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Abstract

3DLigandSite is a web tool for the prediction of ligand-binding sites in proteins. Here, we report 

a significant update since the first release of 3DLigandSite in 2010. The overall methodology 

remains the same, with candidate binding sites in proteins inferred using known binding sites in 

related protein structures as templates. However, the initial structural modelling step now uses the 

newly available structures from the AlphaFold database or alternatively Phyre2 when AlphaFold 

structures are not available. Further, a sequence-based search using HHSearch has been introduced 

to identify template structures with bound ligands that are used to infer the ligand-binding residues 

in the query protein. Finally, we introduced a machine learning element as the final prediction 

step, which improves the accuracy of predictions and provides a confidence score for each residue 

predicted to be part of a binding site. Validation of 3DLigandSite on a set of 6416 binding 

sites obtained 92% recall at 75% precision for non-metal binding sites and 52% recall at 75% 

precision for metal binding sites. 3DLigandSite is available at https://www.wass-michaelislab.org/

3dligandsite. Users submit either a protein sequence or structure. Results are displayed in multiple 

formats including an interactive Mol* molecular visualisation of the protein and the predicted 

binding sites.

Introduction

Elucidation of protein function remains a difficult and important task, with many millions 

of proteins present in UniProt [1] and only a small fraction of them functionally annotated 

[2,3], making automated sequence annotation tools essential. Small molecules that bind to 

proteins are intimately related to protein function; they can be substrates or products of 
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an enzyme reaction, cofactors [4] that play an essential role in catalysis or have important 

structural or regulatory roles [5].

Methods for predicting ligand-binding sites (reviewed in [6]) use a range of different 

approaches, including sequence conservation [7], structural approaches such as identifying 

pockets on the protein surface, the combined analysis of sequence and structural information 

[8], and machine and deep learning [9–16]. 3DLigandSite and methods such as firestar 

[17], FINDSITE [18,19], COACH-D [20] and FunFOLD2 [21] utilise knowledge of existing 

binding sites in solved protein structures present in the Protein Data Bank (PDB) [22]. 

3DLigandSite, FINDSITE, FunFOLD2 and COACH-D combine the modelling of protein 

structure with the identification of homologous proteins in the PDB that have ligands bound 

to them. These binding sites are then used to infer binding sites in the query protein. By 

contrast, firestar uses FireDB [23], a database of ligand-binding residues extracted from 

protein structures in the PDB and also catalytic residues extracted from the catalytic site 

atlas [24].

Here, we present the first major update to the 3DLigandSite web server. 3DLigandSite 

was first developed in 2010 [25] to automate an approach that was successfully used in 

the ligand-binding site experiment in the 8th round of the Critical Assessment of protein 

Structure Prediction (CASP) community experiment [26,27]. Over the last twelve years, 

3DLigandSite has become widely used, attracting an average of 125,000 submissions 

per year, for a diverse range of purposes, including genome annotation [28,29], antiviral 

screening [30], the analysis of single nucleotide variants associated with disease [31–35], 

the development of fluorescent sensors [36] and most recently for analysis of SARS 

coronavirus-2 proteins [37–39]. Over the last three years, 3DLigandSite binding site 

predictions have been incorporated into the Protein Data Bank in Europe (PDBe; [22]) 

Knowledgebase [40,41], making binding site predictions for protein structures in the PDBe 

widely available.

The basic 3DLigandSite algorithm remains the same in the new version, but it now makes 

use of the latest sequence searching methods and the highly accurate protein 3D structural 

models available from the AlphaFold Protein Structure Database (AlphaFold DB [42,43]). 

3DLigandSite now also incorporates machine learning as the final step in the prediction 

process, which improves prediction accuracy and associates a confidence score with each 

individual residue predicted to be part of a binding site. This is combined with a new web 

server that offers improved functionality for users to investigate the predicted binding sites.

The 3DLigandSite Method

A summary of the 3DLigandSite methodology is outlined in Figure 1. Users submit either a 

protein sequence in FASTA format or a protein structure in PDB format. Where a sequence 

is submitted, the PDB is first searched for an existing structure with identical sequence that 

can be used. Where a match is not found, AlphaFold DB [42] is searched for an existing 

structural model. Finally, where a model is not available, Phyre2 [44] is used to perform 

template-based modelling.
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The next step focuses on the identification of ligand-bound structures that are homologous to 

the query protein. Originally, 3DLigandSite used MAMMOTH [45] to perform a structural 

search of the query structure against a structural library of proteins from the PDB, which 

was a time-consuming step, typically taking between 40-80 minutes. This has been replaced 

by a sequence-based search using HHSearch [46] to screen a sequence library of ligand-

bound proteins from the PDB (detailed below), which only takes a few minutes to run. All 

sequence matches with an HHSearch probability score greater than 75 % are retained, and 

their protein structures are aligned to the query structure using TM-Align [47]. The user can 

reduce the HHSearch probability cut off if they would like to use less confident matches to 

the query sequence.

Where matches to the library of ligand-bound proteins are not identified by the sequence-

based search, a structural search is performed using TM-Align [47] that retains alignments 

with a TM-Score of 0.6 or greater. The structural search is also available as an advanced 

option that users can choose to perform at the time of submission.

The ligands present in the library structures are superimposed onto the query structure by 

aligning the library structures with the query structure. These ligands are then clustered. 

Originally, 3DLigandSite used single linkage clustering to cluster ligands, which could 

result in very large clusters. To avoid this, 3DLigandSite now generates clusters such that 

50 % of each ligand must overlap with at least one of the other ligands in the same cluster. 

This change also required that metal and non-metal ligands are separately clustered given 

that metal ligands are single ions, while non-metal ligands are larger molecules (e.g. ATP, 

NAD). Individual predictions of metal and non-metal binding sites are also made for these 

separate clusters.

The final step of the prediction process is to determine the residues in the protein that 

are predicted to form the binding site associated with each cluster of ligands. Each cluster 

may contain multiple different ligands or many instances of the same (or similar) ligands 

in different poses. 3DLigandSite originally predicted any residue within 0.8 A of at least 

25 % of the ligands in a cluster to be part of the binding site. This has been replaced 

by the introduction of a logistic regression classifier (detailed below) to perform this final 

prediction step. This also associates a confidence score (range 0-1) with each residue in the 

predicted binding site.

Generation of the library of ligand-bound protein structures

To generate the library of biologically relevant protein binding sites, protein structures were 

extracted from the PDB and filtered to retain only those containing ligands classed as 

cognate by FireDB [23]. The library focusses on monomeric proteins. Where binding sites 

were located in the interface between two proteins the multimer was split into monomeric 

structures and the ligands associated with both of the monomers. The protein structures 

were clustered, and the ligands from proteins in each cluster mapped onto a representative 

structure to reduce search time. The amino acid sequences of the retained structures were 

clustered using CD-HIT [48] using an 80 % sequence identity threshold. The protein models 

in each cluster were then aligned to the cluster representative (obtained from CD-HIT) 

using TM-align [47], the ligands were superimposed onto the representative structure and 
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retained. An HHSearch [49] sequence database was built from the representative sequences 

for searching user-submitted protein sequences against.

Calculating residue conservation—To calculate residue conservation, HHBlits [50] 

was used to search the query sequence against the UniClust30 database [51]. The multiple 

sequence alignment was then used to calculate the Jensen-Shannon Divergence [52] 

conservation score.

Machine learning-based prediction of binding site residues—The machine 

learning step was introduced to predict accurately which residues are most likely to be part 

of the binding site around a cluster of ligands. An equal number of binding and non-binding 

residues on the query protein were used for training and testing. For each of these residues, 

a set of features was extracted and converted to a 0-1 range (Supplementary Table 1). 

Several features were considered for best determining binding propensity. The features 

included distance measurements to the ligand cluster, residue conservation and amino acid 

properties such as charge, hydrophobicity and van der Waals volume (Supplementary Table 

1). Solvent accessibility scores were obtained from ProAct2 [53]. Distance-based features 

were calculated including the minimum, maximum, and average distance of each residue to 

ligands in the cluster, and the percentage of ligands in the cluster within 0.8 Å + Van der 

Waals radii of the amino acid.

Univariate feature selection was used to identify ligand contacts. The three distance features, 

and residue conservation were the most informative features for predicting ligand binding, as 

well as the negative charge residue feature for metal binding sites. A single distance metric 

was selected to avoid overtraining on a similar feature, resulting in the ligand contacts, 

minimum ligand distance, negatively charged, and residue conservation as the selected 

features.

The scikit-learn Python package was used to train support vector machines (SVMs) (Cortes 

and Vapnik, 1995), Extra-Trees, logistic regression, and random forest classifiers. The 

data were then fitted with optimum parameters from 100 random iterations and three 

cross-validation steps using GridSearchCV within scikit-learn. A randomly generated 80:20 

train-test split was used to fit the models.

The training and test sets comprise monomers with cognate ligands bound. These structures 

were identified by filtering the PDB, clustering their sequences using MMseqs2 [54]) at 

a maximum sequence identity of 40 %. This resulted in 5223 metal and 4995 non-metal 

binding sites. A subset of 1600 metal and 1573 non-metal binding sites were randomly 

selected for testing and training. The remaining binding sites were used as a validation 

set to evaluate performance on the trained classifiers (that had not been used in training) 

(Supplementary Figure 1). The PDB identifiers and chains of all sequences used are 

provided in Supplementary Table 2.

Binding residues were classed as all residues within VDW radii + 0.8 Å of the ligand present 

in the protein structure, with all other residues classed as non-binding. This resulted in 

1976 and 6950 metal and non-metal binding residues, respectively, and an equal number of 
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randomly selected non-binding residues were also randomly extracted (Supplementary Table 

3), providing the positive and negative examples required for training the machine learning 

classifiers.

Evaluating 3DLigandSite Performance

The performance of 3DLigandSite was assessed using the validation set (see methods 

section), which contained 59203 and 16166 (Supplementary Table 3) non-metal and metal-

binding residues, respectively, that had not been used in the testing or training of the 

classifiers. Performance was assessed using multiple measures of precision, sensitivity 

(recall), and the Receiver Operator Characteristic (ROC).

The logistic regression classifier performed best on the non-metal binding sites, with a 

an area under the receiver operating characteristic curve (AUROC) of 0.99, though a 

similar performance was observed for Extra-Trees and random forest classifiers (Figure 

2A, Supplementary Table 4). For metal ligands, the logistic regression classifier performed 

best with an AUROC of 0.99 (Figure 2C, Supplementary Table 4). As the data set has 

a skewed distribution with many more negative examples than positive examples (i.e. 

many non-binding residues compared to those that are binding residues in each protein 

– Supplementary table 3), precision-recall metrics provide a better indication of performance 

[55,56]. 3DLigandSite obtained 92 % recall at 75 % precision for non-metal binding sites 

(Figure 2B) and 52 % recall at 75 % precision for metal-binding sites (Figure 2D). We 

compared the performance of the new version of 3DLigandSite with the original version 

[25]. The original 3DLigandSite did not make separate predictions for metal and non-metal 

ligands, so we assessed performance on the combined metal and non-metal binding sites. On 

the validation set the original 3DLigandSite obtained recall of 56% at 59% precision.

The performance of 3DLigandSite was also evaluated on the 70 targets used for assessment 

of binding site prediction in CASP8 [26], CASP9 [57] and CASP10 [58]. Using the 

sequence-based homology search 3DLigandSite obtained recall of 85% at 65% precision, 

and a Matthews’ Correlation Coefficient (MCC; [59]) of 0.73. Performance using the 

structural-search option was comparable, with slightly lower recall of 80% at 67% precision 

and an MCC of 0.72. Structural search results at a range of TM-Score thresholds for 

inclusion of template structures are shown in Supplementary Table 5. On this dataset, the 

sequence-based search was not inferior to the structure-based search, although recent studies 

have suggested that structural searches are better at identifying related protein structures 

[60,61]. Given, the extra time taken to perform the structural search (approximately 4 hours 

per submission), the sequence search is recommended and is the default for the web server.

The 3DLigandSite Web Server

The 3DLigandSite web server is available at https://www.wass-michaelislab.org/

3dligandsite. The web server is free to all without a login requirement. Users can select 

to submit either a protein sequence (in FASTA format) or a protein structure (in PDB 

format). Where a sequence is submitted, the first step of the prediction process is to obtain 

a model of the protein structure. To do this the PDB is first searched for a matching 
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structure, followed by AlphaFold DB [42]. Where a suitable model is not available in either 

database, Phyre2 [44] is used to generate a template-based model of the structure. The 

runtime for submissions that require Phyre2 is longer as modelling the protein structure is 

time-consuming, typically taking a few hours to complete. Where users submit a protein 

structure, the runtime is typically less than five minutes using default settings. Users who 

provide an email address receive an email upon submission and once their results are ready 

for viewing. The web server includes a help section that includes recordings that work users 

through both the submission process and interpretation of data in the results pages.

Results Output

3DLigandSite results pages are split into three main sections. Results are initially presented 

as a sequence view (Figure 3), which shows the amino acid sequence of the submitted 

protein, residue conservation, and a row for each cluster of ligands that has been identified 

as a potential binding site (Figure 3). This provides users with an easily interpretable view of 

the predicted binding sites.

The second section of results shows the cluster table, which includes details of the clusters 

identified, the number of ligands present in each cluster, and the number of structures that 

these ligands originate from. The ligands are represented by the three-letter codes from 

the mmCIF dictionary and are linked to the small molecule details in the PDB (Figure 

3). Clusters are sorted according to the number of ligands present in the cluster. There 

is greater confidence that a cluster represents a binding site when there is evidence for 

this from multiple protein structures. The second table in this section contains a tab for 

each ligand cluster and lists the residues predicted to be in the binding site along with 

the conservation score, solvent accessibility, and the probability calculated by the logistic 

regression classifier.

The final section of the results page contains a Mol* molecular viewer (www.molstar.org) 

[62] that by default displays the protein structure in a cartoon format along with the ligands 

in the top-ranked cluster, highlighting the predicted binding site residues in red (Figure 3). 

The Mol* viewer enables users to inspect the predicted binding sites within the protein 

structure and offers multiple features for exploring the structure. The 3DLigandSite control 

panel to the right of the viewer provides easy to use functions such as changing the colour 

or format of the display of the ligands and the protein structure. Further functionality is 

available via the Mol* built-in options shown on the top right of the viewer. The control 

panel also includes a button enabling users to generate publication-quality images of the 

current display in the viewer.

Use Cases

As set out in the introduction, 3DLigandSite predictions have been widely used for a 

range of different biological and biomedical purposes. For example, with widespread use 

of sequencing technologies, there is extensive interest in the analysis of non-synonymous 

single nucleotide variants (nsSNVs). The aim here is to identify those nsSNVs that may alter 

protein structure and function and be associated with a phenotype such as a disease. Thus, 
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3DLigandSite has been used to analyse such nsSNVs for a range of diseases, from liver 

disease [31] to cardiomyopathies [33].

One application has been to study nsSNVs present in individuals with cystinuria, which is 

caused by variants in two genes, SLC7A9 and SLC3A1, that encode a dimeric amino acid 

transporter [63]. Cystinuria is caused by variants that affect the ability of this transporter 

to transport cystine into cells, which results in the formation of kidney stones. In a recent 

study [34, 64], 3DLigandSite was used to model the structure and ligand binding sites of the 

two encoded proteins and to analyse how the set of nsSNVs observed in a cohort of patients 

may affect transporter function and be linked with the severity of the disease that patients 

experienced. Figure 3 shows the protein b(0+)AT, which is encoded by SLC7A9, and the 

predicted amino acid binding sites in the protein.

Concluding Remarks

The 3DLigandSite web server provides free access to an easy-to-use resource for modelling 

small molecule binding sites in proteins. This widely used resource has been extensively 

updated to offer improved functionality and to reduce the run time of user submissions. Our 

benchmarking demonstrates that 3DLigandSite can obtain high recall with high precision, 

therefore accurately predicting binding sites in proteins that users are researching.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. An overview of the 3DLigandSite method.
Users submit either a protein sequence or structure. Where sequences are submitted the 

PDBe and AlphaFold DB are searched for a matching structure, where one is not available 

Phyre2 is used to model the 3D structure. HHsearch is used to search a sequence library of 

protein structures with ligands bound. Hits from this search are aligned with the structure 

of query protein, the ligands from these structures are clustered. Each cluster of ligands 

represents a potential binding site in the query protein. A machine learning classifier is used 

to predict which of the residues around the cluster are likely to form part of a binding site.
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Figure 2. Benchmarking the 3DLigandSite machine learning classifier.
Receiver operator characteristic (ROC) curves and Precision-Recall curves are shown for the 

prediction of binding sites of non-metal (A and B) and metal (C and D) ligands.
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Figure 3. Viewing results on the 3DLigandSite web server.
Results are presented in 3 main sections. A sequence view, which maps sequence 

conservation and the different clusters identified onto the protein sequence. Secondly, details 

of the clusters, including the number of ligands and type of ligand are displayed as well as 

a table listing the residues predicted to form the binding site for each cluster. Finally, the 

structural analysis section includes a Mol* molecular viewer to visualise the protein, the 
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predicted binding site and the clusters used to make the predictions. A separate control panel 

(on the right) enables users to easily modify the display.

McGreig et al. Page 15

Nucleic Acids Res. Author manuscript; available in PMC 2022 July 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts


	Abstract
	Introduction
	The 3DLigandSite Method
	Generation of the library of ligand-bound protein structures
	Calculating residue conservation
	Machine learning-based prediction of binding site residues


	Evaluating 3DLigandSite Performance
	The 3DLigandSite Web Server
	Results Output

	Use Cases
	Concluding Remarks
	References
	Figure 1
	Figure 2
	Figure 3

