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Abstract

One family of designs that can noticeably improve efficiency in later stages of drug development 

are multi-arm multi-stage (MAMS) designs. They allow several arms to be studied concurrently 

and gain efficiency by dropping poorly performing treatment arms during the trial aswell as by 

allowing to stop early for benefit. Conventional MAMS designs were developed for the setting, in 

which treatment arms are independent and hence can be inefficient when an order in the effects 

of the arms can be assumed (eg,when considering different treatment durations or different doses). 

In this work, we extend the MAMS framework to incorporate the order of treatment effects when 

no parametric dose-response or duration-responsemodel is assumed. The design can identify all 

promising treatments with high probability. We show that the design provides strong control of the 

family-wise error rate and illustrate the design in a study of symptomatic asthma. Via simulations 

we show that the inclusion of the ordering information leads to better decision-making compared 

to a fixed sample and aMAMS design. Specifically, in the considered settings, reductions in 

sample size of around 15% were achieved in comparison to a conventional MAMS design.
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1 Introduction

Drug development is costly and time consuming. 1 One family of clinical trial designs that 

can improve the development process are multi-arm multi-stage designs (MAMS). 2–4 In 

aMAMS trial, insufficiently promising treatments can be dropped or the trial can be stopped 

due to overwhelming benefit at a series of interim analyses.
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To date these designs have focused on the setting of independent treatment arms and have 

been argued to be a highly efficient approach to clinical trials. 5–7 They could, however, 

be suboptimal if an “order” (ie, a monotonic relationship) among the treatment effects 

can be assumed. Such an order can occur naturally, for example, when multiple doses or 

administration schedules of the same treatment are tested or when nested combinations of 

treatments are investigated. Another area where an order can often be assumed is when 

considering different treatment durations. In infectious diseases such as Tuberculosis (TB) 

and Hepatitis B (HBV), the treatment duration with current standard regimes is lengthy 8 

which results in a large burden on the patients, potentially high costs, increased risk of 

non-compliance and side effects. 9 In TB and HBV, for example, treatment periods of 6 

and 12 months are typical. 10,11 Novel treatments or combinations of treatments in these 

areas offer the opportunity for both higher efficacy and shorter treatment periods. 12 In 

the setting of multiple treatment durations Quartagno et al 13 have proposed to model the 

duration-response curve.While this is an efficient way to understand the duration-effect 

relationship, it is less clear how to definitively conclude whether a duration is “better” than 

the current standard.

In this work, we extend the MAMS framework and propose a design that incorporates 

the order of treatment effects in the decision-making when no parametric dose-response or 

duration-response model is assumed. The objective of the design is to identify all promising 

arms (eg, treatment durations, doses, or combination of treatments), including the one 

associated with the smallest relevant treatment effect.

The rest of the manuscript continues as follows. A case study is introduced in Section 2 

before a detailed description of the 3-arm and 2-stage design is provided in Section 3. 

Section 4 then generalizes the proposed design to an arbitrary number of arms and stages 

and provides some theoretical results. Section 5 revisits the case study before the design is 

evaluated via simulations in Section 6. In Section 7, the effect of various critical bounds 

on the operating characteristics of the proposed design is explored.We conclude with a 

discussion.

2 Case Study Setting

The Tiotropium add-on therapy in adolescents with moderate asthma: A 1-year randomized 
controlled trial (NCT01257230) 14 is a Phase III study that assessed the efficacy and safety 

of once-daily tiotropium via Respimat added to inhaled corticosteroid (ICS) with or without 

a leukotriene receptor antagonist in adolescent patients with moderate symptomatic asthma. 

Patients were randomized with equal probability to receive 5 μg (2 puffs of 2.5 μg) or 2.5 

μg (2 puffs of 1.25 μg) of once-daily tiotropium or placebo (2 puffs). The primary outcome 

was change from baseline in peak FEV1 within 3 h after dosing (peak FEV1[0−3h]) measured 

after 24 weeks of treatment. The null hypotheses were tested in a stepwise manner to control 

the type I error starting from the highest dose suggesting that a monotonic dose-response 

relationship can be assumed.
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3 A 3-Arm 2-Stage Order Restricted Design

In this section, we develop an order restricted design (ORD) for the setting of the case 

study. We denote the highest dose (5μg) by T 1 and the lower dose (2.5μg) by T 2. The 

generalization to an arbitrary number of arms and stages is given in Section 4.

Assume that a patien’s response follows a normal distribution with known common 

variance, σ 2. An alternative approach is outlined in Section 8 for the case of unknown 

variance. Let Xi
k ∼ N μ k , σ2 , k ∈ 0, 1, 2 , i = 1:nj

k  be the observation of the ith patient 

on treatment k (the control arm is denoted by 0) and nj
k  be the number of patients on 

arm k up to stage j. Let θ k = μ k − μ 0  be the true treatment effect of active arm k ∈ 

{1,2} compared to the control. We denote the vector of treatment effects by θ = θ 1 , θ 2 .

Consider the following order relationship: θ 1 ≥ θ 2 , implying that the treatment effect of 

the second treatment is at most as large as the treatment effect for the first treatment. 

Let rj
k  be the ratio between the number of subjects allocated to treatment k ∈ {0,1,2} 

and control at each stage j with rj
0 = 1. Let zj

k =
μj

k − μj
0

σ
rj

0 nj
k

rj
k rj

0  be the test statistic 3 

at stage j for comparing arm k ∈ {1,2} to control, where μj
k = nj

k −1∑i = 1
nj

k
Xi

k  and 

nj
k = rj

k n, with k ∈ {0,1,2} and n is the sample size in the control group at the first stage. 

The vector of test statistics follows a multivariate normal distribution Z ∼ N4 ∈ , ∑  with 

Z = Z1
1 , Z1

2 , Z2
1 , Z2

2 , ∈ = θ 1
σ

r1
0 n1

1

r1
1 + r1

0 , θ 2
σ

r1
0 n1

2

r1
2 + r1

0 , θ 1
σ

r1
0 n2

1

r2
1 + r2

0 , θ 2
σ

r2
0 n2

2

r2
2 + r2

0

and the covariances between Z-statistics are 

cov Zj
k , Zj

k = 1, with k, j ∈ 1, 2 , cov Zj
k , Zj

k′ =
r1

k nj
k′

rj
k + r2

0
rj

k′

rj
k′ + rj

0 , k ≠ k′,

with k, k′, j ∈ 1, 2 , Cov Z1
k , Z2

k =
r1

k r1
0

r1
k + r1

0
r2

k r2
0

r2
k + r2

0 , with 

k ∈ 1, 2 , Cov Z1
k , Z1

k′ =
r1

k

r1
k + r1

0
r1

k′

r1
k′ + r1

0
r1

k r1
0

r1
k + r1

0
r2

k + r2
0

r1
k r2

0 , k ≠ k′, with 

k, k′ ∈ 1, 2 .

We test the null hypotheses: H01: θ 1 ≤ 0 , H02: θ 2 ≤ 0  with the global null hypothesis 

denoted by H0: θ 1 = θ 2 = 0 . Let uj
1 , lj

1
 and uj

2 , lj
2

 be the critical values at stage j for T 

1 and T 2, respectively, used to test the hypotheses, with u2
k = l2

k , k ∈ 1, 2 .
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The proposed design then takes into account the order among the treatment effects when 

making the decisions at the first stage and the final analysis and a set of decision rules 

consistent with this order is given in Table 1. For example, if both Z-statistics cross the 

upper bounds at the interim analysis, the trial is stopped for efficacy (as in a conventional 

MAMS design). In contrast to the traditional MAMS design, the trial continues if there 

is contradicting evidence with respect to the order, for example, if Z1
2

 crosses the upper 

bound, but there is not enough evidence to claim superiority of T 1 to control, then both arms 

are continued to the next stage.

The idea behind these decision rules is that at any stage the effectiveness of T 2 can be 

claimed only if T 1 can be declared superior to the control. Therefore, T 1 can be regarded 

as a gatekeeper. 15 Following this procedure, depending on the context, alternative decisions 

could be considered for the cells colored in red in Table 1 (see Section 2 of the Supporting 

Information for more discussion).

3.1 Family-wise error rate

For confirmatory clinical trials, control of the family wise error rate (FWER) in the strong 

sense at level α, that is the probability to reject at least one true null hypothesis, is often 

required.16 Using the rules described in Table 1, the FWER for the 3-arm 2-stage ORD can 

be written as

P (rejecting at least one true H0k, k ∈ 1, 2 H0 = P Z1
1 ≥ u1

1 H0 +

P Z2
1 ≥ u2

1 , l1
1 < Z1

1 u2
1 H0 + P Z2

1 ≥ u2
1 , Z1

1 ≤ l1
1 , Z1

2 ≥ u1
2 H0 .

(1)

Equation (1) shows that the events used for the computation of the type I error under 

the global null hypothesis ({Reject H 01 and H 02}, {Reject H 01 not H02}) are a subset 

of the events ({Reject H01 ∪ H 02}) used in the MAMS design of Magirr et al. 3 

Thus, the probability of rejecting at least one hypothesis under the global null will be 

smaller for the ORD compared to the MAMS design, while the probability of rejecting 

neither hypothesis will be smaller for MAMS if the same bounds are used. It is worth 

noting that overall, the critical bounds, if these are the same for all active treatments 

u1
1 = u1

2 = u1, u2
1 = u2

2 = l2
1 = l2

2 = u2, l1
1 = l1

2 = l1, for the 3-arm 2-stage ORD are 

smaller in each stage compared to the MAMS design of Magirr et al 3 (see Section 7 of 

the Supporting Information). Consequently the ORD design is strictly more powerful than 

the MAMS design under these assumptions.

The critical bounds for the given treatment arm can be defined as function of a (possibly 

arm-specific) parameter, that is, uj
k = uj

k a k , lj
k = lj

k a k , j ∈ 1, 2 , k ∈ 1, 2 , which 

can be searched over a grid of values for a(k) in order to strongly control the FWER at 

level α. If a (1) = a (2) = a, then a unique solution can be found restricting the search 

over α such that the expression given in Equation (1) is below α under the global null 

hypothesis. In this case, the solution is unique either when the search is based on different 
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boundary shapes uj
k , lj

k
 or when the same boundary shapes are used for all experimental 

arms— uj
k = uj, lj

k = lj for all k∈ {1,2}. If a (k) are not the same for each arm, additional 

constraints are required for the uniqueness of the solution and to maintain the strong control 

of the FWER at level α, such as the control under the partial null hypotheses. In the 3-arm 

setting, for example, this is (θ (1), 0). However, different values of θ (1) can provide different 

boundaries, and so the solution is unique for the specific value of θ (1) (see Section 7 for 

more details).

Theorem 1 below then shows that, if the same bounds, uj, li , j ∈ 1, 2  are used for each 

arm, and the same allocation ratios (with respect to the control) are used for all active 

treatments, the FWER is maximized under the global null hypothesis and hence the above 

ensures strong control of the FWER.

Theorem 1. Consider a 3-arm 2-stage ORD design and denote the global null hypothesis 

by H0:θ 1 = θ 2 = 0 . Let u1
1 = u1

2 = u1, u2
1 = u2

2 = l2
1 = l2

2 = u2, l1
1 = l1

2 = 11 be the 

critical bounds such that Equation (1) is below under the global null hypothesis. Let us 
assume that there are equal numbers of patients on each active treatment within each stage: 

rj
k = rj, ∀k ∈ 1, 2 .

Let θ 0 be a vector where at least one treatment effect is less or equal to 0. Then,

P (rejecting at least one true H0k, k ∈ 1, 2 θ0) ≤
P (rejecting at least one trueH0k, k ∈ 1, 2 H0) ≤ α

The proofs of all theorems are given in Section 1 of the Supporting Information.

3.2 Power requirement

To power the study, we consider the configuration θ = θ 1 , θ 2 , where θ 1 ≥ θ 2 ≥ δ0 > 0

and δ 0 is the minimum clinically relevant difference. The ORD is then powered at (1 - β) to 

reject both hypotheses under θ = θ 1 , θ 2 , θ 1 ≥ θ 2 ≥ δ0 > 0 when Equation (2) is satisfied:

P Z1
1 ≥ u1

1 , z1
2 ≥ u1

2 θ +

P Z2
1 ≥ u2

1 , Z2
2 ≥ u2

2 , l1
1 < Z1

1 < u1
1 , Z1

2 ≥ u1
2 θ +

P Z2
1 ≥ u2

1 , Z2
2 ≥ u2

2 , z1
1 ≤ l1

1 , z1
2 ≥ u1

2 θ +

P Z2
2 ≥ u2

2 , Z1
1 ≥ u1

1 , l1
2 < z1

2 < u1
2 θ +

P Z2
1 ≥ u2

1 , Z2
2 ≥ u2

2 , l1
1 < z1

1 < u1
1 , l1

2 < z1
2 < u1

2 θ ≥ 1 − β .

(2)

Theoretical considerations and numerical evaluations have shown that, if Pocock 

boundaries 17 for both treatments are used, u1
1 = u1

2 = u1, l1
1 = l1

2 = − u1, u2
1 = u2

2 = u1,
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and critical values found such that Equation (1) is below α, the power of the ORD design 

is, practically, no smaller than a fixed balanced sample design with the same sample size. 

Furthermore, for a number of treatment effects, it was found to be strictly positive. Full 

details of these considerations are given in Section 3 of the Supporting Information.

4 Generalization Of The Ord To K-Arm J-Stage

Consider a clinical trial with K − 1 active treatment arms, T1, …, TK − 1, against a control 

treatment and J stages and denote the treatment effect comparing treatment k against 

control by θ(k). We denote the vector of treatment effects by θ = θ 1 , θ 2 , …, θ k − 1 . The 

null hypotheses of interest are H01: θ 1 ≤ 0 , …, H0k − 1: θ k − 1 ≤ 0 . Let Zj
k  denote 

the test statistic based on all data up to stage j for comparison k ∈ 1, …, K − 1  as 

before and assume that the following order relationship holds: θ 1 ≥ θ 2 ≥ ⋯ ≥ θ k − 1 .

Let uj
k , lj

k , k ∈ 1, …, K − 1 , j ∈ 1, …, J  be the critical values at stage j with 

uJ
k = lJ

k , k ∈ 1, …, K − 1 .

The decision rules at the interim analyses follow the same principle as for the 3-arm 2-stage 

design defined above. The decisions are made in order to be able to select all promising 

treatment arms at the end of the trial and H 0k can only be rejected if all H0k′k′ < k have 

been rejected. Once H 0k has been rejected, the recruitment to arms Tℒj, …, Tk is stopped, 

where ℒ j is the lowest index of a treatment arms remaining in the trial at stage j. If there 

is contradicting evidence with respect to the order at stage j, that is when Zj
k ≥ uj

k  and 

there is at least one k′ < k such that Zj
k′ < uj

k′ , then recruitment to these arms continue. 

As for the 3-arm 2-stage design, if there is sufficient evidence to drop arm k, that is when 

Zj
k ≤ uj

k , and if there is any contradicting evidence for k′ > k then the recruitment to arms 

Tk, …Tℋj is stopped, where H j is the highest index on the treatment arms remaining in 

the trial at stage j. A general algorithm for the decision-making in this setting is given in 

Algorithm 1.

Algorithm 1 Rules for K-arm J-stage ORD when θ 1 ≥ θ 2 ≥ ⋯ ≥ θ K − 1

1. Let ℒ j and H j be the lowest and highest indices on the active treatment 

arms remaining in the trial at stagej, respectively. At stage j, compute Zj
k  for 

k ∈ κ = ℒj,…ℋj .

2. Stop recruitment to arm k at stage j for efficacy if for all 

k′ ∈ κ, k′ ≤ k, zj
k′ ≥ uj

k′ .

3. Stop recruitment to arm k at stage j for futility if

• Zj
k < lj

k
 and for all k′ ∈ κ, k″ > k, Zj

k″ < uj
k″ , or
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•
lj

k < Zj
k < uj

k  and for at least one k⋆ ∈ K⋆, k⋆ < k, Zj
k⋆

< lj
k⋆

and for no k″ ∈ κ, k″ > k⋆, Zj
k″ > uj

k″ .

4. Stop the trial when the recruitment to all arms is stopped.

Let Mj be a random variable representing the number of arms (including the control) at stage 

j when H 01 failed to be rejected at stage j − 1. Because of the hierarchy in testing the 

hypotheses, the FWER for an K-arm J-stage design can be written as

P (rejecting at least one trueH0k, k ∈ 1, …, K − 1 H0 =

∑
j = 1

J
P (rejecting H01 at jthstage, H0knot rejected at stages, ∀s < j H0 =

P Z1
1 ≥ Z1

1 H0 + ∑
j = 2

J
∑

m = 2

K
P Z1

1 ≥ u1
1 Mj = m, H0 × P Mj = m ,

(3)

where P (Mj = m) is the probability that at the previous stage H01 failed to be rejected and 

the number of arms were at least m. One can show that the following iterative equality holds

P Mj = m = ∑
c = m

K
P Aj, c − m + 1

c − 1 Mj − 1 = c, H0 × P Mj − 1 = c ,

with at the first stage P M1 = K = 1 and 0 otherwise. The set Aj, c − m + 1
c − 1

 defines the event 

that H 01 failed to be rejected at stage j − 1 when the number of treatment arms (including 

the control arm) in the trial were c. This set is formally defined in Table 2. In the definition 

of Aj, c − m + 1
c − 1 , the superscript (c − 1) indicates the number of active treatment arms that are 

still in the trial at stage j − 1, while the subscript c − m + 1 refers to the number of active 

treatment arms (that is equal to c − m) that have been dropped before reaching the stage j.

While the expression for the FWER in the general case is cumbersome, for a fixed number 

of stages (arms), the FWER for K-arm (J-stage) can be found iteratively—an example for 

2-stage trials is given in Section 4 of the Supporting Information.

The critical bounds for a K-arm J-stage ORD can be, again, defined as functions of 

parameters a (k) such that uj
k = uj

k a k , lj
k = lj

k a k , j ∈ 1, …, J , k ∈ 1, …, K − 1 .

Thus, as for the 3-arm 2-stage setting, under the constraint of a 1 = a 2 = ⋯ = a k − 1 = a, a 

unique solution can be found to control the FWER at level α in the strong sense. Theorem 

2 below then shows that, if the same bounds, uj, lj , j ∈ 1, …, J  are used for each arm and 

the same allocation ratios (with respect to the control) are used for all active treatments, the 

FWER is maximized under the global null hypothesis H0: θ 1 = θ 2 = ⋯ = θ k − 1 = 0  and 

hence the above ensures strong control of the FWER.
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Theorem 2. Consider a K-arm J-stage ORD design and denote the global null hypothesis 

by H0: θ 1 = θ 2 = ⋯ = θ k − 1 = 0 . Let uj
k = uj, lj

k , uJ
k = lJ

k = uJ, k ∈ 1, …, K − 1  be 

the critical values such that Equation (3) is below α under the global null hypothesis. 
Assume that there are equal numbers of patients on each active treatment within each stage: 

rj
k = rj, ∀k ∈ 1, …, K − 1 . Let θ 0 be the vector where at least one treatment effect is less 

or equal to 0.

Then,

P (rejecting at least one trueH0k, k ∈ 1, …, K − 1 θ0) ≤
P (rejecting at least one trueH0k, , k ∈ 1, …, K − 1 H0) ≤ α

In the next session, a simulation study will be described in order to apply the proposed 

design in the context of the asthma trial. 14 

5 Case Study

5.1 Setting

We revisit the results of the clinical trial of Tiotropium add-on therapy in adolescents with 
moderate asthma: A 1-year randomized controlled trial (NCT01257230). 14 Patients were 

randomized in a 1:1:1 ratio to receive 5μg or 2.5μg of once-daily tiotropium or placebo. The 

null hypotheses were tested in a stepwise manner to control the type I error at level α = 

0.025. The study was powered at 80% to detect a difference of 120 mL between treatments 

in the change from baseline of peak FEV1[0-3h] assuming a common SD of 340 mL. It was 

found that 127 patients per group were needed, resulting in a maximum sample size of 381 

patients. The trial is revisited using the ORD, which can be applied assuming a monotonic 

dose-response relationship.

In line with the original trial we assume that the change from baseline of peak FEV1[0-3h] is 

normally distributed with SD σ = 340, k ∈ {0,1, 2}, and common baseline mean FEV1 of μ 
(0)= 2747. As in the original study, we consider an improvement of FEV1 of 120 of interest 

and hence consider the following values for θ k , k ∈ 1, 2 :θ = 0, 0 , θ = 120, 0  and θ = (120 

120). The design is powered at 80% to reject all hypotheses or at least one hypothesis (in 

order to compare the sample sizes between the ORD and the original trial design) when all 

doses have the same effect compared to the placebo. Additionally to the achieved power, the 

efficiency of the proposed design is measured by its expected sample size (ESS), that is the 

mean number of patients recruited to the trial before it is terminated.

We consider one- and two-stage ORD designs and note that the one-stage ORD design 

corresponds to the hierarchical testing strategy used in the original design. For the two-stage 

design the interim analysis takes place after half of the total sample size has been observed 

and triangular critical bounds 18 are used. The numerical results found using R19 and 106 

replicate simulations.
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5.2 Numerical results

Consider the 3-arm 1-stage ORD using the maximum total sample size of 381 patients that 

corresponds to the same maximum total sample size originally planned for the study. In this 

setting, the critical bound at the final analysis is u1 = z1 − α = z0.975 = 1.96 Table 3 describes 

the results of the simulation.

It can be seen that the FWER is controlled at level α = 0.025 under all considered null 

scenarios. For the scenarios where there is at least one dose that is superior to control, the 

probability to reject at least one hypothesis is 80% as required in the original study. Note 

that 80% is the probability of rejecting at least one dose considering any rejections and not 

only correct rejections. Therefore, when no interim analyses are planned, the ORD requires 

the same maximum sample size as in the original study if it is powered to reject at least one 

hypothesis. It is worth noting that the probability of rejecting all hypotheses, if all of them 

are true, is around 69%.

The distinguishing feature of the proposed ORD is that it allows to include interim analyses 

during the trial. Table 3 shows the operating characteristics of the design when an interim 

analysis takes place after observing half of the maximum sample sizes. If the study is 

powered to reject at least one hypothesis at 80%, a maximum sample size of 426 patients 

is needed—45 more patients than for the 1-stage design. The gain from using a two-stage 

design arises in terms of the expected sample size—on average the number of patients 

is expected to be below 332 under each scenario. At the same time, under this power 

configuration, the probability to identify the smallest promising dose is at 68% similar to the 

single-stage design.

Furthermore, it is argued by the construction of the ORD proposed in Section 3 that if it is 

of interest to identify the lowest dose with the promising treatment effect, the trial should 

be powered to reject all hypotheses. In order to identify the lowest effective dose with the 

desirable 80% probability, a single-stage trial would require 474 patients and the two-stage 

design 534 patients. As before, the inclusion of an interim analysis and the use of triangular 

bounds lead to the reduction of the expected number of patients. Specifically, on average the 

number of patients is expected to be below 400 under each scenario.

Overall, the ORD was found to reproduce the sample size calculation of the original study 

when no interim analyses were planned and is powered to reject at least one hypothesis. At 

the same time, the ORD allows the inclusion of interim analyses during the trial. When an 

interim analysis is planned during the trial, the ORD has shown to be an efficient design as it 

allows to stop the trial earlier or to drop unpromising doses with high probability before the 

end of the study.

The results discussed in this section use triangular bounds. Qualitatively similar results 

using Pocock 17 and O’Brien and Fleming 20 boundaries are provided in Section 6 of the 

Supporting Information. To further investigate the design characteristics of the proposed 

ORD, an extensive simulation study is conducted in Section 6.
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6 Numerical Evaluations

6.1 Setting

As in the motivating example, consider a clinical trial setting with 3 treatments arms, 

2 experimental and a control with 1:1:1 allocation ratio. Consider a single-stage design 

(that is a fixed sample design (FSD) with hierarchical testing, FSD(h)) and a two-stage 

design with one pre-planned interim analysis at the middle of the trial. The objective of 

the trial is to find all promising treatment arms. The FWER is to be controlled below α 
= 0.05 and the power of trial is to be at least 80% to reject both hypotheses when both 

treatment arms have the same effect compared to the control. The patients’ responses on 

treatment arm k are assumed to have normal distribution with mean μ (k) and SD σ = 

1. For the control group μ (0) = 1, while for the treatment arms μ k = μ 0 + θ k . We fix 

the clinically relevant difference to be 0.5. Therefore, the scenario under which the ORD 

is powered is θ = (0.5, 0.5). We evaluate the performance of the design under various 

treatment effects configurations when the treatment effect on the first arm is fixed to be 

0.5 and the treatment effect on the second arm is varied: θ = 0.5, θ 2 , θ 1 ≥ θ 1 ≥ θ 2  and 

θ 2 ∈ 0, 0 . 1, 0.2, 0.3, 0.4, 0.5 . For the 3-arm 2-stage ORD, the bounds are found under the 

conditions a (k) = a (ie, the same for each treatment arm) and they are found using a grid 

search—based on the triangular boundary shape 18 for the all experimental treatments—over 

one single parameter. Thus, the solution found is unique.

6.2 Competing approaches

The proposed ORD is compared to the FSD, 21 in which the total sample size is specified 

at the design stage of the trial and it is not subject to adaptations during the process of the 

trial. The hypotheses are tested at the end of the trial only and any hypothesis can be rejected 

independently of the other.

The second comparator is the MAMS design by Magirr et al. 3 However, the conventional 

MAMS design is not an appropriate comparator as it does stop as soon as at least one 

hypothesis is rejected. Therefore, the following modification of the MAMS design is 

considered for the comparison. At the interim analysis, if a Z-statistic corresponding to 

one arm crosses the upper or lower bound while another does not, the trial will still continue 

with the treatment that did not cross a bound. The design is referred to as the MAMS(m).

The FWER expression for MAMS(m) is the same as derived by Magirr et al3 but the power 

expression changes. To power a 3-arm 2-stage design, for a given configuration of θ and a 

pre-specified level β, we search for the sample size that satisfies

P Z1
1 ≥ u1

1 , Z1
2 ≥ u1

2 θ +

P Z2
1 ≥ u2

1 , Z2
2 ≥ u2

2 , l1
1 < Z1

1 < u1
1 , l1

2 < Z1
2 < u1

2 θ +

P Z2
1 ≥ u2

1 , l1
1 < Z1

1 < u1
1 , Z1

2 ≥ u1
2 θ +

P Z2
2 ≥ u2

2 , l1
2 < Z1

2 < u1
2 , Z1

1 ≥ u1
1 θ ≥ 1 − β

(2)
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6.3 Numerical results

Two main simulation studies are conducted to compare the three competing approaches. In 

the first one, each design is constructed such that it yields 80% power to reject both null 

hypotheses under the alternative hypothesis. The second one compares the power between 

approaches based on the common sample size.

6.3.1 Same power requirement for all designs—In this subsection, the results when 

all design are powered at 80% to reject both null hypotheses are provided. The resulting 

design specifications and operating characteristics under the global null hypothesis are 

provided in Table 4.

Under θ = (0,0), all designs control the type I error at level α = 0.05 as expected. The total 

maximum sample sizes necessary to reach a power of 80% is 231 for the FSD, 192 for 

the FSD with a hierarchical test (FSD(h)) which is akin to a single-stage ORD design, 222 

for the 3-arm 2-stage ORD and 264 for the MAMS(m) designs. The maximum sample size 

(to achieve the same power to reject both hypotheses) for the FSD is greater compared to 

FSD(h) and the two-stage ORD as it does not account for the hierarchy in testing.

The designs’ performances under the configuration θ 1 ≥ θ 2  and 

θ 2 ∈ 0, 0 . 1, 0.2, 0.3, 0.4, 0.5  are presented in Figure 1. When the second treatment arm 

is no different to control, θ (2) = 0, the probability of rejecting the null hypothesis for this 

arm is controlled at α = 0.05 for all designs and when θ =(0.5,0.5) all the designs satisfy 

the power requirement at 80%. However, under all other considered non-zero values of θ 
(2), the probability of rejecting both hypotheses is higher for the approaches accounting for 

the hierarchy, FSD(h) and ORD, than for other competing designs. The gain from using 

a two-stage ORD design compared to FSD(h) arises in terms of expected sample sizes 

which is strictly lower for the two-stage design. The 3-arm 2-stage ORD has noticeably 

lower expected sample size (ESS) compared to all other designs ranging from 13% to 35% 

depending on the simulation scenario. The largest difference in power (an increase of around 

5%) between the 3-arm 2-stage ORD and the MAMS(m) design is achieved under θ (2) = 

0.2.

6.3.2 Common sample size for all designs—In this subsection, the three designs are 

compared with a common maximum sample size of 222 patients, which is the maximum 

sample size necessary for the 2-stage ORD in order to reject both hypotheses at 80% under θ 
= (0.5, 0.5).

The design specifications and operating characteristics of the designs under the global null 

hypothesis are provided in Table 5, while the designs’ performances under the configuration 

θ 1 ≥ θ 2  and θ 2 ∈ 0, 0 . 1, 0.2, 0.3, 0.4, 0.5  are presented in Figure 2.

As expected all designs control the FWER under the global null. Under the scenario when 

the second treatment arm is no different to control, θ (2) = 0, the probability of rejecting the 

null hypothesis for this arm is controlled at α = 0.05. Under all other considered non-zero 

values of θ (2), the approaches accounting for the hierarchy, FSD(h) and ORD, result in 
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higher power compared to the other competing designs. The gain from using a two-stage 

ORD design compared to FSD(h) can once more be seen in terms of expected sample sizes 

which is strictly lower for the two-stage design. The 2-stage ORD has lower ESS compared 

to the other designs with reductions between 3% and 32%. The largest difference in power—

around 9.8%—between the ORD and the MAMS(m) design is achieved under θ (2) = 0.3.

Overall, the ORD results in noticeable gains across all considered scenarios both in terms 

of power and expected sample size. Therefore, the inclusion of the order restriction into 

the decision rules for the decision-making can provide advantages in power and/or expected 

sample size compared to standard approach to multi-arm trials, specifically, the FSD and the 

MAMS(m).

7 Different Bounds For Each Treatment Arm

In the results above the same bounds are used for both treatments. However, the proposed 

design allows for different boundary shapes to be used for different treatments which could 

lead to potential benefit in terms of power. In this section, we explore the effect of various 

boundary shapes on the operating characteristics of the designs.

We consider the setting as in Section 6.1 and let uj
1 = uj

1 a 1 , lj
1 = lj

1 a 1  be the upper 

and lower bounds for T 1 at the stage j, and uj
2 = uj

2 a 2 , lj
2 = lj

2 a 2  be the boundaries 

for T 2 at the stage j, being functions of a (1) and a (2), respectively. The critical bounds 

and the sample size could be searched over a grid of values for a (1) and a (2) in order to 

strongly control the FWER at level α and to satisfy the power requirements in Equation (2). 

To maintain strong control of the FWER at level α it is necessary to control the type I error 

when θ 0 = (θ (1), 0). Indeed, as shown in Section 1 of the Supporting Information, under θ 0 

= (θ (1),0) it holds

P (rejecting at least one true H0k, k ∈ 1, 2 θ0) =
P (reject H02 reject H01, θ0) × P (rejectH01 θ0) ≤ P (rejectH02 rejectH01, θ0 = ∞, 0 ,

where P rejectH02 reject H01, θ0 = ∞, 0  tends to

P Z1
2 > u1

2 H02 + P Z2
2 > u2

2 , l1
2 < Z1

2 < u1
2 H02 .

Thus, the bounds for the second arm are searched over a grid of values of a (2) as for a 

2-arm design with 2 stages 22 and then the bounds for T 1 are searched in order to satisfy 

Equation (1) under the null hypothesis. Finally, the sample size is searched to satisfy the 

power requirements, assuming equal allocation to all arms.

Several combinations of boundary shapes are compared considering all possibilities with 

constant POC, 17 O’Brien and Fleming OBF 20 and triangular TRIAN 18 bounds. Among all 

these nine combinations of bounds, a subset of six is selected. For each shape of the bounds 

for T 1, two combinations are selected. These are those that provide the smallest ESS and 
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the highest power compared to the other ones. The combinations that are excluded are the 

ones that use constant bounds for T 1 and T 2, the combination with O’Brien and Fleming 

and constant bounds for T 1 and T 2 respectively and the combination with triangular and 

constant bounds for T 1 and T 2 respectively. The complete set of results is provided in 

Section 5 of the Supporting Information.

The summary of operating characteristics, probability to reject both and probability to reject 

only one, and the expected sample size, for the proposed design using the six remaining 

combinations of boundary shapes is provided in Figure 3.

The design resulting in the highest power in rejecting both hypotheses among the subset 

of selected bounds is the one that uses triangular bounds for the treatment associated to 

the highest effect and O’Brien and Fleming bounds for the arm associated to the lowest 

treatment effect. Indeed, in the way that O’Brien and Fleming bounds are constructed, if 

u1
2 > u1

1 , then the trial tends to stop later and the final decision on T 2 is based on more 

data. Therefore, the test becomes more powerful compared to the test that tends to make 

a final decision on T 2 earlier. This selection of bounds also corresponds to the smallest 

probability of rejecting the first hypothesis and not the second one (that is the probability of 

making an error when θ (2) < 0) compared to the other combinations.

The combination that uses O’Brien and Fleming bounds for both treatment arms, the 

combination with Pocock bound for T 1 and O’Brien and Fleming bounds for T 2, and 

the combination of triangular and O’Brien and Fleming bounds result in similar power to 

reject both hypotheses but the first two combinations require lower maximum sample size 

compared to the latter—198 and 204 patients, respectively against 210 patients. At the same 

time, the three combinations differ in terms of ESS and in terms of probability of rejecting 

only the first hypothesis. Indeed, among these three combinations, the one with triangular 

bound for T 1 and O’Brien and Fleming bound for T 2 is the one with the smallest ESS and 

presents the smallest probability of rejecting only the first hypothesis.

The combination that uses O’Brien and Fleming bound for T 1 and triangular bound for T 2 

is the one with smallest power and highest probability of rejecting only the first hypothesis. 

While the combination that uses triangular bounds for both treatment arms is the one with 

the smallest ESS (indeed triangular bounds are constructed to minimize the ESS 18 ) for each 

configuration of θ compared to the other ones, even though it is one of the combinations 

with the highest maximum sample size—222 patients. Nevertheless, this combination has 

slightly smaller power of rejecting both hypotheses and slightly smaller probability of 

rejecting only the first hypothesis compared to the combination with Pocock bounds for T 1 

and triangular bound for T 2.

Overall, the results suggest that there is a benefit, in terms of power and ESS, in using 

different bounds for each treatment arm. However, the final choice of the bounds will 

depend on the specific objectives of the trial. For example, in order to minimize the ESS 

it is recommended the use of triangular bounds for both treatment arms, whereas in order 

to maximize the power of rejecting all hypotheses it is recommended the use of triangular 

bounds for T 1 and O’Brien and Fleming bounds for T 2.
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8 Discussion

The aim of the current study was to explore MAMS designs that could select the most 

promising arm associated to the minimum treatment effect. An approach that takes the order 

relationship among the treatment effects (when no parametric dose-response or duration-

response model is assumed) into account has been proposed. In the proposed approach we 

claim the effectiveness of the arm associated to the minimum treatment effect compared 

to the control only if we claim that the treatment associated to the maximum effect is 

efficacious. Through theoretical arguments and extensive numerical evaluation we show that 

the proposed design can provide noticeable advantages in power and/or expected sample 

sizes required in the trial compared to the alternatives.

The proposed design can be applied to a wide range of clinical trial settings where it could 

be assumed an order among the treatment effects. For example, in clinical trial designs 

applied to infectious diseases, such as TB and HBV, where it can be assumed that longer 

treatment durations correspond to a higher efficacy. In this case, the focus translates into 

the problem of selecting the shortest promising treatment duration. The proposed design can 

also be applied to clinical trial settings where nested combinations of treatments are tested 

against a common control arm.

The proposed design is closely linked to the hierarchical procedures described in the 

literature for example, by Glimm et al, 23 Tamhane et al. 24,25 In particular, in the literature, 

the hierarchical procedure is applied for testing multiple end-points in a specific order. In 

some applications, the interest is to test the secondary endpoint just if the primary endpoint 

has been rejected. Therefore, the endpoints could be tested on hierarchically order and 

various strategies can be adopted to test the hypotheses 23 depending on the study objectives. 

It can be noted that when non-binding futility boundaries l1
1 = l1

2 = − ∞  are used in the 

3-arm 2-stage ordered restricted design, the overall testing procedure 23 coincides with the 

proposed method.

In this study, it has been assumed that the common variance is known. However, the effect 

of this assumption is not negligible especially with small sample sizes. In this case, a 

possible approach would be to transform the individual test statistics using the function 

f x = Φ−1 Td x , where T denotes the t distribution function with d degrees of freedom 

and Φ is the standard cumulative density function. More details of this approach are given in 

Jennison and Turnbull. 26 

Several avenues of future research present itself. First, focus has been given to superiority 

tests in this work. In certain diseases, such as in TB, non-inferiority designs are the norm 

and hence further research on non-inferiority hypothesis tests is of interest. Second, we 

assume that information time is the same for all treatments. When considering different 

durations of treatment, however, this information accumulates a different times and hence 

further work will consider optimal designs in this setting. Finally, we assume in this work 

that there is no uncertainty about the order of the treatment effects. Using a Bayesian 
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framework, however, would naturally allow for uncertainty in that assumption to be 

considered.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Power and expected sample sizes (ESS) under θ = (0.5, θ (2)) and θ (2) ∈ {0, 0.1, 0.2, 0.3, 

0.4, 0.5} for the FSD, 3-arm 1-stage ORD (FSD(h)), 3-arm 2-stage ORD, and MAMS(m) 

designs when all designs are powered at 80% to reject both hypotheses under θ = (0.5, 0.5). 

3-arm 2-stage ORD and MAMS(m) use triangular bounds. Results are provided using 106 

replications
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Figure 2. 
Power and expected sample sizes (ESS) under θ = (0.5, θ (2)) and θ (2) ∈ {0, 0.1, 0.2, 0.3, 

0.4, 0.5} for the FSD, 3-arm 1-stage ORD (FSD(h)), 3-arm 2-stage ORD, and MAMS(m) 

designs when all designs have the same common total sample size equal to 222 patients. 

3-arm 2-stage ORD and MAMS(m) use triangular bounds. Results are provided using 106 

replications
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Figure 3. 
Probability of rejecting both hypotheses (left) and probability of rejecting the first but not 

the second hypothesis (right) under θ = (0.5, θ (2)) and θ (2) ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5} for 

the 3-arm 2-stage ORD design when it is powered at 80% to reject both hypotheses under 

θ = (0.5, 0.5). ORD uses the selected combination of bounds which control the type I error 

under θ = (∞, 0). Results are provided using 106 replications
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Table 1

Combination of the decision rules in the 3-arm 2-stage trial with θ(1) ≥ θ(2)

Zj
1 ≥ uj

1 lj
1 < Zj

1 < uj
1 Zj

1 ≤ lj
1

Zj
2 ≥ uj

2 Stop: select T 1,T 2 Proceed with T 1, T 2 Proceed with T 1, T 2 

lj
2 < Zj

2 < uj
2 Proceed with T 2 Proceed with T 1, T 2 Drop both arms

Zj
2 ≤ lj

2 Stop: select T 1 Proceed with T 1 Drop both arms

Note: Cells colored in red correspond to contradicting evidence.
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Table 2
Sets of events for K-arm J-stage design with k ∈ 1, …, K − 1

Set Definition

Cj
k lj − 1

k < Zj − 1
k < uj − 1

k

Sj
k Zj − 1

k ≤ lj − 1
k

Ej
k Cj

1 ∪ Sj
1 ∩ Cj

k ∪ Sj
k ∪ Ej

k − 1 ∩ Cj
k

Ej
0 Ω

Aj, 1
k , k > 0 Ej

k

Aj, 2
k , k > 1 Ej

k − 1 ∩ Sj
k

Aj, k + 1 − s
k , k > 2, s = 1:k − 2 Ej

s ∩ Sj
s + 1 ∩t = s + 2

k Cj
t ∪ Sj

t

Note: Ω is the whole sample space.
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Table 3
Results of the simulations that revisit the NCT01257230 trial using the ORD

Design powered to reject all hypotheses

θ (1) θ (2) Max. SS Stages Reject all Reject H 01 not H 02 Reject at least one H 0k ESS

0 0 474 1 0.005 0.020 0.025 474.00

534 2 0.004 0.021 0.025 316.39

120 0 474 1 0.025 0.856 0.881 474.00

534 2 0.025 0.854 0.879 371.83

120 120 474 1 0.803 0.078 0.881 474.00

534 2 0.802 0.081 0.883 399.81

Design powered to reject at least one hypothesis

θ (1) θ (2) Max. SS Stages Reject all Reject H 01 not H 02 Reject at least one H 0k ESS

0 0 381 1 0.005 0.021 0.025 381.00

426 2 0.004 0.021 0.025 252.43

120 0 381 1 0.025 0.779 0.803 381.00

426 2 0.024 0.774 0.798 304.67

120 120 381 1 0.691 0.112 0.803 381.00

426 2 0.684 0.117 0.802 331.89

Note: For the two-stage design, the triangular bounds are used. Proportions refer to 106 replications and values of interest are in bold. 
Abbreviations: ESS, expected sample size; Max. SS, maximum sample size.
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Table 4

FWER, maximum sample sizes (Max. SS), expected sample sizes (ESS), and critical bounds under θ = (0, 0) 

for the 3-arm 2-stage ORD, 3-arm 1-stage ORD (FSD(h)), FSD, and MAMS(m) designs when all designs are 

powered at 80% to reject both hypotheses under θ = (0.5,0.5)

Design u 1,u 2,l 1 Max. SS ESS Reject at least one H 0k 

FSD 1.917, -, 1.917 231 231.0 0.05

FSD(h) 1.644, -, 1.644 192 192.0 0.05

ORD 1.898, 1.789, 0.633 222 134.4 0.05

MAMS(m) 2.179, 2.055, 0.726 264 166.6 0.05

Note: 3-arm 2-stage ORD and MAMS(m) use triangular bounds. Results are provided using 106 replications.
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Table 5

FWER, maximum sample sizes (Max. SS), expected sample sizes (ESS), and critical bounds under θ = (0,0) 

for the 3-arm 2-stage ORD, 3-arm 1-stage ORD (FSD(h)), FSD, and MAMS(m) designs when all designs have 

the same common total sample size equal to 222 patients

Design u 1 ,u 2 ,l 1 Max. SS ESS Reject at least one H 0k 

FSD 1.917, -, 1.917 222 222.0 0.05

FSD(h) 1.644, -, 1.644 222 222.0 0.05

ORD 1.898, 1.789, 0.633 222 134.4 0.05

MAMS(m) 2.179, 2.055, 0.726 222 140.1 0.05

Note: 3-arm 2-stage ORD, and MAMS(m) use triangular bounds. Results are provided using 106 replications.
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