period. We then bandpass-filtered 

between 0.3 and 40 Hz (due to insufficient attenuation of low frequencies by NetStation 

filters, Manning et al., 2019) and used EEGLAB’s ‘clean_artifacts’ function to remove bad 

channels, identify data segments with standard deviations over 15 and correct them using 

artifact subspace reconstruction (ASR; Chang et al., 2018). Missing channels were then 

interpolated. We then ran independent components analysis on 3000 ms epochs starting 

at fixation onset using an Infomax algorithm and subtracted ocular components from the 

continuous data. Finally, we average re-referenced the data. In line with the behavioural 

analyses, we excluded triggers for response events made <200 ms or >2500 ms after 

stimulus onset.

Following previous work, we used a data-driven component decomposition technique to 

identify spatiotemporally reliable patterns of activity across trials, which has the effect 

of maximising signal-to-noise ratio (Reliable Components Analysis, Dmochowski et al., 

2012; Dmochowski & Norcia, 2015; Manning et al., 2019, 2021a). To do this, we epoched 

each participant’s preprocessed continuous data from -600 ms to 200 ms around each 

response, and we baselined the data to the last 100 ms of the random motion period. We 

submitted the baselined epochs for participants in both groups to Reliable Components 

analysis for each task separately. The forward-model projections of the weights for the 
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most reliable component for each task (which explained 28.7% and 27.1% of the reliability 

in the motion coherence and direction integration tasks, respectively) are shown in Figure 

3. This component resembled the most reliable component found in our previous work 

(Manning et al., 2021a), which in turn resembles the centro-parietal positivity (O’Connell 

et al., 2012; Kelly and O’Connell, 2013). Build-up of activity in this component has been 

linked to drif-trate in typically developing children (Manning et al., 2021a). To investigate 

links with drif-trate in the current dataset, we projected each participant’s continuous data 

through the spatial weights for this component to yield a single component waveform for 

each participant for each task.

In our paradigm, stimulus-locked and response-locked activity overlap temporally, with 

the degree of overlap relating to the participant’s reaction time. Importantly, the extent of 

overlap could vary between groups and/or conditions (Ehinger & Dimigen, 2019). Thus, in 

order to obtain an EEG measure for inclusion in our model that reflects the decision-making 

process as purely as possible, and fully separate the contributions of stimulus-locked and 

response-locked activity, we used a linear deconvolution method to unmix overlapping 

stimulus-locked and response-locked activity in our component waveform using the Unfold 

toolbox (Ehinger & Dimigen, 2019). We modelled the continuous waveform for each 

participant by selecting a time window of -1000 ms to 1000 ms around each stimulus 

event or response event. We specified a design matrix with predictors for each difficulty 

level (difficult, easy) for each event type (stimulus, response). We then time-expanded the 

design matrix by adding a predictor for each timepoint sampled (i.e., every 4 ms from 

-1000 ms to 1000 ms) for each event type. The reason for this ‘time-expansion’ is that each 

regressor in the resulting design matrix models the evoked response (either stimulus-locked 

or response-locked) at a particular point in time (Smith & Kutas, 2015; Ehinger & Dimigen, 

2019); this is equivalent to the ‘finite impulse response’ approach to analysis of fMRI 

timeseries (Henson, Rugg and Friston, 2001). The predictors are therefore simply ‘boxcar’ 

functions at each point in time, rather than information relating to the stimulus display. 

Having constructed the design matrix, we identified segments with amplitudes above ±250 

μV using a sliding 2000 ms segment in 100 ms steps, and excluded these segments from 

the design matrix (motion coherence task: mean 2.36% of data for each participant, range: 

0 to 19.50%; direction integration task: mean 2.19% of the data for each participant, range: 

0 to 21.17%). We then fit the deconvolution model resulting in regression weights (betas) 

for each of the 2 event types, 2 difficulty levels and 500 timepoints, which we used to 

construct regression waveforms (see Figures 4 and 5). Comparing the left and middle 

columns of Figures 4 and 5 shows that deconvolution led to reduced amplitudes (which is 

expected as the non-deconvolved waveform contains a mix of overlapping stimulus-locked 

and response-locked activity).

The non-deconvolved waveforms showed amplitude differences between difficult and easy 

levels (Figures 4 and 5, left column), as to be expected for an EEG measure which reflects 

the decision-making process. However, these differences across difficulty levels were not 

evident in the deconvolved waveforms (Figures 4 and 5, central column). The fact that 

the difference between difficulty levels changed as a result of deconvolution could suggest 

that the overlap between stimulus- and response-locked activity differs between difficulty 

levels, due to different RT distributions in each difficulty level. However, we found a 
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difficulty level difference in the non-deconvolved waveforms even when matching the RT 

distributions for the easy and difficult levels, so that difficulty level differences could not 

be purely attributed to different RT distributions. We therefore suspected that the beta 

estimates may be noisy and that the deconvolution technique was overfitting the noise. 

Therefore, in the final step where we selected EEG measures for inclusion in the diffusion 

model, we re-ran the deconvolution model using a regularisation method which penalises 

the squared magnitude of the regression coefficients (ridge regression; see Kristensen et al., 

2017) to minimise noise. Using this approach retained the difficulty level differences while 

minimising the noise in the waveforms (see right column of Figures 4 and 5). Specifically, 

we found the best regularisation parameter for each participant using cross-validation, and 

then took the mode across all participants and constrained the regularisation parameter to 

ensure that differences in regularisation did not contribute to group differences in resulting 

waveforms. The modal parameter value was 10 for the motion coherence task (5.5 and 

10 for the typically developing children and children with dyslexia, separately) and 5 for 

the direction integration task (5 and 4.5 for the typically developing children and children 

with dyslexia, separately). We then fit a regression slope to each participant’s average 

deconvolved waveform for each difficulty level between -200 ms to 0 ms around the time 

of the response to obtain a slope measure which we entered into the diffusion model and 

related to drift-rate.

To assess the relationship between drift-rate and the EEG component discussed above, 

we used a joint modelling approach (Turner et al., 2013, 2015, 2016, Evans et al., 2018; 

Knowles et al., 2019). Specifically, we estimated additional hyper-parameters for the 

correlation between the v.mean parameter and the average of the EEG measure (slope of 

centro-parietal component activity between -200 ms to 0 ms before response) over difficulty 

levels (EEG.mean), and between the v.diff parameter and the difference in the EEG measure 

between difficulty levels (EEG.diff). Specifically, this meant that the structure of the original 

hierarchical model (with age partialled out) was only different for the drift-rate parameter, 

which was now a bivariate normal with the EEG measure:

vp1 − vp2, EEGp1 − EEGp2 ∼

BN μv . diff ± δv . diff, μEEG . diff ± δEEG . diff , σv . diff
2 , σv . diffσEEG . diffρ, σEEG . diffσv . diffρ, σEEG . diff

2

vp1 + vp2 /2, EEGp1 + EEGp2 /2 ∼

BN μv.mean ± δv.mean, μEEG . mean ± δEEG . mean , σv . mean2 , σv . meanσEEG . meanρ, σEEG . meanσv . meanρ, σEEG . mean
2

μEEG . diff ∼ N(0, 0.5)
μEEG . mean ∼ N(0, 1)

σEEG . diff, σEEG . mean ∼ Γ(1, 1)
δEEG . diff, δEEG . mean ∼ N(0, 0.01)

ρ ∼ U( − 1, 1)

where ρ refers to the correlation between drift-rate and the EEG measure. Note that we 

again used DE-MCMC with 15 interacting chains to sample from the posterior of the 

joint model, though due to the greater computational burden of the model we used 3000 

iterations, of which the first 1000 were discarded as burn-in and no migration algorithm 

was implemented. Furthermore, we estimated two different variants of this joint model: one 

where the correlations were constrained to be the same across groups, which would allow 
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for the estimation of more precise posteriors due to the limited sample size, and another less 

constrained version were the correlations were estimated separately for each group.

Results

Diffusion modelling of behavioural data

Figure 6 summarises the accuracy and response time data subjected to diffusion modelling. 

This figure shows that the children with dyslexia had slightly slower median response 

times compared to typically developing children, on average, and were slightly less accurate 

in the direction integration task, particularly on the difficult trials. However, there was 

substantial overlap between the groups with considerable variability within each group. 

These behavioural data were well-fit by our diffusion models, as shown by the cumulative 

density functions in Figure 7. All chains were well-converged, as reflected by Gelman-Rubin 

diagnostic values (Gelman & Rubin, 1992) close to 1 (M = 1.00, range = 1.00 – 1.07).

Figure 8 shows the prior and posterior distributions for the group-level parameters that 

reflect the difference between groups for each of the 5 parameters (v.mean, a, ter, v.diff, 

beta), along with Bayes factors. Bayes factors above 1 reflect more evidence for the 

alternative hypothesis of group differences compared to the null hypothesis, whereas Bayes 

factors below 1 reflect relatively more evidence for the null hypothesis than the alternative 

hypothesis. We use the heuristic that Bayes factors between 1/3 and 3 constitute only weak, 

inconclusive evidence (Jeffreys, 1961).

In support of our first hypothesis, children with dyslexia had reduced drift-rates in the 

motion coherence task compared to typically developing children, as shown by the leftward 

shift in the posterior distribution of v. mean in Figure 8. When age was partialled out, there 

was moderate evidence in favour of group differences (BF = 4.57, population effect size 

M = -.18, 95% CI: [-.40, .02]). The evidence was weaker when age was not partialled out 

(BF =1.75). Interestingly, the same pattern was found in support of our second hypothesis, 

with children with dyslexia also showing reduced drift-rates in the direction integration task 

compared to typically developing children. Again, there was moderate evidence for group 

differences when age was controlled for (BF = 4.28, population effect size M = -.21, 95% 

CI: [-.45, .02]), but weak evidence when age was not controlled for (BF = 1.71).

Our third hypothesis was that children with dyslexia would show increased boundary 

separation. Although children with dyslexia did have slightly higher boundary separation 

compared to typically developing children (indicated by a small rightward shift in the 

posterior distribution of a in Figure 8), particularly in the motion coherence task, the 

evidence remained inconclusive, even when controlling for age. Our final hypothesis was 

that there would be no group differences in non-decision time (ter) in either task. Figure 8 

shows little difference between the groups in this parameter, but the Bayes factors are close 

to 1, suggesting inconclusive evidence. Therefore, more data would be required to make firm 

conclusions regarding these hypotheses.

These pre-registered analyses did not control for performance IQ because it could be 

meaningfully related to both decision-making parameters and group membership, and 
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investigating its contribution to both was beyond the scope of our multi-level modelling 

approach. However, as there was an indication of a relationship between performance IQ 

and drift-rate (Figure 9), and as both performance IQ and drift-rate differed between the 

groups, we investigated these links further with an exploratory analysis which partialled out 

the effects of both age and performance IQ (Figure 10). In brief, BFs of 2.3 and 2.38 in the 

two tasks continue to provide weak evidence for group differences in mean drift-rate when 

both age and PIQ are controlled for.

Joint modelling of EEG and behavioural data

Figure 11 shows the distribution of slope measures that were extracted from each 

participant’s deconvolved (with regularisation) response-locked waveform, which were used 

in joint modelling to explore links between EEG and model parameters. While there 

was considerable between-participants variability, the children with dyslexia had shallower 

slopes than the typical children, on average. A Bayesian repeated measures ANOVA in JASP 

(JASP Team, 2020) showed that, in the motion coherence task, the best model of EEG 

slope measures included both the within-participants factor of difficulty level, the between-

participants factor of group and an interaction term. When averaging across models, there 

was strong evidence for including a main effect of group (BFincl = 14.70) and a group by 

difficulty level interaction (BFincl = 4.65). Yet in the direction integration task, the best 

model of EEG slope measures included only the within-participants factor of difficulty, with 

inconclusive evidence for including a main effect of group (BFincl = 0.70) or a group by 

difficulty level interaction (BFincl = 0.49). Therefore it seems that the build-up of activity 

in the centro-parietal component is clearly reduced in children with dyslexia in the motion 

coherence task, but the reduction is not compelling in the direction integration task.

Next we established whether this EEG measure was related to drift-rate across the whole 

sample, estimating a single correlation for both groups, with the effects of age partialled out. 

For both tasks, the EEG measure was positively related to both the mean drift-rate across 

difficulty levels, though the evidence was only weak in the case of the direction integration 

task (motion coherence: posterior mean r = .44, 95% credible intervals (CI) = [.26, .6], BF 

= 8869.49; direction integration: posterior mean r = .25, CI = [.03, .45], BF = 1.65). The 

posterior means were in the direction of a positive relationship between the difference in 

EEG measure and the difference in drift rate between difficulty levels, although the evidence 

was inconclusive with relatively more evidence for the null hypothesis (motion coherence: 

posterior mean r = .22, CI = [-.02, .44], BF = .73; direction integration: posterior mean r = 

.17, CI = [-.08, .4], BF = 0.43; see Figure 12 for scatterplots).

Next we fit joint models in which we estimated a separate correlation coefficient between 

drift-rate and the EEG measure for the children with dyslexia and typical children (Figure 

13). Note that our intention was not to explicitly test for differences in correlations between 

groups, but rather to see if the previous findings seem to hold for each group; any 

separation between the groups below is intended to merely describe our estimated posterior 

distributions. A positive correlation can be seen for both groups in the motion coherence 

task for the mean drift-rate across difficulty levels (typical: posterior mean r = .41, CI 

= [.13, .63], BF = 7.45; dyslexia: posterior mean r = .43, CI = [.15, .64], BF = 12.75). 
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The posterior means were in the direction of a positive relationship for the difference in 

drift-rate between difficulty levels, but the evidence was inconclusive with relatively more 

evidence for the null hypothesis (typical: posterior mean r = .18, CI = [-.2, .51], BF = .39; 

dyslexia: posterior mean r = .20, CI = [-.12, .49], BF = .46). The strength of correlations 

was weaker in the direction integration task, particularly for the typical children, for whom 

the Bayes factors suggested moderate evidence for no relationship (mean drift-rate across 

difficulty levels: posterior mean r = .10, CI = [-.22, .4], BF = .29; difference between 

difficulty levels: posterior mean r = .04, CI = [-.31, .38], BF = .24). The strength of the 

correlations in children with dyslexia were slightly stronger than in the typical children, 

with the mean drift-rate across difficulty levels showing weak evidence for a relationship, 

though the difference in drift-rate between difficulty levels showed weak evidence for no 

relationship (mean drift-rate across difficulty levels: posterior mean r = .34, CI = [.04, .58], 

BF = 2.59; difference between difficulty levels: posterior mean r = .24, CI = [-.09, .53], BF = 

.61).

Discussion

We analysed the performance of children with dyslexia and typical children in two global 

motion tasks using diffusion modelling, to identify the processing stages that are altered 

in dyslexia. In both the motion coherence and direction integration tasks, children with 

dyslexia accumulated sensory evidence more slowly than typical children, on average, once 

controlling for age. Moreover, we found a neural correlate of this evidence accumulation 

process that was attenuated in dyslexia in the motion coherence task, thus linking brain and 

behavioural measures with a latent model parameter.

The finding of reduced evidence accumulation for children with dyslexia during the motion 

coherence task echoes O’Brien and Yeatman (2020) and helps to explain previous reports 

of elevated motion coherence thresholds in dyslexia (Benassi et al., 2010). Importantly, the 

current study goes further by showing that reduced evidence accumulation is also found in 

a direction integration task that does not require segregating signal dots from noise dots. 

This result suggests that dyslexic individuals have general difficulties with extracting global 

motion information, rather than solely difficulties with noise exclusion (cf. Conlon et al., 

2012; Sperling et al., 2006) –in line with reports of atypical performance in an illusory 

motion task without noise exclusion requirements (Gori et al., 2015, 2016). These general 

difficulties could reflect reduced temporal and/or spatial integration of motion signals 

(Benassi et al., 2010; Hill & Raymond, 2002; Raymond & Sorensen, 1998). This conclusion 

does not negate the possibility that dyslexic individuals face additional difficulties when 

segregating signal from noise, as we suggested based on stimulus-locked analyses using a 

similar dataset (Toffoli et al., 2021).

By supplementing our diffusion modelling analysis with EEG, we identified a neural 

index of reduced evidence accumulation in dyslexia. Specifically, we used a data-driven 

component decomposition technique to find a centro-parietal component previously linked 

to decision-making (Kelly and O’Connell, 2013; O’Connell et al., 2012; Manning et al., 

2021a), and then ‘unmixed’ overlapping stimulus- and response-locked activity. In the 

motion coherence task, we found that children with dyslexia showed a shallower build-up 
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in the response-locked centro-parietal component compared to typical children, and the 

gradient of the build-up was positively correlated with drift-rate in the joint model. While 

the EEG analysis was exploratory, the results are consistent with an earlier study of typically 

developing children (Manning et al., 2021a) and follow our hypothesised pattern (https://

osf.io/enkwm). Similarly, Stefanac et al. (2021) reported reduced centro-parietal build-up in 

children with dyslexia compared to chronological and reading age-matched controls. Yet, in 

our direction integration task, we found no compelling evidence for reduced centro-parietal 

build-up in children with dyslexia and the evidence for a relationship between this EEG 

measure and drift-rate was weaker. This suggests that the magnitude of the centro-parietal 

positivity and its association with drift-rate may be group- and task-dependent, to some 

extent (see also Lui et al., 2021).

Alongside reductions in drift-rate, we hypothesised that children with dyslexia would show 

wider boundary separation compared to typically developing children, reflecting more 

cautious responses, and no differences in non-decision time. We found some evidence 

for increased boundary separation in children with dyslexia in the motion coherence task, 

but this was inconclusive. There was also inconclusive evidence for group differences in 

non-decision time. These results are not at odds with O’Brien and Yeatman (2020), but 

suggest that more data are required to reach a firm conclusion regarding these parameters. 

Seemingly any group differences in these parameters are more subtle than group differences 

in drift-rate. We note that the inferential method used by O’Brien and Yeatman (2020) 

differed from our own: while they also fit a hierarchical Bayesian model, they then extracted 

point estimates of diffusion model parameters for each individual to draw statistical 

inferences. Importantly, this means that O’Brien and Yeatman (2020) ignored the uncertainty 

in the individual-level parameters, which can inflate the evidence in favour of the winning 

model (Boehm et al., 2018; Evans & Wagenmakers, 2019).

Together with the results from stimulus-locked analyses using a similar dataset (Toffoli et 

al., 2021), our results suggest that early sensory encoding of motion information is not 

altered in children with dyslexia. While differences in drift-rate cannot completely tease 

apart sensory and decision-making processes, in the current study we found no evidence 

of group differences in non-decision time – a measure which includes the time taken for 

sensory encoding. Moreover, Toffoli et al. showed that early peaks reflecting motion-specific 

processing were similar in children with dyslexia and typically developing children, with 

differences arising only after ~430 ms following stimulus onset, specifically in the motion 

coherence task. The current analyses suggest that differences in dyslexia arise due to the 

efficiency with which evidence is extracted from global motion stimuli and integrated 

towards a decision bound, which is often attributed to parietal areas (Hanks et al., 2006; 

Shadlen & Newsome, 1996; 2001; de Lafuente et al., 2015). Without a comparable form 

task, it is unclear from the current study whether reduced evidence accumulation is restricted 

to tasks that tax the dorsal stream. However, we suggest that within the magnocellular/dorsal 

stream, early sensory processing is unaffected in dyslexia with group differences emerging 

only at later processing stages, including those involved in decision-making. While this 

conclusion contrasts studies indicating early alterations of the magnocellular pathway in 

dyslexia (Giraldo-Chica et al., 2015; Livingstone et al., 1991; Perani et al., 2021; Stein, 

2001, 2019; Stein & Walsh, 1997), the global motion tasks used in the current study are 
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not ideally placed to isolate magnocellular processes (Skottun, 2011; Skottun & Skoyles, 

2006, 2008; Skottun, 2016). Future work will be required to determine how specific reduced 

evidence accumulation in dyslexia is to visual motion processing. Slower responses have 

been reported in dyslexia for other tasks (Catts et al., 2002, Nicolson & Fawcett, 1994) 

which could reflect pervasive reduced evidence accumulation, and reduced global integrative 

processes have been reported in static tasks in children with dyslexia (Franceschini et al., 

2017a). However, slowed responses could arise for different reasons (e.g., increased non-

decision time, wider boundary separation), so diffusion model decompositions on various 

tasks are required.

A number of future research directions emerge. What cognitive skills other than 

magnocellular / dorsal stream processing contribute to reduced drift-rate in dyslexia? 

General processing speed is a unique predictor of word reading and comprehension 

(Christopher et al., 2012) and RAN is a recognized independent contributor to variation 

in reading ability, complementing phonological skills (e.g., O’Brien & Yeatman, 2020). 

Future work will need to establish the extent to which reduced processing speed and slower 

RAN associate with reduced drift-rate in dyslexia. Additionally, performance IQ varied 

across our two groups and was associated with drift-rate. Exploratory models revealed that, 

even when controlling for both age and performance IQ, there was still relatively more 

evidence for group differences in drift-rate than no group differences. Yet the evidence was 

weaker than in models controlling only for age. Importantly, partialling out differences in 

performance IQ could remove some of the variance related to the group differences we are 

interested in, as atypical development could lead to both dyslexia and reduced IQ (Dennis 

et al., 2009). Indeed, performance IQ has been shown to strongly predict reading skills, 

independently of phonological skills (O’Brien & Yeatman, 2020). Future work will need 

to investigate the contribution of processing speed and performance IQ to decision making 

across the spectrum of reading abilities. Future research will also be required to explain the 

considerable between-participants variability in model and EEG parameters in children with 

and without dyslexia.

By combining diffusion modelling and EEG measures that are sensitive to the multiple 

processes contributing to motion perception, we have uncovered differences between 

children with dyslexia and typically developing children that could not be observed in 

behavioural responses alone. Moreover, diffusion modelling allows motion sensitivity to be 

measured without confounding speed-accuracy tradeoffs. Given that reduced behavioural 

sensitivity to motion has been reported in a range of other disorders (Braddick et al., 2003; 

Chen et al., 2003; McKendrick & Badcock, 2004), we suggest that diffusion modelling 

may provide a useful framework to identify convergence and divergence across different 

conditions, with implications for understanding the development of these conditions and 

their relationship to other cognitive processes.

Future work should establish whether differences in evidence accumulation of motion 

information contribute causally to the reading difficulties experienced by children with 

dyslexia. Some studies have suggested a causal relationship between motion perception 

and reading difficulties (e.g., Boets et al., 2011; Ebrahimi et al., 2019; Gori et al., 2016; 

Kevan & Pammer, 2009; Lawton, 2016; Qian & Bi, 2015), so it would be interesting to 
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know if evidence accumulation processes can be trained to improve reading ability. In 

support of this possibility, action video game training has been shown to improve motion 

perception by acting on the evidence accumulation phase (Green et al., 2010) and action 

video game training has also been linked to improved reading skills in children with dyslexia 

(Franceschini et al., 2013; 2017b, Franceschini & Bertoni, 2019; Bertoni et al., 2019; 2021). 

Such causal links will need to be investigated in future work using training or intervention 

designs.
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Significance statement

Reduced sensitivity to visual information has been reported in dyslexia, with a lively 

debate about whether these differences causally contribute to reading difficulties. In this 

large pre-registered study with a blind modelling approach, we combine state-of-the art 

methods in both computational modelling and EEG analysis to pinpoint the stages of 

processing that are atypical in children with dyslexia in two visual motion tasks that 

vary in their requirement for noise exclusion. We find reduced evidence accumulation in 

children with dyslexia across both tasks, and identify a neural marker, allowing us to link 

brain and behaviour. We show that children with dyslexia exhibit general difficulties with 

extracting sensory evidence from global motion displays, not just in tasks that require 

noise exclusion.
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Figure 1. Schematic representation of the decision-making process in the diffusion model for a 
trial with rightward motion
Decision-making process represented as a noisy accumulation of evidence from a starting 

point, z, towards one of two decision bounds. In our motion tasks, the decision bounds 

correspond to left and right responses. Boundary separation, a, represents the width between 

the two bounds and reflects response caution. Wider decision boundaries reflect that more 

evidence is required before making a decision (i.e., more cautious responses). Drift-rate, 

v, reflects the rate of evidence accumulation, which depends on both the individual’s 

sensitivity to a stimulus and the stimulus strength. Non-decision time, ter, is the time 

taken for sensory encoding processes prior to the decision-making process and response 

generation processes after a bound is reached.
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Figure 2. Schematic representation of trial procedure.
The trial started with an initial fixation period that was followed by a random motion period 

consisting of random, incoherent moving dots, which was in turn followed by a stimulus 
containing leftward or rightward global motion. The child was asked to report the direction 

using a response box. After the response or after the maximum stimulus duration elapsed 

(2500 ms), the stimulus remained on the screen for a short offset period. Note that arrows 

(indicating movement) and dotted lines (marking the square stimulus region) are presented 

for illustration only. The stimulus shown here is from the motion coherence task, where a 

proportion of dots move coherently. In the direction integration task, dot directions were 

taken from a Gaussian distribution. Figure reproduced from https://osf.io/wmtpx/ under a 

CC-BY4.0 license.
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Figure 3. Scalp topographies and temporal dynamics for the most reliable component in the 
motion coherence and direction integration tasks
Topographic visualisations of the forward-model projections of the most reliable component 

(left) reflecting the weights given to each electrode following reliable components analysis 

(RCA) on data from all participants pooled across difficulty level, for the motion coherence 

task (upper) and direction integration task (lower). The waveforms (right) show the temporal 

dynamics of the component.
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Figure 4. Group average stimulus-locked and response-locked evoked potentials for the motion 
coherence task
Average (±1SEM) stimulus-locked (upper) and response-locked (lower) evoked potentials 

for typically developing children (grey) and children with dyslexia (blue) in the motion 

coherence task for difficult and easy levels. The left column shows non-deconvolved group 

average waveforms. The central column shows deconvolved group average waveforms 

(without regularisation). The right column shows deconvolved group average waveforms 

with regularisation (ridge regression). The vertical line at 0 ms indicates when the stimulus 

phase started (stimulus-locked) or when the response was made (response-locked).
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Figure 5. Group average stimulus-locked and response-locked evoked potentials for the direction 
integration task
Average (±1SEM) stimulus-locked (upper) and response-locked (lower) evoked potentials 

for typically developing children (grey) and children with dyslexia (blue) in the direction 

integration task for difficult and easy levels. The left column shows non-deconvolved group 

average waveforms. The central column shows deconvolved group average waveforms 

(without regularisation). The right column shows deconvolved group average waveforms 

with regularisation (ridge regression). The vertical line at 0 ms indicates when the stimulus 

phase started (stimulus-locked) or when the response was made (response-locked).
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Figure 6. Accuracy and median response time (RT) for correct trials
Violin plots showing the kernel probability density for each group’s accuracy (left) and 

median RT (s) for correct trials (right) for each difficulty level and each task (upper: motion 

coherence; lower: direction integration). Data for typically developing children and children 

with dyslexia are presented in grey and blue, respectively. Dots and vertical lines represent 

the group mean and ±1 SEM.
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Figure 7. Model fits
Defective cumulative density function plots for each of the four models, for typically 

developing children (upper rows) and children with dyslexia (bottom rows) for difficult 

and easy levels. Green represents correct responses and red represents error responses, at 

each of 9 quantiles. The dots reflect the observed data and crosses with connecting lines 

reflect the model fit. The dots and crosses at 2.5 seconds reflect the observed and model 

predicted misses.
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Figure 8. Prior and posterior density distributions
Prior (green) and posterior (purple) density distributions for the group-level parameters 

reflecting group differences in each of the 5 model parameters (v.mean = mean drift-rate 

across difficulty levels; a = boundary separation; ter = non-decision time; v.diff = difference 

in mean drift-rate between difficulty levels; z/a = relative starting point) for each task. The 

upper inset shows a schematic of the model parameters shown. The leftmost columns show 

the results of the standard model and the rightmost columns show the results of the model 

with age partialled out. Negative values reflect lower parameter values in the dyslexia group 

compared to the typically developing group. BF = Savage-Dickey Bayes factors in favour of 

the alternative hypothesis (H1) over the null hypothesis (H0). BF > 1 support H1.
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Figure 9. Scatterplots plotting individual parameter estimates against performance IQ
Maximum likelihood estimates contained within the posterior for each participant’s mean 

drift-rate across difficulty levels (v.mean), boundary separation (a), non-decision time (ter), 
difference in drift-rate between difficulty levels (v.diff), and starting point (z/a), plotted 

as a function of performance IQ (PIQ), for the motion coherence task (left column) and 

direction integration task (right column). Typically developing children are plotted in grey 

and children with dyslexia are plotted in blue.
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Figure 10. Exploratory analyses: prior and posterior density distributions for model with age 
and performance IQ partialled out
While our pre-registered analysis did not control for performance IQ, we conducted an 

exploratory analysis to investigate whether group differences in drift-rate were still apparent 

when controlling for performance IQ. The figure shows prior (green) and posterior (purple) 

density distributions for the group-level parameters reflecting group differences in each of 

the 5 model parameters (v.mean = mean drift-rate across difficulty levels; a = boundary 

separation; ter = non-decision time; v.diff = difference in mean drift-rate between difficulty 

levels; z/a = relative starting point) for each task, when both age, performance IQ (PIQ) 
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and their interaction are partialled out. Negative values reflect lower parameter values in 

the dyslexia group compared to the typically developing group. BF = Savage-Dickey Bayes 

factors in favour of the alternative hypothesis (H1) over the null hypothesis (H0). BF > 

1 support H1. As in Figure 8, the posterior distribution for v.mean is shifted leftwards, 

reflecting lower mean drift-rate in the dyslexia group than the typically developing group. 

The corresponding Bayes factors are smaller in these analyses, indicating weaker evidence 

for group differences. As we reflect on in the Discussion of the main manuscript, the 

decision to partial out PIQ should not be taken lightly, as PIQ seems to contribute to both 

decision making variables (drift-rate) and group differences, so it is likely that partialling out 

PIQ removes some of the variance related to the group differences we are interested in.
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Figure 11. EEG slope measure extracted for inclusion in the joint model
Violin plots showing the kernel probability density for the EEG slope measure extracted for 

inclusion in the joint model for each group (typically developing: grey; dyslexia: blue) for 

each difficulty level. The extracted measure was the slope of a linear regression line fitted 

to each participant’s deconvolved (with regularisation) response-locked waveform, from 200 

ms prior to the response to the response (see shaded area of schematic response-locked 

waveform in inset). The dotted line reflects a flat slope. Dots and vertical lines represent the 

group mean and ±1 SEM.
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Figure 12. Scatterplots showing relationship between drift-rate and EEG
Left panels show maximum likelihood estimates contained within the posterior for each 

participant’s mean drift-rate across difficulty levels (v.mean) plotted against the slope 

of EEG activity averaged across difficulty levels (EEG.mean) for the motion coherence 

(top) and direction integration (bottom) tasks. Right panels show point estimates for each 

participant’s difference in drift-rate between difficulty levels (v.diff) plotted against the 

difference in slopes of EEG activity between the two difficulty levels (EEG.diff), for each 

task. Typically developing children are plotted in grey and children with dyslexia are plotted 

in blue.
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Figure 13. Posterior density plots showing the correlation between drift-rate and the EEG 
measure
Inset provides a schematic representation of the drift-rate parameter (v; left) and EEG 

measure (slope of response-locked waveform from -200 ms to 0 ms around the response; 

right) that were correlated in the joint model, where ρ represents the correlation. Posterior 

density plots in the left column reflect the correlation between the mean drift-rate across 

difficulty levels (v.mean) and the mean EEG slope measure across difficulty levels 

(EEG.mean). Posterior density plots in the right column reflect the correlation between 

the difference in drift-rate between difficulty levels (v.diff) and the difference in EEG 

slope measure between difficulty levels (EEG.diff). Plots for the motion coherence task are 

presented in the upper row and plots for the direction integration task are presented in the 

lower row. The orange distribution shows the correlation across all participants, and the grey 
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and blue distributions show separate correlations estimated for typical children and children 

with dyslexia, respectively.
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Table 1
Demographics of participants included in final dataset

Typically developing
(n = 50)

Dyslexia
(n = 50)

Age 10.65 (2.34) 6.55 – 14.98 11.08 (1.87) 7.81 – 14.53

Performance IQ 109.26 (11.53) 81 – 145 99.40 (15.29) 72 – 141

Verbal IQ 110.60 (8.42) 95 – 127 98.56 (10.60) 77 – 118

Full-scale IQ 111.36 (9.02) 89 – 132 98.70 (12.85) 75 – 132

TOWRE-2 PDE 111.18 (16.53) 81 – 153 79.16 (9.45) 51 – 99

WIAT-Spelling 105.74 (10.21) 80 – 127 77.86 (7.96) 58 – 99

Composite score 108.46 (12.15) 89.5 – 138.0 78.51 (7.46) 54.5 – 89.0

Note. Data are presented as M (SD) Range.
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