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Abstract

Background—Accelerated reproductive aging, in women indicated by early natural menopause, 

is associated with increased coronary heart disease (CHD) risk in observational studies. 

Conversely, an adverse CHD risk profile has been suggested to accelerate menopause.

Objectives—To study the direction and evidence for causality of the relationship between 

reproductive aging and (non-)fatal CHD and CHD risk factors in a bidirectional Mendelian 

randomization (MR) approach, using age at natural menopause (ANM) genetic variants as a 

measure for genetically determined reproductive aging in women. We also studied the association 

of these variants with CHD risk (factors) in men.

Design—Two-sample MR, using both cohort data as well as summary statistics, with 4 methods: 

simple and weighted median-based, standard inverse-variance weighted (IVW) regression, and 

MR-Egger regression.

Participants—Data from EPIC-CVD and summary statistics from UK Biobank and publicly 

available genome-wide association studies were pooled for the different analyses.

Main Outcome Measures—CHD, CHD risk factors, and ANM.

Results—Across different methods of MR, no association was found between genetically 

determined reproductive aging and CHD risk in women (relative risk estimateIVW = 0.99; 95% 

confidence interval (CI), 0.97-1.01), or any of the CHD risk factors. Similarly, no associations 

were found in men. Neither did the reversed analyses show evidence for an association between 

CHD (risk factors) and reproductive aging.

Conclusion—Genetically determined reproductive aging is not causally associated with CHD 

risk (factors) in women, nor were the genetic variants associated in men. We found no evidence for 

a reverse association in a combined sample of women and men.
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Coronary heart disease (CHD) is the leading cause of death in both men and women 

(1). Accelerated reproductive aging, as indicated by early menopause in women, has been 

associated with increased risk of CHD (2–6). The mechanisms underlying these associations 

are not fully understood yet; deterioration of traditional coronary heart disease risk factors, 

in particular cholesterol, has been suggested to play a role (7, 8). For example, women with 

an early menopause might be exposed to higher levels of these CHD risk factors longer, 

which might result in the association with CHD in observational studies.

In observational studies, it is difficult to disentangle the potential independent effect of 

accelerated reproductive aging on CHD risk from the effect of general aging because 

residual confounding can still be present. Furthermore, reversed causality can also play 

a role here because women with an unfavorable CHD risk profile have been reported 

to experience accelerated reproductive aging (9). Mendelian randomization (MR) designs, 

exploiting the principle of random independent segregation of alleles at meiosis, are a means 

to establish causality in situations where randomized clinical trials are impossible (10, 11). 

In MR studies, single nucleotide polymorphisms (SNPs) associated with the exposure as 

found in genome-wide association studies (GWAS) are used as instrumental variables.

A GWAS has been conducted by Day et al for the reproductive aging trait age at natural 

menopause (ANM) in 69 360 women of European decent with ANM between 40 and 60 

years (12). This GWAS reported 56 SNPs, mainly implicated in genome stability (DNA 

repair), immune function, and mitochondrial biogenesis (12), which are biological processes 

not specific to women and known to be impaired upon aging. Furthermore, a recent CHD 

GWAS showed that only 10 of the 241 CHD variants were sex specific (13), which did not 

include any of the 56 ANM variants. Therefore, we hypothesize that the same 56 ANM 

variants, even though they may not be associated with reproductive aging in men, could still 

be associated with CHD in both women and men because of the biological processes they 

are involved in and their link to biological aging.

A recent study in 3 cohorts (14) showed that an earlier ANM, genetically determined by 

the 56 SNPs, was associated with an increased CHD risk in women (meta-analyzed hazards 

ratio [HR] = 1.12; 95% CI, 1.02-1.24), but not in men (meta-analyzed HR = 1.05; 95% 

CI, 0.94-1.16). However, although studying relationships between genetic risk scores and 

disease risk provides higher statistical power than formal MR analysis, it is also associated 

with substantial risk of false-positive findings resulting from horizontal pleiotropy (15). A 

formal MR analysis by the authors in publicly available data from the Coronary Artery 

Disease Genome wide Replication and Meta-analysis (CARDIoGRAM) consortium from 

2011 did not confirm a causal role of ANM in CHD risk (14). In addition, the authors 

did not investigate cardiovascular risk factors as an outcome nor studied the reversed 

association.
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The aims of the present study are to disentangle putative causal links between reproductive 

aging and fatal or nonfatal CHD and CHD risk factors in women. In addition, we also 

studied the reversed association (eg, between fatal or nonfatal CHD and CHD risk factors 

and reproductive aging) because hypotheses exist that an adverse CHD risk profile may 

cause advanced reproductive aging (9, 16). Finally, we aim to assess whether the genetic 

variants are associated with CHD and traditional CHD risk factors in men as well.

Methods

Ethics Approval

All procedures performed in studies involving human participants were in accordance with 

the ethical standards of the institutional and/or national research committee and with the 

1964 Helsinki Declaration and its later amendments or comparable ethical standards. The 

studies were approved by local medical ethical committees as described in the Supplemental 

methods (17).

To study the different hypotheses as described in the introduction, we conducted 4 different 

MR analyses.

1. MR to study the association between ANM variants and CHD risk

2. MR to study the association between ANM variants and CHD risk factors

3. MR to study the association between CHD variants and ANM

4. MR to study the association between CHD risk factor variants and ANM

Next, we describe the methods for each MR. In addition, Fig. 1 shows which data sources 

were used for each MR.

Methods for MR to Study the Association Between ANM Variants and CHD Risk

Outcome—The main outcome was the first event of fatal or nonfatal CHD, defined by 

codes 410 through 414 of the International Classification of Diseases, Ninth Edition, and 

codes I20 through I25 of the 10th Edition.

Data sources—A genome-wide meta-analysis by Day et al identified 56 SNPs associated 

with ANM among 70 000 women of European descent, 54 common HapMap SNPs and 

2 Exome chip SNPs (12), a list of SNPs can be found in Supplemental Table 1 (17). As 

described by Day et al, all SNPs passed the threshold of P < 5e-8 in the joint model. 

Pleiotropic effects were investigated by searching the GRASP database and NHGRI catalog 

for the SNPs or their proxies (R2 > 0.5) (12). We used the 56 ANM variants as instrument 

for genetically determined reproductive aging in women and investigated whether these 

variants were associated with CHD in men.

We studied these variants in relation to CHD outcome data from 417 579 participants of 

European descent (including 49 150 CHD cases) from 3 studies: the EPIC-CVD case-cohort 

study (18), the UK Biobank (19), and a modified version of the CARDIoGRAMplusC4D 

consortium (m-CARDIoGRAMplusC4D) because we could only include those studies that 
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provided us with sex-specific summary data (Cardiogenics, Thiseas, AMC-PAS, Duke 2, 

CCGB 2, ITH 2, OHGS A2, OHGS B2, OHGS C2, Germifs I, Germifs II, Germifs III, 

Germifs IV, LIFE-Heart, and LURIC (20)). Details of the 3 studies (EPIC-CVD, UK 

Biobank, and m-CARDIoGRAMplusC4D), including ethical approval and definitions of 

fatal or nonfatal CHD in each study, can be found in the Supplemental methods (17).

Genotyping—EPIC-CVD participants were genotyped with the Human Core Exome array, 

Illumina 660 Quad array, and Omni Exome Express array (21). Genotyping in the UK 

Biobank was performed using the Affymetrix UK BiLEVE Axiom array and the Affymetrix 

UK Biobank Axiom Array (19, 22). The m-CARDIoGRAMplusC4D studies have used 

various genotyping methods as described previously (20).

Statistical analysis—We verified whether the ANM variants were a valid instrument for 

the MR analysis in women by calculating the F-statistic according to the method described 

previously (23), using the SD (5.8 years) for ANM from the imputed data in the EPIC-CVD 

subcohort and the betas for the ANM variants from the GWAS (12).

Regarding the outcome CHD, summary statistics (odds ratios and SEs for the SNP-CHD 

associations) were derived through the contact persons of UK Biobank and the included 

CARDIoGRAMplusC4D studies. For the EPIC-CVD case-cohort study, Prentice-weighted 

Cox proportional hazards regression adjusted for age, country, the first 2 principal 

components, and array was used to calculate HRs and SEs for the associations between 

reproductive aging SNPs and CHD outcome.

We performed a 2-sample MR using 4 separate methods to estimate causal effects for binary 

(CHD) outcomes: the simple median-based method, the weighted median-based method, the 

standard inverse-variance weighted (IVW) regression and the MR-Egger regression using 

the “Mendelian Randomization” package in R (24). The IVW provides a consistent estimate 

and assumes that all assumptions of the instrumental variable are met, the median-based 

and MR-Egger methods provide estimates under weaker assumptions, with the MR-Egger 

additionally providing an intercept that represents the average pleiotropic effect (25, 26). 

When unbalanced horizontal pleiotropy is absent, results of all methods are expected to 

be consistent (27). We first conducted sex-specific MR analyses for ANM on CHD in all 

3 studies (UK Biobank, m-CARDIoGRAMplusC4D, EPIC-CVD) separately. Subsequently, 

we pooled the estimates with a fixed effect model as is standard in MR studies. All analyses 

were conducted with R version 3.2.0 (28).

Methods for MR to Study the Association Between ANM Variants and CHD Risk Factors

Outcomes—The outcomes used for this MR are traditional CHD risk factors: total 

cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides, HbA1c, and glucose. 

More risk factors are associated with CHD, but we could only use risk factors for which 

publicly available summary statistics were accessible.

Data sources—We again used the 56 variants from the study by Day et al (12) as 

instrument for the exposure ANM. We applied these variants in MR analyses using data 

from EPIC-CVD and UK Biobank combined with publicly available GWAS summary 
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statistics from the Global Lipids Genetics Consortium (n = 188 577) (29) (total cholesterol, 

HDL cholesterol, triglycerides) and MAGIC (n = 122 744) (30, 31) (HbA1c, fasting 

glucose) for the CHD risk factor outcomes. Details on these consortia can be found in 

the Supplemental methods (17).

Genotyping—As described previously, EPIC-CVD participants were geno-typed with the 

Human Core Exome array, Illumina 660 Quad array, and Omni Exome Express array (21). 

Genotyping in the UK Biobank was performed using the Affymetrix UK BiLEVE Axiom 

array and the Affymetrix UK Biobank Axiom Array (19, 22). The Global Lipids Genetics 

Consortium and MAGIC used different assays as described previously (29–31). Finally, the 

56 SNPs were selected according to the study by Day et al as described previously (12).

Statistical analysis—For the CHD risk factor outcomes, we derived effect estimates and 

SEs for the reproductive aging SNPs with the cardiovascular risk factors total cholesterol, 

HDL cholesterol, and triglycerides in the Global Lipids Genetics Consortium (29), and in 

MAGIC (30, 31) for diabetes risk factors HbA1c and fasting glucose using Phenoscanner 

(32) or the original publication. In the random subcohort of EPIC-CVD, we first imputed the 

missing observational data of EPIC-CVD (nongenetic data only) using multiple imputation 

with the MICE package in R (33) with 10 imputations and 50 iterations, including the 

cardiovascular disease (CVD) risk factors, SNPs, and other baseline characteristics as 

predictors. Subsequently, we derived regression coefficients with linear regression in the 

subcohort only, separately in each imputation, using the same adjustments as for CHD. 

Thereafter, we pooled the results with Rubin’s rule (34), a method designed to pool 

parameter estimates of multiple imputed datasets, taking into account that the imputed 

datasets are drawn from the same source dataset. The estimates for the UK Biobank data 

were downloaded from the Nealelab (35).

We performed a 2-sample MR using 4 separate methods to estimate causal effects 

for continuous (total cholesterol, HDL cholesterol, triglycerides, apolipoprotein A, 

apolipoprotein B, C-reactive protein, glucose, HbA1c) outcomes: the simple median-based 

method, the weighted median-based method, the standard IVW regression, and the MR-

Egger regression using the “Mendelian Randomization” package in R (24). MR analyses 

were performed for each cardiovascular risk factor in each study separately (EPIC-CVD, UK 

Biobank, Global Lipids Genetics Consortium, MAGIC) and then pooled using a fixed effects 

model. Sex-specific analyses were possible in EPIC-CVD and UK Biobank, and pooled 

results with both sexes conducted with Global Lipids Genetics Consortium and MAGIC. All 

analyses were conducted with R version 3.2.0 (28).

Methods for MR to Study the Association Between CHD Variants and ANM (Reversed 
Association)

Outcomes—For this MR, ANM was the outcome defined as the age at last naturally 

occurring menstrual period followed by at least 12 consecutive months of amenorrhea (12).

Data sources—To study causality of the reversed association, we used the genome-wide 

significant variants for CHD in the CARDIoGRAMplusC4D (20) (n = 185 000) data as 
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the instrument for the exposure CHD. The ReproGen (n = 70 000) (12) data were used 

for ANM as the outcome. We used the sex-combined GWAS summary statistics for the 

exposure because sex-specific summary statistics were not available. The outcome ANM is 

only available in women, so the outcome variants are in women only.

Genotyping—The CARDIoGRAMplusC4D consortium consists of 40 different studies 

with all slightly different methods for genotyping. Details can be found in the paper by 

Nikpay et al (20). The 56 SNPs selected according to the study by Day et al from the 

ReproGen study were used as outcome variants (12).

Statistical analysis—We performed a 2-sample MR using 4 separate methods to estimate 

causal effects for the continuous ANM outcome: the simple median-based method, the 

weighted median-based method, the standard IVW regression, and the MR-Egger regression 

using the “Mendelian Randomization” package in R (24). The analyses were conducted for 

both sexes combined. All analyses were conducted with R version 3.2.0 (28).

Methods for MR to Study the Association Between CHD Risk Factor Variants and ANM 
(Reversed Association)

Outcomes—For this MR, ANM was the outcome defined as the age at last naturally 

occurring menstrual period followed by at least 12 consecutive months of amenorrhea (12).

Data sources—To study causality of the reversed association, we used genome-wide 

significant variants from publicly available GWAS summary statistics of the Global Lipids 

Genetics Consortium (n = 188 577) (29) (total cholesterol, low-density lipid [LDL] 

cholesterol), the International Consortium for Blood Pressure GWAS (n = 200 000) (36) 

(systolic blood pressure, diastolic blood pressure), and the GIANT consortium (n = 339 

224) (37) (body mass index) as instruments for the CI, -0.005 to 0.015). Furthermore, no 

causal association was exposures, and ReproGen (n = 70 000) (12) for ANM as the outcome. 

We used the sex-combined GWAS summary statistics for the exposure because sex-specific 

summary statistics were not available. The outcome ANM is only available in women, so the 

outcome variants are in women only.

Genotyping—We used the genetic variants as defined in the Global Lipids Genetics 

Consortium, the International Consortium for Blood Pressure GWAS, and the GIANT 

consortium. Details on genotyping and SNP selection can be found in references (29, 36, 

37). The 56 SNPs selected according to the study by Day et al from the ReproGen study 

were used as outcome variants (12).

Statistical analyses—We performed a 2-sample MR using 4 separate methods to 

estimate causal effects for continuous (total cholesterol, LDL cholesterol, systolic blood 

pressure, diastolic blood pressure, and body mass index) outcomes: the simple median-based 

method, the weighted median-based method, the standard IVW regression, and the MR-

Egger regression using the “Mendelian Randomization” package in R (24). These analyses 

with ANM as an outcome were conducted for both sexes combined. All analyses were 

conducted with R version 3.2.0 (28).
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Results

Results of MR to Study the Association Between ANM Variants and CHD Risk

The F-statistic for genetically determined reproductive aging in women in EPIC-CVD was 

93.7, indicating that our instrument was strong in women. Table 1 shows the results for 

the analysis of the association between genetically determined reproductive aging and 

CHD risk, stratified by sex and by study (UKBiobank, m-CARDIoGRAMplusC4D, and 

EPIC-CVD). In women (Fig. 2 and Table 1), the IVW analyses in each study separately 

showed no causal association between genetically determined reproductive aging and CHD, 

nor when studies were pooled together (relative risk estimate [RRE]IVW = 0.99; 95% CI, 

0.97-1.01). The MR-Egger method indicated no pleiotropic effects (intercept = 0.004, P = 

0.318) and resulted in an RREMR-Egger of 0.97 (95% CI, 0.94-1.02) in the pooled data. 

Similar results were found for men (Fig. 3 and Table 2) with a pooled RREIVW of 1.00 

(95% CI, 0.97-1.02), also indicating no pleiotropic effects (RREMR-Egger = 1.00 (95% CI, 

0.95-1.05), intercept = 0.000, P = 0.948).

Results of MR to Study the Association Between ANM Variants and CHD Risk Factors

Figure 4 (women) and Fig. 5 (men) show the IVW results for the association between 

genetically determined reproductive aging and cardiovascular risk factors. Supplemental 

table 2 (17) shows the results for all 4 MR methods. For each 1-year decrease in genetically 

determined reproductive aging, total cholesterol levels decreased by 0.009 mmol/L in 

women in the IVW analysis; however, this was not statistically significant (95% CI, 

-0.019 to 0.001). Similarly, genetically determined reproductive aging was not causally 

associated with total cholesterol in men (betaIVW = 0.005 mmol/L; 95% CI, -0.005 to 

0.015). Furthermore, no causal association was found for HDL cholesterol, triglycerides, 

apolipoprotein A, apolipoprotein B, C-reactive protein, glucose, or HbA1c in both women as 

well as men (Fig. 4, Fig. 5, Supplemental Table 2 (17)).

Results of MR to Study the Association Between CHD Variants and ANM

Figure 6 and Table 2 show the results for the association between CHD genetically 

determined reproductive aging for all 4 MR methods, investigating causality of the reversed 

association. The IVW analysis shows that CHD was not causally associated with earlier 

genetically determined reproductive aging (betaIVW = 0.063; 95% CI, -0.050 to 0.176).

Results of MR to Study the Association Between CHD Risk Factor Variants and ANM

Figure 6 and Table 2 show the results for the association between CHD risk factors and 

genetically determined reproductive aging for all 4 MR methods, investigating causality of 

the reversed association. The IVW analysis shows that total cholesterol (betaIVW = -0.002; 

95% CI, -0.006-0.002), LDL cholesterol (betaIVW = 0.003; 95% CI, -0.001 to 0.006), 

systolic blood pressure (betaIVW = 0.015; 95% CI, -0.018 to 0.049), diastolic blood pressure 

(betaIVW = 0.023; 95% CI, -0.031 to 0.077), and body mass index (betaIVW = -0.069; 95% 

CI, -0.0294 to 0.0156) were not causally associated with earlier genetically determined 

reproductive aging.
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Discussion

This study did not find a causal association between reproductive aging and CHD risk 

or CHD risk factors, including cholesterol levels, in women. This study does not provide 

evidence for an association between genetic variants for female reproductive aging and CHD 

risk or CHD risk factors in men. Furthermore, this study does not provide evidence for 

causality of the reversed association because we did not find a causal association between 

CHD and CHD risk factors and genetically determined reproductive aging.

Our findings regarding CHD are partly in contrast with 1 previous study investigating the 

association between ANM SNPs and CHD death, which reported a significantly increased 

risk of CHD death with a weighted genetic risk score (wGRS) in women, but not in men 

(14). However, our findings are in line with those of the MR analysis in women, presented 

in the same paper, using CARDIoGRAMplusC4D data only, which was also null. The 

discrepancy between the wGRS and MR findings is potentially because the wGRS analysis 

was adjusted for several known CVD risk factors (current smoking, body mass index, 

hypertension, type 2 diabetes, total cholesterol, and lipid treatment). This might induce 

a biased association between the genetic variant and the outcome through confounder(s), 

also known as collider bias (38, 39). In addition, the number of cases used for the wGRS 

analyses was small (only 541 CHD deaths in women), so a chance finding cannot be 

ruled out either. However, the discrepancy between studies might also be caused by the 

heterogeneity of outcome definitions. These definitions slightly differ between this study 

(CHD) and the previously published study (CVD), the composite CVD also includes stroke 

and congestive heart failure. This should be considered when interpreting the results.

Our MR study suggests that the association between genetically determined reproductive 

aging and CHD is not causal. However, most observational studies do find an association 

between early age at menopause and CHD in women. A possible explanation is that 

observational studies are susceptible to residual confounding. Postmenopausal women 

are older than premenopausal women, making it challenging to separate the effects of 

biological aging from the various phases of the reproductive aging process. Hence, residual 

confounding due to age may still be present in observational studies. Another possible 

explanation might be survivor bias in the GWAS we used. It is possible that women, who 

died of a CHD event before they went through menopause, although this is very rare (16), 

were not included in the GWAS. Therefore, variants associated with both ANM and CHD 

might not have been found. Furthermore, reverse causation could be a potential problem 

in observational studies. Although most studies assume that an early ANM increases CHD 

risk, it might be possible that an unfavorable cardiovascular risk profile, or accelerated 

vascular aging, causes an early ANM. One previous observational study showed that higher 

cholesterol levels before menopause were associated with earlier menopause (9). One other 

observational study found no association between premenopausal CVD and subsequent age 

at menopause (40); if anything, women who developed CVD before menopause had a lower 

risk of becoming postmenopausal than women without premenopausal CVD (HR = 0.98 

for CVD and HR = 0.90 for myocardial infarction), indicating that menopause occurred 

later in these women (40), but none of these results was statistically significant the result of 

the small number of premenopausal cases. However, another study did find an accelerated 
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menopause for women with CVD before the age of 35 (16). Our reversed MR analysis 

does not support evidence for a reversed association where CHD increases the risk of early 

menopause.

MR uses SNPs, which are randomly assigned by birth, as instrumental variables, and as 

such provides a method to assess causality (41). However, an MR study makes several 

assumptions that have to be taken into account (42). The first assumption is that the genetic 

marker is associated with the exposure. The SNPs used in our study were all associated with 

ANM at a P value < 5e-6 in the latest and largest GWAS (13). As discussed previously, this 

may not be true in men. The second and third assumptions are that the association between 

the genetic marker and the outcome is explained exclusively through the exposure of interest 

and is unconfounded. This is often referred to as the absence of pleiotropy, which means 

that the genetic variant is not associated with other phenotypes. Although our Phenoscanner 

search showed that a few of the SNPs are associated with age at menarche or sex hormone 

levels, and thus that some pleiotropy may be present, our MR-Egger analysis showed no 

indication of pleiotropy because all intercepts were 0 or very close to 0 and nonsignificant 

(26). We therefore assume that our results are not biased by pleiotropy.

Strengths and Limitations

Strengths of this study are that, to the best of our knowledge, this is the largest MR study 

of associations between reproductive aging and CHD to date with 20 169 CHD events 

in women and 27 397 in men. We used several methods for MR analyses all yielding 

consistent results for the tested hypotheses, and in women the instrument we used was 

strong (F-statistic 93.7). Some limitations need to be acknowledged. First, we cannot 

establish whether the ANM risk score is a valid instrument for reproductive aging in men. 

The F-statistic is calculated using observed menopausal age in women, but men do not have 

a similar trait with an abrupt stop in reproductive potential. Because the SNPs we used are 

mainly implicated in mechanisms that are not specific for women, and the SNPs were not 

sex-specific, we hypothesized that there are common mechanisms of reproductive aging for 

women and men, and that, therefore, the same variants can be used as marker for genetically 

determined reproductive aging in men. However, corresponding phenotypic traits in men 

need to be further investigated. Second, the GWAS on ANM included women with an ANM 

between 40 and 60 years only and therefore did not include women with an extremely early 

menopause (< 40) or premature ovary insufficiency (POI). Most of the observational studies 

did include women with an extremely early menopause or POI, and two recent systematic 

reviews and meta-analyses of observational studies showed that POI is associated with both 

fatal and non-fatal CHD and CVD (43, 44). Although we could not study an effect of 

extremely early menopause in our MR study, a recent GWAS on early menopause revealed 

no new genetic variants for early menopause and showed that the genetic etiology of early 

menopause overlaps with that of ANM; thus, early menopause is at least partly explained 

by the same polygenic variants as ANM (45). The GWAS also excluded women using 

hormone replacement therapy because long-term hormone replacement therapy use might be 

associated with lower CHD risk. However, this only induces confounding in observational 

studies and not in MR studies. Third, we cannot fully rule out reversed causation because the 

analyses are conducted in a sample of men and women combined, a consequence of using 
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publicly accessible data, whereas the outcome (ANM) is estimated in women only. To rule 

out reversed causation, these analyses should be rerun in women and men separately. Fourth, 

our analyses with glucose were based on both fasting (MAGIC) and nonfasting estimates 

(EPIC-CVD). Although both are associated with an increased CVD risk (46, 47), it might 

not be appropriate to combine them because different SNPs might drive the association and 

underlying mechanisms could be different. Fifth, some prevalent cases might have been 

present at the start of the study, which can be problematic in observational studies. However, 

in an MR, one can argue that study entry is not “time zero,” but the allocation of genetic 

variants at conception is; therefore, all events are incident events. Furthermore, there were 

no women that had an event before they became postmenopausal.

Conclusion

In summary, we found no convincing evidence that reproductive aging is causally associated 

with CHD and CHD risk factors in women, nor are the SNPs related to CHD and CHD 

risk factors in men. We also found no evidence for causality of the reverse association 

in a combined sample of women and men. However, there is a discrepancy between 

the definition of CHD in the studies used and we could only analyze men and women 

together in the reversed association. Still, our results suggest that the association between 

early menopause and CHD risk in observational studies might be the result of residual 

confounding, reversed causation, or reflect a shared etiology that results in both earlier 

menopause and higher CHD risk.
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Abbreviations

ANM at natural menopause

CHD coronary heart disease

CARDIoGRAM Coronary Artery Disease Genome wide Replication and 

Meta-analysis

CVD cardiovascular disease

GWAS genome-wide association study

HbA1c glycated hemoglobin

HDL high-density lipoprotein

HR hazard ratio

IVW inverse-variance weighted

LDL low-density lipoprotein

MR Mendelian randomization

POI premature ovary insufficiency

RRE relative risk estimate
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SNP single-nucleotide polymorphism

wGRS weighted genetic risk score
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Figure 1. Visual of the data sources used for each Mendelian randomization.
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Figure 2. Results for the MR of ANM variants and coronary heart disease in women of the 4 
different Mendelian randomization methods used.
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Figure 3. Results for the MR of ANM variants and coronary heart disease in men of the 4 
different Mendelian randomization methods used.
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Figure 4. Results for the MR of ANM variants and coronary heart disease risk factors in women 
for the inversed variance-weighted (IVW) method.
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Figure 5. Results for the MR of ANM variants and coronary heart disease risk factors in men for 
the inversed variance-weighted (IVW) method.

Dam et al. Page 23

J Clin Endocrinol Metab. Author manuscript; available in PMC 2022 June 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 6. 
Results for the MR of CHD and CHD risk factors and ANM for the inversed variance-

weighted (IVW) method. We used the sex-combined GWAS summary statistics for the 

exposure because sex-specific summary statistics were not available. The outcome ANM is 

only available in women, so the outcome variants are in women only.
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Table 1
Relative risk estimates of the association between genetically determined reproductive 
aging and coronary heart disease for individual studies and the pooled cohorts

UK Biobank
OR (95% CI)

m-CARDIoGRAM plusC4D
OR (95% CI)

EPIC-CVD
HR (95% CI)

Pooled relative risk estimates

Women

Simple median 0.99 (0.96-1.02) 0.97 (0.89-1.06) 0.97 (0.78-1.21) 0.99 (0.96-1.02)

Weighted median 0.99 (0.96-1.02) 0.97 (0.89-1.06) 1.08 (0.88-1.33) 0.99 (0.96-1.02)

IVW 0.99 (0.97-1.02) 0.98 (0.91-1.05) 1.02 (0.89-1.17) 0.99 (0.97-1.01)

MR-Egger 0.98 (0.94-1.02) 0.88 (0.76-1.02) 1.29 (0.91-1.83) 0.97 (0.94-1.02)

Men

Simple median 0.99 (0.95-1.02) 1.05 (0.99-1.12) 0.98 (0.81-1.18) 1.01 (0.98-1.04)

Weighted median 0.99 (0.96-1.03) 1.05 (0.99-1.12) 1.05 (0.99-1.12) 1.05 (0.99-1.12)

IVW 0.99 (0.96-1.01) 1.03 (0.99-1.08) 0.93 (0.82-1.05) 1.00 (0.97-1.02)

MR-Egger 0.98 (0.93-1.03) 1.02 (0.92-1.12) 0.85 (0.62-1.16) 0.85 (0.62-1.16)

Abbreviations: IVW, inverse-variance weighted; MR, Mendelian randomization; OR, odds ratio.
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Table 2
Estimates of the association between CHD and CHD risk factors and genetically 
determined reproductive aging

CHD
beta (95% CI)

Total cholesterol
beta (95% CI)

LDL cholesterol
beta (95% CI)

Systolic blood 
pressure
beta (95% CI)

Diastolic blood 
pressure
beta (95% CI)

Body mass index
beta (95% CI)

Simple 
median

0.064
(-0.104 to 0.232)

0.000
(-0.005 to 0.005)

0.004
(-0.002 to 0.009)

-0.006
(-0.030 to 0.019)

0.018
(-0.022 to 0.058)

-0.385
(-0.658 to -0.112)

Weighted 
median

0.057
(-0.100 to 0.231)

-0.005
(-0.009 to 0.001)

0.000
(-0.004 to 0.004)

-0.013
(-0.036 to 0.009)

-0.008
(-0.043 to 0.028)

-0.114
(-0.379 to 0.151)

IVW 0.063
(-0.050 to 0.176)

-0.002
(-0.006 to 0.002)

0.003
(-0.001 to 0.006)

0.015
(-0.018 to 0.049)

0.023
(-0.031 to 0.077)

-0.069
(-0.294 to 0.156)

MR-Egger -0.005
(-0.260 to 0.251)

-0.007
(-0.013 to 0.000)

0.001
(-0.005 to 0.008)

-0.004
(-0.112 to 0.104)

-0.060
(-0.237 to 0.117)

0.418
(-0.116 to 0.953)

We used the sex-combined genome-wide association study summary statistics for the exposure because sex-specific summary statistics were not 
available. The outcome at natural menopause is only available in women, so the outcome variants are in women only.
Abbreviations: CHD, coronary heart disease; IVW, inverse-variance weighted; MR, Mendelian randomization; LDL, low-density lipoprotein.
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