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Abstract

Mixed outcome endpoints that combine multiple continuous and discrete components are often 

employed as primary outcome measures in clinical trials. These may be in the form of co-primary 

endpoints, which conclude effectiveness overall if an effect occurs in all of the components, 

or multiple primary end-points, which require an effect in at least one of the components. 

Alternatively, they may be combined to form composite endpoints, which reduce the outcomes to a 

one-dimensional endpoint. There are many advantages to joint modeling the individual outcomes, 

however in order to do this in practice we require techniques for sample size estimation. In this 

article we show how the latent variable model can be used to estimate the joint endpoints and 

propose hypotheses, power calculations and sample size estimation methods for each. We illustrate 

the techniques using a numerical example based on a four-dimensional end-point and find that 

the sample size required for the co-primary endpoint is larger than that required for the individual 

endpoint with the smallest effect size. Conversely, the sample size required in the multiple primary 

case is similar to that needed for the outcome with the largest effect size. We show that the 

empirical power is achieved for each endpoint and that the FWER can be sufficiently controlled 

using a Bonferroni correction if the correlations between endpoints are less than 0.5. Otherwise, 

less conservative adjustments may be needed. We further illustrate empirically the efficiency gains 

that may be achieved in the composite endpoint setting.
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1 Introduction

Sample size estimation plays an integral role in the design of a study. The objective is to 

determine the minimum sample size that is large enough to detect, with a specified power, a 

clinically meaningful treatment effect. Although it is crucial that investigators have enough 

patients enrolled to detect this effect, overestimating the sample size also has ethical and 

practical implications. Namely, in a placebo-controlled trial, more patients are subjected to 

a placebo arm than is necessary, therefore withholding access to potentially beneficial drugs 

from them and delaying access to future patients.1–3 Furthermore it results in longer, more 

expensive trials, using resources that could be allocated elsewhere.

One vital aspect of sample size determination is the primary endpoint. Typically this is 

a single outcome, however in some instances there may be multiple outcomes of interest 

and so various combinations of these outcomes can be selected as the primary endpoint, 

depending on the hypothesis of interest. Assuming we have three outcomes of interest ν1, 

ν2 and ν3, one option is a co-primary endpoint, which takes the form of the multivariate 

endpoint ν1 ∩ ν2 ∩ ν3. This means that an intervention is deemed to be effective overall if it 

is shown to be effective in each of ν1, ν2, and ν3. Alternatively multiple primary endpoints 

may be of interest, which take the multivariate form v1 ∪ ν2 ∪ ν3, where an intervention 

is deemed effective if it is shown to be effective in at least one of ν1, ν2, or ν3. Another 

possibility is a composite endpoint, involving some function that maps the multivariate 

outcome to a univariate outcome for inference, for example ν1 + ν2 + ν3. In this case the 

outcomes within the composite may be assigned equal or differing degrees of relevance 

depending on clinical importance.4 Alternatively, the composite endpoint may combine 

outcomes by labeling patients as ‘responders’ or ‘non-responders’ based on whether they 

exceed predefined thresholds in each of the outcomes. For instance, we let a response 

indicator S = 1 if ν1 ≤ η1, ν2 ≤ η2, and ν3 ≤ η3, where η denotes the response cutpoints. 

Note that the composite case is distinct from the others in that it combines the parameters 

and hence test statistics for each outcome into one, rather than these remaining separate for 

each outcome. This will have implications for sample size estimation.

For each of these endpoints, the individual outcomes may be a mix of multiple continuous, 

ordinal, and binary measures. One possible way to jointly model the outcomes is using a 

latent variable framework, arising in the graphical modeling literature, in which discrete 

outcomes are assumed to be latent continuous variables subject to estimable thresholds and 

modeled using a multivariate normal distribution.5,6 By employing this framework we can 

take account of the correlation between the outcomes, improve the handling of missing 

data in individual components and potentially increase efficiency. Furthermore, in the case 

of multiple primary outcomes, it may reduce the severity of multiple testing corrections 

required by accounting for correlation between endpoints.

A barrier to adopting these techniques is a lack of consensus on sample size determination. 

A recent and comprehensive overview of the existing literature for sample size calculation 

in clinical trials with co-primary and multiple primary endpoints is provided by Sozu et 

al.7 The review found many proposals for power and sample size calculations for multiple 

continuous outcomes. In the co-primary case, some of these were based on assuming that 
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the endpoints were bivariate normally distributed,8,9 and extended for the case of more than 

two endpoints.10,11 Other work focused on testing procedures12,13 and controlling the type I 

error rate.14–17 Similar ideas were investigated for multiple primary endpoints.14,17–19

Approaches to sample size estimation for composite endpoints have focused primarily on 

the case of multiple binary components.20–25 In the case of binary co-primary endpoints, 

five methods of power and sample size calculation based on three association measures 

have been introduced.26 Additionally, sample size calculation for trials using multiple risk 

ratios and odds ratios for treatment effect estimation is discussed by Hamasaki et al,27 and 

Song28 explores co-primary endpoints in non-inferiority clinical trials. Consideration has 

also been given to the case where two co-primary endpoints are both time-to-event measures 

where effects are required in both endpoints,29–31 and at least one of the endpoints.32,33 

Furthermore, composites comprised of time-to-event measures are common, in which the 

composite reflects time-to-first-event variable.34 Sample size estimation in this case has 

been considered by Sugimoto et al.35

The mixed outcome setting has received substantially less consideration. One paper 

considers overall power functions and sample size determinations for multiple co-primary 

endpoints that consist of mixed continuous and binary variables.36 They assume that 

response variables follow a multivariate normal distribution, where binary variables 

are observed in a dichotomized normal distribution, and use Pearson’s correlations for 

association. A modification was suggested by Wu and de Leon37 which involved using 

latent-level tests and pairwise correlations, and provided increased power. Thesemethods 

focus on the co-primary endpoint case,where effects are required in all outcomes. The case 

ofmultiple primary or composite endpoints where the components are measured on different 

scales has not been considered, each of which will require distinct hypotheses. In practice, 

if a mixed outcome composite is selected as the primary endpoint in a trial then the sample 

size calculation may be based on an overall binary endpoint or collapsed to form multiple 

binary endpoints however this will result in a large loss in efficiency.38

In this article we build on the existing work for co-primary continuous and binary endpoints 

to include any combination of continuous, ordinal, and binary outcomes for co-primary, 

multiple primary, and composite endpoints. We propose a framework based on the same 

latent variable model and show how it may be tailored to each of the three endpoints 

to facilitate sample size estimation. The article will proceed as follows: in Section 2 we 

introduce the latent variable model, detailing how it can be used in each context, and specify 

hypothesis tests for each of the three combinations of mixed outcomes; in Section 3 we 

propose power calculations and sample size estimation techniques in each case; in Section 

4 we illustrate the methods on a four dimensional endpoint consisting of two continuous, 

one ordinal and one binary outcome using a numerical example based on the MUSE trial;39 

and in Section 5 we simulate the empirical power for each test and the FWER for the 

union-intersection test. We conclude with a discussion and recommendations for practice in 

Section 6, and introduce user-friendly software and documentation for implementation in 

Section 7.
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2 Endpoints and Hypothesis Testing

2.1 Latent variable framework

Let nT and nC represent the number of patients in the treatment group and the control 

group respectively and let K be the number of outcomes measured for each patient. Let 

YTi = Y Ti1, …, Y TiK
T , i = 1, …, nT  be vector of K responses for patient i on the treatment 

arm and YCi = Y Ci1, …, Y CiK
T , i = 1, …, nC the vector of K responses for patient i on 

the control arm. Without loss of generality, the first 1 ≤ k ≤ km elements of YTi and YCi 

are observed as continuous variables, the next km < k ≤ ko are observed as ordinal and 

the remaining ko < k ≤ K are observed as binary. For instance, for a three dimensional 

endpoint with one continuous, one ordinal and one binary measure, km = 1, ko = 

2, and K = 3. We use the biserial model of association by Tate,40 which is based 

on latent continuous measures manifesting as discrete variables. Formally, we say that 

YTi and YCi have latent variables YTi*  and YCi*  respectively, where YTi* ∼ NK μT , ∑T

and YCi* ∼ NK μC, ∑C , where μT = μ1T , …μKT , μkT = μkT0 + μkT1xkT1 + … + μkT pxkT p

and xkT1…xkTP denotes the p covariates included in the model for outcome 

k. Likewise μC = μ1C, …μKC  are the corresponding quantities for the control 

arm. Then for k ≠ k′:1 ≤ k < k′ ≤ km let V ar Y Tik = σTk
2 , V ar Y Cik = σCk

2  and 

Corr Y Tik, Y Tik′ = ρTkk′, Corr Y Cik, Y Cik′ = ρCkk′ where ρTkk′ and ρCkk′ are the 

associationmeasures between the endpoints. For km < k ≤ K, V ar Y Tik* = V ar Y Cik* = 1 and 

Corr Y Tik* , Y Tik′* = ρTkk′* , Corr Y Cik* , Y Cik′* = ρCkk′* . The latent variables can be related to the 

observed variables by:

• 1 ≤ k ≤ km:Y Tik = Y Tik*  and Y Cik = Y Cik*

•

km < k ≤ ko: Y Tik =

0 if τk0 ≤ Y Tik* < τk1,
1 if τk1 ≤ Y Tik* < τk2,
⋮ ⋮

wk if τkwk ≤ Y Tik* < τk wk + 1

Y Cik

=

0 if τk0 ≤ Y Cik* < τk1,
1 if τk1 ≤ Y Cik* < τk2,
⋮ ⋮

wk if τkwk ≤ Y Cik* < τk wk + 1

•
ko < k ≤ K :Y Tik =

0 if τk0 ≤ Y Tik* < τk1,
1 if τk1 ≤ Y Tik* < τk2

Y Cik =
0 if τk0 ≤ Y Cik* < τk1,
1 if τk1 ≤ Y Cik* < τk2

We set τk 0 = −∞, τk(wk+1) = ∞ and the intercepts μkT0 and μkC0 equal to zero for km < k 
≤ ko in order to estimate the cut-points. Additionally, τk0 = − ∞, τk1 = 0, τk2 = ∞ for ko < 

k ≤ K so that the intercepts can be estimated for the outcomes observed as binary. The mixed 

outcomes are then combined as follows.
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2.2 Co-primary endpoint

In this case, a treatment must be shown to be effective as measured by each of the outcomes 

in order to be deemed effective overall. We generalize previous work for mixed continuous 

and binary outcomes to include ordinal outcomes, as shown below.36,37 In many clinical 

trials the hypothesis of interest is based on superiority, namely that the proposed treatment 

will perform better than the control treatment. The null hypothesis is that the difference 

in treatment effects for the treatment arm and control arm is less than or equal to zero. 

This is straightforward to formalize in the case of one endpoint but less so when there are 

multiple co-primary endpoints, particularly when they are measured on different scales. The 

hypothesis of interest is as shown in (1)

H0: ∃ k s . t . πTk − πCk ≤ 0
H1: πTk − πCk > 0∀k, (1)

where πTk and πCk is the effect of the intervention in the treatment and control 

arm respectively. For ko < k ≤ K we can specify πTik = P Y Tik = 0 = P Y Tik* < 0  and 

πCik = P Y cik = 0 = P Y Cik* < 0  for the treatment and control group.

We can generalize this assumption to account for the ordinal endpoints based 

on the fact that for km < k ≤ koπTikP Y Tik = wk = P τkwk < Y Tik* < τk wk + 1 . The 

definition of treatment effect for ordinal outcomes may be modified to include 

multiple ordinal levels by selecting the appropriate τ thresholds. For instance, 

πTik = P Y Tik = 0 + P Y Tik = 1 + P Y Tik = 2 = P −∞ < Y Tik* < τk3 . As the latent means 

are estimable by maximum likelihood, μTi1* = Φ−1 πTi1 , …, μTik* = Φ−1 πTik  in the 

treatment group and μCi1* = Φ−1 πCi1 , … , μCik* = Φ−1 πCiK  in the control group.

We can proceed by specifying that the hypothesis in (1) holds if and only if the hypothesis

H0*: ∃ k s . t . δk* ≤ 0
H1*: δk* > 0 ∀k,

(2)

holds, where δk* = μTK* − μCK* , μTK* = 1/nTΣi = 1
nT μTik*  and μCK* = 1/nCΣi = 1

nC μCik* . The 

maximum likelihood estimates μTK*  and μCK*  can be used for a test of H0* and the variance of 

this test statistic can be obtained using the inverse of the Fisher information matrix.

2.3 Multiple primary endpoint

Multiple primary endpoints conclude a treatment is effective if it is shown to work in 

at least one of the outcomes. We would expect the sample size required to be reduced 

compared with the co-primary endpoint case which would require power to detect treatments 

in all outcomes. We can allow for sample size estimation for multiple primary endpoints as 

follows.
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The hypothesis of interest, accounting for the fact that a significant effect in only one 

outcome is required, is shown below.

H0: πTk − πCk ≤ 0∀k
H1: ∃ k s . t . πTk − πCk > 0. (3)

As before, πTk and πCk can be determined for km < k ≤ ko using the relevant τ thresholds.

H0*: δk* ≤ 0∀k
H1: ∃ k s . t . δk* > 0.

(4)

The difference in latent means δk* = μTk* − μCk*  and their variance are estimated using the 

maximum likelihood estimates and Fisher information matrix, as before.

2.4 Composite endpoint

A review conducted by Wason et al41 showed that composite responder endpoints are widely 

used and identified many clinical areas in which they are common, such as oncology, 

rheumatology, cardiovascular, and circulation. The latent variable framework may be used 

to model the underlying structure of these mixed outcome composite endpoints to greatly 

improve efficiency.38 The joint distribution of the continuous, ordinal, and binary outcomes 

is modeled using the latent variable structure as before. However, in this case the endpoint of 

interest is a composite responder endpoint and so the required quantity is some function of 

the probability of response in the treatment group pT and in the control group pC.

For instance, an overall responder index Si can be formed for patient i, where Si = 1 

if Y i1 ≤ η1, …, Y ik* ≤ ηk and 0 otherwise, where the quantities (η1, …, ηK) are predefined 

responder thresholds. Generalizations where response only requires a certain number of the 

components to meet the thresholds are possible, but involve more complex sums. Note that 

this definition of response is distinct from that commonly found in composites formed from 

survival endpoints or binary composites typical in cardiovascular studies. We can specify 

piT and piC, the probability of response for patient i in the treatment arm and control arm 

respectively, as shown in (5),

piT = P Si = 1 T i = 1 = ∫
−∞

η1
…∫

−∞

ηK
fY1, …, Y K yi1, …, yiK T i = 1, θ dyK…dy1

piC = P Si = 1 T i = 0 = ∫
−∞

η1
…∫

−∞

ηK
fY1, …, Y K yi1, …, yiK T i = 0, θ dyK…dy1,

(5)

where θ is the vector of model parameters and we assume that pT ∼ N δT , σδT
2  and 

pC ∼ N δC, σδ
2 . As in the case of co-primary and multiple primary endpoints, the 

assumptions allow us to estimate latent means μkm + 1
* , …, μK*  for the observed discrete 

components using the model parameters.
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In the mixed outcome composite endpoint setting, note that although we are exploiting the 

latent multivariate Gaussian structure for efficiency gains we are ultimately still interested 

in a one dimensional endpoint, such as the difference in response probabilities between the 

treatment and control arms of the trial. This is distinct from the co-primary and multiple 

primary endpoints cases, where the overall hypothesis test must be based on some union or 

intersection of the hypotheses for the individual outcomes. For the composite endpoint we 

can formulate the hypothesis as shown in (6),

H0: pT − pC ≤ 0
H1: pT − pC > 0, (6)

where pT and pC are as in (5). For sample size estimation, we require the distribution of δ 
= pT − pC under H1, which we can assume to be δ ∼ N δT − δC, σδ

2 . The hypothesis can 

therefore be stated as

H0: δ* ≤ 0
H1: δ* > 0, (7)

where δ* = δT* − δC*, δT* = ΦK η1, …, ηK; μT* , ΣT , δC* = ΦK η1, …, ηK; μC* , ΣC and ΦK(.;μ,Σ) 

is the K-dimensional multivariate normal distribution function, with mean vector μ and 

covariance matrix Σ. Estimates of the quantities can be obtained using the maximum 

likelihood estimates for the model parameters, as in the co-primary and multiple primary 

endpoint settings, so that δT* = ΦK η1, …, ηK; μT*, ΣT  and δC* = ΦK η1, …, ηK; μC* , ΣC ,

where μT* is the K-dimensional vector of mean values in the treatment arm and μC*  is the 

corresponding vector for the control arm. Using a Taylor series expansion, we can obtain the 

quantity σδ
2 using the fact that var δ* ≈ ″δ TCov θ ′δ . Then, var δ* = ″δT

TCov θ ″δT ,

where ″δ is the vector of partial derivatives of δ* with respect to each of the parameter 

estimates. We can obtain θ  and covariance matrix Cov θ  by fitting the model to pilot trial 

data.

3 Sample Size Estimation

3.1 Co-primary endpoints

To construct the power function, we define the required quantities as follows. Let Y Tk − Y Ck
and μTk* − μCk*  denote the difference in sample means for the continuous and discrete 

outcomes respectively. We assume δk = μTk − μCk, δk* = μTk* − μCk* , κ = nC /nT  and let zα 

denote the (1 − α)100th standard normal percentile, where α is the prespecified significance 

level. We define the z score as Zk =
Y Tk − Y Ck

σk
1 + κ
κnT

 and Zk* =
μTk* − μCk*

1 + κ
κnT

 for the observed 

continuous and latent continuous measures respectively. The test statistic can then be defined 

as shown below.
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Zk
† =

Zk − δk
σk

κnT
1 + κ = Y Tk − Y Ck − δk

σk
1 + κ
κnT

, k = 1, …, km

Zk* − δk*
κnT

1 + κ =
μTk* − μCk* − δk*

1 + κ
κnT

, k = km + 1, …, K
, (8)

zk
† =

zα − δk
σk

κnT
1 + κ , k = 1, …, km

zα − δk*
κnT

1 + κ , k = km + 1, …, K
. (9)

A useful property of Z† = Z1
†, …ZK

† T
 is that it is asymptotically multivariate normal under 

regularity conditions.11The power function for the joint co-primary endpoints is as shown in 

(10) and hence can be approximated by (11).

1 − β = P ∩
k = 1

km Zk > za ∩
km + 1

K zk* > za δ ≃ P ∩
k = 1

K zk
† > zk

† δ , (10)

for δ = δ1, …, δkm, …, δko, …, δK
T ≠ 0 .

1 − β ≃ P ∩
k = 1

K zk
† > zk

† δ = ΦK −z1
†, …, − zK

† ; Γ . (11)

Assuming nT = nC = n it is possible to rearrange (11) to obtain a sample size formula in 

terms of n as shown below.7

n = CK + zα
2

δK
2 , (12)

where the sample size depends on the number of outcomes and CK is the solution of

1 − β = ∫
−∞

γ1CK + zα γ1 − 1
⋯∫

−∞

γK − 1CK + zα γK − 1 − 1 ∫
−∞

CK
f

z1, … , zK*; 0, Γ dzK*… dz1 .
(13)

Alternatively, we can input different values for n in (11) to achieve the required power.

3.2 Multiple primary endpoints

Using the Zk
† and Zk

† defined for co-primary endpoints and assuming nT = nC = n, we can 

define the overall power as in (14).
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1 − β = P ∪
k = 1

km Zk > za ∪
km + 1

K zk* > za δ ≃ P ∪
k = 1

K zk
† > zk

† δ . (14)

In order to obtain an appropriate power function we rely on the inclusion-exclusion principle 

as follows.

P ∪
k = 1

K
Zk

† > zk
† δ = ∑

k = 1

K
P Zk

† > zk
† δ − ∑

k < l
P Zk

† > zk
† ∩ Zl

† > zl
† δ

+ ∑
k < l < m

P Zk
† > zk

† ∩ Zl
† > zl

† ∩ Zm† > zm† δ

+ ⋯ + −1 K − 1 ∑
k < ⋯ < K

P ∩
k = 1

K
Zk

† > zk
† δ .

A closed form expression for the overall power is shown in (15)

P ∪
k = 1

K Zk
† > zk

† δ = ∑
i = 1

K
−1 i − 1 ∑

I ⊆ 1, …, K
P ∩

k ∈ I
Zk

† > zk
† δ . (15)

We then input different values for n to achieve the required power. Note when using the 

union-intersection test for multiple primary endpoints that a correction must be applied 

to control the family-wise error rate (FWER). Approaches used for multiple primary 

continuous endpoints, such as Bonferroni and Holm corrections, may also be implemented 

in this setting.

3.3 Composite endpoints

As the endpoint of interest is specified in terms of the overall one dimensional composite 

endpoint, we can use the formula assumed when employing the standard test of proportions 

technique. As σδ =
σδT

2

nT
+

σδC
2

nC
, we can assume that σT = σC = σ and nT = nC = n, so 

that δ ∼ N δT − δC , 2 σ2 /n . The power is deduced in the standard way, as demonstrated 

below.

1 − β = P PT − PC > zα 2 σ2 /n H1

= P z > zα 2 σ2 /n − δ*
2 σ2 /n

H1

= Φ δ*
2 σ2 /n

− za .

(16)

Note that σσ2 = 2 σ2
n , however to obtain a formula in terms of the required sample size we 

will need to separate n from the variance estimate. By fitting the model to pilot trial data we 

can obtain an estimate for σ2, as the value of n will be known in this instance and n can be 

obtained using (17).
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n = 2 σ2 z1 − β + zα
2

σ * 2 . (17)

This is similar to the sample size equation used for the binary method, however σ is not 

derived in the standard way and δ* is obtained using latent means as opposed to provided 

directly.

4 Numerical Application

4.1 Muse trial

We illustrate the technique for sample size determination using the MUSE trial.39 The 

trial was a phase IIb, randomized, double-blind, placebo-controlled study investigating 

the efficacy and safety of anifrolumab in adults with moderate to severe systemic lupus 

erythematosus (SLE). Patients (n=305) were randomized (1:1:1) to receive anifrolumab 

(300 or 1000 mg) or placebo, in addition to standard therapy every 4 weeks for 48 

weeks. The primary endpoint in the study was the percentage of patients achieving an SLE 

Responder Index (SRI) response at week 24, with sustained reduction of oral corticosteroids 

(<10 mg/day and less than or equal to the dose at week 1 from week 12 through 24). 

SRI is comprised of a continuous Physician’s Global Assessment (PGA) measure, a 

continuous SLE Disease Activity Index (SLEDAI) measure and an ordinal British Isles 

Lupus Assessment Group (BILAG) measure.42 The study had a target sample size of 100 

patients per group based on providing 88% power at the two-sided 0.10 alpha level, to detect 

at least 20% absolute improvement in SRI(4) response rate at week 24 for anifrolumab 

relative to placebo. The investigators assumed a 40% placebo response rate.

4.2 Model

In this case (Y1, Y2, Y3, Y4) are SLEDAI, PGA, BILAG and the corticosteroid tapering 

indicator respectively and (Y 1, Y 2, Y 3*, Y 4*) ~ N4 (μ* , Σ) where,

μ* = μ 1, μ2 , μ3* , μ4*
T Σ =

σ1
2 ρ12 σ1 σ2ρ13 σ1ρ14 σ1

ρ12 σ1 σ2 σ2
2 ρ23 σ2ρ24 σ2

ρ13 σ1 ρ23 σ2 1 ρ34
ρ14 σ1 ρ24 σ2 ρ34 1

, (18)

and the ordinal and binary components may be related to their latent variables as shown in 

(19). The thresholds (τ31, τ32, τ33, τ34) are estimated from the data.
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Y i3 =

0 if −∞ < Y i3* < τ31,
1 if τ31 ≤ Y i3* < τ32,
2 if τ32 ≤ Y i3* < τ33,
3 if τ33 ≤ Y i3* < τ34,
4 if τ34 ≤ Y i3* < ∞,

Y i4 =
0 if −∞ < Y i4* < 0,
1 if 0 ≤ Y i4* < ∞

(19)

We can use the MUSE trial to design future studies where we assume that the endpoints 

of interest are co-primary, multiple primary and composite endpoints. The overall power 

functions for each are shown below.

Powerco = Φ4 −z1
†, − z2

†, − z3
†, − z4

†; ∑

Powermult = ∑
i = 1

4
−1 i − 1 ∑

I ⊆ 1, 2, 3, 4
Φk ∈ I −zk

†; ∑

Powercomp = Φ −z ,

where zk
† = Zα −

δk
2σk

2/n
 for k = {1, 2} and zk

† = Zα −
δk*
2/n  for k = {3, 4}. In the composite 

setting z = δ*
2 σ2 /n

− zα where σ is estimated using the delta method. For the Powermult 

calculation we apply the Bonferroni correction, such that each outcome is assessed at the α
4

level.

4.3 Computation

We have conducted the computations in R version 4.0.2. We define functions to evaluate the 

power for each of the endpoints using a combination of the pnorm and pmvnorm functions. 

Sample size is obtained by inserting values for n until the desired power is achieved. 

Details of our source code and a web app for implementation is included in the Software 

section. Code to obtain the results shown in this article can be obtained at https://github.com/

martinamcm/mcmenamin_2021_multsamp. Considerations and instructions for fitting the 

latent variable model are discussed in detail McMenamin et al. (2021).38

4.4 Results

The power is largest for the multiple primary endpoint, where 80% is achieved for n=37 

patients in each arm. The power for the composite endpoint is similar to that of PGA, the 

component with the highest effect size. As we would expect the power is considerably lower 

for co-primary endpoints, which would require n=325 for 80% power (Figure 1).

Table 1 shows the sample sizes required in each group, for the co-primary and multiple 

primary endpoints to obtain an overall power of at least 80% to detect a difference of 0.88 

in SLEDAI, 0.38 in PGA, 0.24 in BILAG and 0.40 in the taper outcome based on the values 

observed in the trial. We allow for uncertainty in the variance of the continuous measures 
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by setting σ1
2 = 18, 19, 20 and σ2

2 = 0.35, 0.45, 0.55, 0.65 . The sample sizes required for each 

individual endpoint are also shown, based on achieving a power of at least 80%. Allowing 

for uncertainty in the variance of the SLEDAI outcome varies the required sample size for 

the co-primary endpoint but not the multiple primary endpoint. The opposite is true when 

the assumed variance of the PGA outcome is changed, namely affecting the sample size 

required for the multiple primary endpoint but not the co-primary. This is intuitive given 

that the treatment effect observed in the SLEDAI outcome is smallest and is largest for the 

PGA outcome. For the co-primary and composite endpoints the power is largest when the 

correlation between the endpoints is high whereas for multiple primary endpoints the power 

is largest for zero correlation between endpoints (Figure 2).

We assume that a future trial in SLE is to be conducted using the composite 

responder endpoint, allowing for uncertainty in σ. The estimated variance for the 

risk difference from the trial dataset is σδ
2 = 0.048 with correlation parameters 

ρ12 = 0.448, ρ13 = 0.521, ρ14 = 0.003, ρ23 = 0.448, ρ24 = − 0.031, ρ34 = 0.066. For a risk 

difference of 0.14, the required sample size per group is 50, compared to 135 for 88% power 

in the standard binary method. If the method were to be employed for increased power, 

rather than a decrease in required sample size, the estimated power of the latent variable 

method is over 99.99% for sample sizes giving 88% power at the 0.05 one-sided alpha level 

in the binary method. The empirical power is shown for the latent variable method in 1000 

simulated datasets, which is approximately 88% for each sample size, as required. Note that 

the sample size for composite endpoints are highly dependent on the responder threshold 

chosen, which will be predefined by clinicians.

5 Empirical Performance Of Sample Sizes

The behavior of the sample sizes obtained for each of the endpoints can be shown 

empirically. Assuming the four dimensional SLE endpoint, we calculate the empirical power 

by simulating 100 000 datasets from the multivariate normal distribution and applying the 

corresponding tests for both the observed and latent continuous outcomes. The key concern 

for the co-primary endpoints is that the method gives the appropriate power whereas for 

multiple primary endpoints we must ensure the family-wise error rate is controlled.

The sample sizes required for each of the three endpoints and the corresponding empirical 

power is shown for effect sizes observed in the MUSE trial with low, medium, and 

high correlation assumed between endpoints (Table 2). The empirical power derived is 

approximately equal to the desired power of 80% for all endpoints. As is well recognized in 

the multiple testing literature, the type I error rate must be controlled when multiple primary 

endpoints are tested using the union-intersection test. The degree to which the type I error 

rate is inflated depends on the number of outcomes and the correlation between outcomes, 

where lower correlation between outcomes and larger number of outcomes result in larger 

inflations (Figure 3). The performance of the Bonferroni correction in this setting is shown, 

where it is conservative in the case of high correlation between endpoints. As the maximum 

correlation between outcomes in the MUSE trial endpoint used in the numerical example 

is 0.5, we expect the sample sizes shown for this application to be a good estimate. If very 
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large positive correlations between the endpoints are expected the required sample size from 

this approach may be overestimated. The code to obtain these empirical results is provided 

in the ‘Software’ section.

6 Discussion

The work in this article demonstrated the various ways in which a latent variable framework 

may be employed for mixed continuous, ordinal, and binary outcomes. We illustrated 

sample size determination in the case of mixed continuous, ordinal, and binary co-primary 

outcomes. We extended this to allow for sample size determination in the case of mixed 

multiple primary endpoints and proposed a technique to estimate the sample size when 

using a latent variable model for the underlying structure of a mixed composite endpoint. 

For co-primary and multiple primary endpoints the resulting hypothesis is based on an 

intersection or union of the hypotheses for the individual outcomes and so is multivariate 

in nature. However, for composite responder endpoints the hypothesis of interest is stated 

in relation to the overall responder endpoint and so is univariate. Sample size estimation in 

this case can make use of the standard power and sample size functions but requires the 

distribution of the test statistic under the alternative hypothesis which we approximate using 

latent-level means and a Taylor series expansion.

We applied the methods to a numerical example based on a phase IIb study. For the 

correlation structure observed in the MUSE trial, the sample size required for the co-primary 

endpoint was greater than that required for the individual endpoint with the lowest effect 

size. Alternatively, the sample size required for the multiple primary endpoint changes based 

on the variance assumed for the outcome with the largest treatment effect, however is similar 

to that required by the individual endpoint. The sample size required for the composite 

endpoint was between that required for the individual outcome with the largest and second 

largest effect size. Given that in the composite case we are concerned with the overall binary 

response endpoint, we compared the sample sizes required for the endpoint using the latent 

variable model with the standard binary method which we showed offered a large gain in 

efficiency. Results of the simulated scenarios agree with previous findings that the inclusion 

of the ordinal component with five levels is only responsible for a very small proportion 

of the precision gains. Given that the inclusion of the ordinal component substantially 

increases complexity and computational demand, it may be sufficient to combine any 

ordinal components with the binary outcome if necessary. Detailed simulation results for 

the composite endpoint are shown in the Supplementary Material.

One practical consideration when calculating the sample size for a trial using the latent 

variable model is the need to specify a large number of parameters, even in the case of 

only a few outcomes. Estimates for the parameters could be obtained by fitting the model 

to pilot data however this is potentially challenging and restrictive for a number of reasons. 

First, it requires that a pilot or earlier phase trial must have already taken place. Furthermore, 

the pilot data could be fundamentally different to the future trial and observed effects 

may be imprecise. Therefore, placing too much emphasis on the existing data may lead 

to problems in the main trial. In theory, it is possible to specify the required covariance 

parameters without data however this would be difficult in practice. Additionally, in the case 
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of composite endpoints, we cannot define the variance in terms of the model parameters 

only, as the treatment effect is defined for the one-dimensional composite and so is a 

function of the parameters. This means that the full covariance matrix of the estimated 

parameters is required for the Taylor series derivation. An alternative when there is no data 

available is to apply the method using the sample size required to achieve 80% power for 

the binary method and avail of the large increase in power. Alternatively, we can directly 

specify σδ based on expert elicitation, as is sometimes the case in practice for standard one-

dimensional endpoints. Allowing for uncertainty in the quantities and choosing conservative 

values should provide an appropriate sample size estimate.

It is possible to extend this approach to use adaptive sample size re-estimation, or an internal 

pilot to allow for reductions in the required sample size in the trial as we collect more 

information about the treatment effect variability.

Software

The code to obtain the results in this article is available at https://github.com/martinamcm/

mcmenamin_2021_multsamp. A Shiny application for implementing the method is available 

at https://martinamcm.shinyapps.io/multsampsize/. Documentation and example data are 

available at https://github.com/martinamcm/MultSampSize.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Power function for individual SLEDAI (continuous), PGA (continuous), BILAG (ordinal), 

and Taper (binary) outcomes and the power functions with when they are treated as co-

primary, multiple primary, and composite endpoints using data from the MUSE trial
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Figure 2. 
Overall power 1 − β to detect the treatment effects assumed from the MUSE trial for the 

systemic lupus erythematosus co-primary, multiple primary, and composite endpoints for 

different sample sizes per group n = nC = nT and differing correlations between outcomes, 

where Low = 0.3, Medium = 0.5, and High = 0.8
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Figure 3. 
Family-wise error rate (FWER) of the multiple primary endpoints shown both unadjusted 

and adjusted using the Bonferroni correction. FWERs are shown for K = (2, 3, 4) outcomes 

and correlations are constrained to be equal between all outcomes
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Table 1

Sample sizes n = nC = nT for the co-primary and multiple primary endpoints for overall power 1 − β ≈ 0.80, α 
= 0.025, km = 2, K = 4 using the MUSE trial data

SLEDAI PGA BILAG Taper

δ 1 σ1
2 δ 2 σ2

2 (πT3,πC3) σ3* (πT4,πC4) σ4* nco nmult SS 1 SS 2 SS 3 SS 4

0.88 18 0.38 0.35 (0.97,0.95) 0.24 (0.54,0.38) 0.40 403 46 365 39 273 99

0.88 19 0.38 0.35 (0.97,0.95) 0.24 (0.54,0.38) 0.40 419 46 386 39 273 99

0.88 20 0.38 0.35 (0.97,0.95) 0.24 (0.54,0.38) 0.40 435 46 406 39 273 99

0.88 18 0.38 0.45 (0.97,0.95) 0.24 (0.54,0.38) 0.40 403 55 365 49 273 99

0.88 18 0.38 0.55 (0.97,0.95) 0.24 (0.54,0.38) 0.40 403 63 365 60 273 99

0.88 18 0.38 0.65 (0.97,0.95) 0.24 (0.54,0.38) 0.40 403 70 365 71 273 99

Note: SS1, SS2, SS3, SS4 are sample sizes required per group for the individual endpoints for a power of at least 1 − β = 0.80.
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Table 2

Sample sizes and empirical power (%) for n = nC = nT for the co-primary, multiple primary, and composite 

endpoints for overall power 1 − β ≈ 0.80, α = 0.025, km = 2, K = 4 with observed and latent effect sizes 

δ1 , δ2 , δ3* , δ4* and correlation ρ equal to 0.3, 0.5, 0.8 where correlations are assumed to be equal between all 

endpoints

δ 1 δ 2 δ3* δ4* ρ Co-primary Multiple primary Composite

0.12 0.12 0.12 0.12 0.0 1766 (80.1) 591 (80.0) 1031 (80.1)

0.3 1692 (80.0) 744 (80.1) 883 (80.0)

0.5 1617 (80.0) 867 (80.1) 687 (80.0)

0.8 1439 (80.0) 1117 (80.0) 589 (79.9)

0.35 0.35 0.15 0.15 0.0 917 (79.9) 105 (80.1) 201 (79.9)

0.3 894 (80.0) 122 (79.9) 156 (80.0)

0.5 870 (80.0) 134 (80.0) 115 (80.1)

0.8 815 (80.1) 153 (80.0) 92 (80.0)

0.12 0.35 0.55 0.10 0.0 1772 (80.2) 61 (80.3) 81 (80.0)

0.3 1736 (80.2) 67 (80.5) 72 (80.1)

0.5 1700 (80.0) 70 (79.9) 67 (80.2)

0.8 1625 (80.2) 74 (80.6) 58 (80.1)
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