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Abstract

Purpose—Endocrine therapy resistance (ETR) remains the greatest challenge in treating patients 

with hormone receptor-positive breast cancer. We set out to identify molecular mechanisms 

underlying ETR through in-depth genomic analysis of breast tumors.

Experimental Design—We collected pre-treatment and sequential on-treatment tumor samples 

from 35 patients with estrogen receptor-positive breast cancer treated with neoadjuvant then 

adjuvant ET; 3 had intrinsic resistance, 19 acquired resistance, and 13 remained sensitive. 

Response was determined by changes in tumor volume neoadjuvantly and by monitoring for 

adjuvant recurrence. Twelve patients received 2 or more lines of ET, with subsequent treatment 
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lines being initiated at the time of development of resistance to the previous ET. DNA whole-

exome sequencing and RNA-sequencing were performed on all samples, totalling 169 unique 

specimens. DNA mutations, copy number alterations and gene expression data were analyzed 

through unsupervised and supervised analyses to identify molecular features related to ETR.

Results—Mutations enriched in ETR included ESR1 and GATA3. The known ESR1 D538G 

variant conferring ETR was identified, as was a rarer E380Q variant that confers endocrine 

hypersensitivity. Resistant tumors which acquired resistance had distinct gene expression profiles 

compared to paired sensitive tumors, showing elevated pathways including ER, HER2, GATA3, 

AKT, RAS and p63 signaling. Integrated analysis in individual patients highlighted the diversity of 

ETR mechanisms.

Conclusions—The mechanisms underlying ETR are multiple and characterized by diverse 

changes in both somatic genetic and transcriptomic profiles; to overcome resistance will require 

an individualized approach utilizing genomic and genetic biomarkers and drugs tailored to each 

patient.

Introduction

Breast cancer is one of the leading causes of mortality in women. Over 75% of breast 

cancers are estrogen receptor positive (ER+) and approximately 65% of these are also 

progesterone receptor positive (PR+). ER+ and/or PR+ breast cancer is also known as 

hormone receptor positive (HR+), and has the best prognosis among all breast cancers, 

with five-year relative survival rates estimated to be around 90% (1). Good outcomes are 

largely attributed to success in therapeutically targeting hormone receptors. However, not all 

HR+ patients respond to endocrine therapy due to a variety of reasons including molecular 

heterogeneity (15-20%: intrinsic resistance) as well as cellular phenotypes that develop and 

evolve during treatment (30-40%: acquired resistance) (2). Breast cancers exhibit unique 

somatic mutations, copy number alterations (CNA) and transcriptomic profiles, which are 

particularly frequent among the HR+ subgroup (3–5) and can contribute to endocrine 

resistance.

Commonly used endocrine agents in clinical practice that target the estrogen receptor 

include the selective estrogen receptor modulator tamoxifen and the selective estrogen 

receptor degrader fulvestrant (6). An alternative option is to reduce levels of circulating 

estrogen using the aromatase inhibitors (AI: letrozole, anastrozole and exemestane); these 

work by inhibiting aromatase, and thus blocking estrogen production in postmenopausal 

women. They can be used in premenopausal women when combined with ovarian 

suppression or ablation. Despite there being a variety of agents with different modes of 

action, resistance can develop to each of these treatments, and is inevitable in the metastatic 

setting.

Extensive studies have investigated resistance mechanisms to endocrine therapies (7–9). 

These fall mainly into the following categories: changes in the estrogen signaling pathway, 

activation of growth factor signaling pathways and cell cycle dysregulation. Changes in 

the estrogen signaling pathway represent the most common resistance mechanisms where 

genetic and/or epigenetic alterations in ER or ER-associated transcription factors and co-
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activators have been identified (10–13). Specifically, somatic mutations in ESR1 following 

AI treatment alter ER-signaling and result in endocrine insensitivity due to constitutive 

activation (14). Growth factor signaling pathway activation including EGFR/HER2, FGFR, 

MAPK, and PI3K has also been associated with resistance (15–18). Cell cycle regulator 

changes including amplification of Cyclins, CDKs, MYC, and loss of RB can uncouple 

the cell cycle from estrogen-mediated entry into G1/S and represent a further resistance 

mechanism (19–21).

Breast cancer is a highly heterogeneous disease and the full range of mechanisms underlying 

endocrine resistance has not as yet been fully characterized. To best identify and characterize 

known and postulated resistance mechanisms, studies using patient derived materials 

utilizing comprehensive DNA and RNA sequencing can provide optimal insight, however, 

there have been few comprehensive studies addressing this using a multi-omics approach. 

Here, we present an integrated analysis of both DNA and RNA sequencing of a cohort of 35 

ER+ breast cancer patients treated with primary endocrine therapy, who had tumor biopsies 

performed before and during treatment with endocrine therapy, and at the time of recurrence 

in those with progressive disease. Clinical response was defined according to institutional 

standards by monitoring changes in tumor volume by 3D ultrasound in the neoadjuvant 

setting and conventional monitoring for recurrence in the adjuvant setting. Twelve patients 

received two or more lines of endocrine therapy agents, with second-line agents being 

initiated at the time of development of resistance to first-line agents.

The aim of this study was to delineate the mechanisms of endocrine resistance in these 

patients. We have examined mutation and copy number landscapes, and transcriptional 

profiles, and found genetic and transcriptomic changes specific to resistant tumors. These 

results highlight the genetic diversity of the resistance process.

Materials and Methods

Patients, consent and tissue processing

Tumor tissue was obtained from 35 patients with estrogen receptor positive breast cancer 

who consented to participate in this research study at the Edinburgh Breast Unit and 

University of Edinburgh. Written informed consent was obtained from all patients. Ethical 

approval for the study was granted under the Lothian NRS BioResource approval number 

20/ES/0061 and the study was conducted in accordance with Scottish Common Law. Patient 

characteristics are presented in Table 1 and Supplementary Table S1. All patients received 

neoadjuvant or primary endocrine therapy, which was continued in the adjuvant setting for 

those patients who eventually underwent surgery. In total, 23 patients were treated with a 

single endocrine agent only, while 12 patients received 2 or more lines, with second-line 

agents being initiated at the time of resistance to first-line agents in those patients who did 

not wish surgery or were deemed unfit for surgery at that time. Neoadjuvant treatment in this 

cohort ranged from 3.6 months to 61.2 months with a median duration of 7.8 months. Of 

34 patients who underwent surgery, 23 had a wide local excision and 11 had mastectomies. 

Six patients had surgery at the time of cancer recurrence while receiving adjuvant endocrine 

therapy with samples at surgery being obtained for analysis (Figure 1).
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Neoadjuvant clinical response was assessed by monitoring dynamic changes in 3D tumor 

volume, determined by repeat ultrasound measurements recorded during the neoadjuvant 

treatment window and performed by a single sonographer (JMD). Clinical response 

classification was determined using RECIST 1.1 criteria. All patients had long-term follow-

up and for those who had surgery (n=34), adjuvant response was determined by monitoring 

for cancer recurrence. Of the 35 patients, 13 patients remained endocrine therapy responsive 

throughout treatment, 3 patients had intrinsic resistance to neoadjuvant therapy and 19 

patients acquired resistance: 13 during neoadjuvant therapy and 6 developed a recurrence on 

adjuvant endocrine therapy following previous neoadjuvant therapy. Of the 6 who developed 

a recurrence, 3 went on to develop further recurrences on subsequent adjuvant endocrine 

agents - each had surgery followed by a new adjuvant endocrine therapy agent at the 

time of each recurrence. Overall, 13 patients remained sensitive to the first endocrine 

agent (Supplementary Table S1). All patients received clinical follow-up for 10 years from 

diagnosis or until death. No responsive patients developed a recurrence in that time, and 

none died from breast cancer. For each patient, tumor core biopsies were taken during 

the neoadjuvant treatment window using ultrasound guided 14-guage needle core biopsy. 

On average 3 sequential tumor tissue samples were taken from each patient (range 2-8 

samples). Biopsies were taken at diagnosis (pre-treatment), at 2-4 weeks on-treatment, and 

obtained at progression or every 3-6 months in those patients who declined or were not 

deemed fit enough for surgery at the time and were instead managed by longer-term primary 

endocrine therapy. A relative increase in tumor volume of 20% or greater prompted surgery 

or re-biopsy and initiation of a second-line or third-line endocrine agent. Tumor tissue was 

collected at surgery and when recurrence developed. All surgeries were performed to clear 

margins by a single surgeon (JMD). Wherever feasible, multiple tumor samples were taken 

from each recurrence. In total, sufficient RNA and DNA was successfully extracted from 32 

primary tumors and 137 tumor specimens during treatment and was used for DNA whole 

exome sequencing and RNA-seq.

For 17 patients, fresh frozen tissue was available. Core biopsy and surgical tissues were 

snap frozen in liquid nitrogen immediately after the procedure. For the remaining 18 

patients, FFPE tissues were analyzed. For fresh frozen tissues, DNA and RNA were isolated 

using QIAGEN RNAeasy and DNAeasy kits, respectively, according to the manufacturer’s 

protocols. For FFPE tissues, RNA and DNA were isolated with QIAGEN AllPrep FFPE 

Kit, according to the manufacturer’s protocols. RNA quality was assessed with an Agilent 

BioAnalyzer RNA 6000 Nano Kit.

DNA whole exome sequencing

DNA was prepared for sequencing using the Agilent Technologies SureSelect XT library 

protocol. Fresh-frozen tumors were processed according to the manufacturer’s protocol for 

3 μg input, while FFPE tumors were processed with the low-volume input according to 

the manufacturer’s protocol for 200 ng input. DNA libraries were captured and amplified 

with Agilent Technologies SureSelect Human All Exon, version 5 for fresh frozen tissues 

or version 6 for FFPE tissues, according to the manufacturer’s protocol. The quality of both 

the DNA libraries and DNA exome capture and concentration were quantified with Agilent 

TapeStation DNA 1000 and High Sensitivity D1000, respectively. Paired-end sequence data 
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(2 x 100 bp) were generated using the Illumina HiSeq 2500 for each tumor or normal 

sample, with 3 samples per lane. Illumina reads were mapped to the hg19 reference 

sequence with BWA 0.7.9a (22), realigned with ABRA, version 0.96 (23), and processed 

by biobambam2 (24). Viral alignments were counted with Samtools (25) and BEDTools-

Version- 2.15.0. Picard 1.92 (26) was used to calculate sequencing metrics. ISAAC 

(27) and Freebayes were used to call germline mutations with quality scores above 30. 

SnpSIFT, version 1.3.4, band SnpEFF (28) was used to annotate alterations with population-

level frequencies. CADABRA SomaticLocusCaller was used for further filtration. Somatic 

variants were called with STRELKA (29) using strelka_config_bwa_default.ini.

Minor allele frequencies of highly variable SNPs called by Freebayes in the general 

population were used to for sample identity. All tumor normal pairs had an expected 89%–

100% identity from the same patient.

DNA Copy number alterations were identified with SynthEx (30) using 50,000-bp–sized 

bins and K nearest neighbors = 4 from the pool of 31 available normal tissues. Briefly, the 

ratio of on-target and off-target exome reads of the tumor were compared with a normal 

tissue selected from the data set by the highest degree of similarity by K-nearest neighbor 

(KNN) based on library size and fold enrichment. Segment-level ratios were calculated 

and log2 transformed. Copy number levels greater than 0.25 were considered gains, and 

levels below –0.2 were considered losses. Using Ensemble hg19 gene annotations, genes 

were mapped to segments in each sample and a gene by sample copy number matrix was 

constructed. Specifically, a gene totally falls into a segment was assigned the copy number 

of that segment.

RNA sequencing

Fresh-frozen RNA ribo-zero libraries were prepared with rRNA removed from total RNA 

using Epicentre’s Ribo-Zero rRNA Removal kit (Cat# RZH11042). 30-100 ng Ribo-Zero 

RNA was used for the construction of the library using the Illumina TruSeq™ RNA 

Sample Prep Kit (Cat# RS-122-2001) and followed the manufacturer’s instruction, except 

for omitting the purification step before fragmentation. FFPE RNA was prepared with the 

Illumina TruSeq FFPE RiboZero Gold protocol according to the manufacturer’s instructions. 

RNA libraries were sequenced as 2 x 50 bp paired end reads with 2 samples per lane 

on Illumina HiSeq 2500 sequencers. Reads were aligned with STAR2.4.2a (31), and gene 

values were quantitated with Salmon (32). Raw gene counts were upper quartile normalized, 

filtered to genes that present in over 70% of samples and log2 transformed. To correct the 

batch effect between fresh frozen and FFPE samples, log2 transformed gene expression 

values for fresh frozen and FFPE sample sets were separately median centered and column 

standardized, then merged to a uniform data set for downstream analysis (33,34).

PAM50 subtyping was implemented as described in Fernandez-Martinez et al. (35). Briefly, 

batch-corrected gene expression data were normalized to ER+ samples in the PAM50 

training set (36). Correlation to each subtype centroids were calculated, and subtypes were 

called according to the nearest centroid.
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Computational and statistical analysis

Gene expression signatures—A panel of 654 previously published gene expression 

signatures were used to fully characterize cancer expression phenotypes (Supplementary 

Table S2). These 654 signatures were obtained from multiple publications or GSEA (37) and 

were summarized in Xia et al. (26). Signature scores were calculated in a way consistent 

to how they were derived, noting that the large majority were median expression of a 

predetermined set of genes (38).

Linear mixed model of CNA, gene expression and gene signatures—To identify 

differential Copy Number Alterations (CNA), gene expressions and gene signatures, 

biological replicates in CNA data, batch corrected gene expression data or gene signatures 

data were first collapsed into pseudo-samples by taking the mean value of multiple 

biological replicates (For example, sample 020-4-1A, 020-4-1B, 020-4-1C, 020-4-1D and 

020-4-2A were collapsed into 020-4 by averaging each CNA/gene/gene signature values). 

Patients were then filtered to those with documented acquired resistance and those that had 

at least one sensitive tumor and at least one resistant tumor, resulting in N=13 patients with 

38 samples for CNA analysis and N=17 with 53 samples for gene expression and gene 

signature analysis. For gene expression, genes were further filtered to those with Entrez 

ID. Each CNA, gene or signature was then tested for differential expression in the resistant 

tumors versus sensitive tumors, with the patient taken into account as a confounding variable 

using lme4 package in R (39): lmer(value ~ sensitive/resistant + (1|patient)). Permutation 

based false discovery rate (FDR) was calculated by permuting the tumor sensitive/resistant 

labels 100 times.

Hierarchical clustering of gene expression and gene signatures—For gene 

expression, hierarchical clustering was done using correlation distance metric and complete 

linkage. Clustering for gene signatures was done using Euclidean distance metric and 

complete linkage. All clustering was done using R package pheatmap.

Computational re-interrogation of somatic mutations in related tumors—Low 

read coverage or low tumor cell purity can cause the rigorous somatic mutation caller to 

miss mutations (23,40). Thus, all of the high-confidence somatic mutations from every 

tumor taken from 1 patient were re-interrogated within the same tumors from that same 

patient. First, all of the somatic mutations from the tumors within a patient were collapsed 

into one file, excluding any guanine-to-adenine or cytosine-to-thymine mutations from FFPE 

samples. For each mutation from a single patient, we then counted the mutant and reference 

alleles at that position from the original BAM file of each tumor from that patient. Variant 

allele frequencies (VAF, alternate counts/total read counts) were recalculated from the new 

calls. All mutations from the data set were interrogated in the normal sequence for all 

tumors in this data set to account for false-positives. Mutations with VAFs of greater than 

20% in at least 2 normal tissues from unrelated patients were excluded from future analyses.

Count table for mutations—We filtered patients to those with acquired resistance and 

12 patients had at least 1 sensitive and 1 resistant tumor sample with successful DNA 

sequencing. For each gene in the Pan-Cancer 299 significantly mutated genes, we divided 
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the 12 patients into the following four categories according to mutation status of the gene: 

(i) patients with mutation present in both sensitive and resistant tumors, (ii) patients with 

mutation present in resistant tumors only, (iii) patients with mutation present in sensitive 

tumors only, and (iv) patients with mutation present in neither sensitive or resistant tumors. 

All sensitive tumors and all resistant tumors from each patient were considered as a whole.

Mutational signatures—Mutational signatures were calculated using R package 

DeconstructSigs v1.8.0 to determine the weights of known mutational processes 

(COSMIC mutational signatures v2 – March 2015: https://cancer.sanger.ac.uk/signatures/

signatures_v2/) in each tumor sample. We then focused on 4 signatures that are known to be 

important in breast cancer including Signature1 – Age related; Signature 2 and Signature 13 

- Apobec related; and Signature3 – Homology directed repair (HDR) related.

R version—All statistical analyses were performed using R v. 3.5.2 in RStudio.

Results

Patient characteristics

We examined the clinical features and molecular subtypes of all 169 samples, representing 

35 patients (Supplementary Table S3). This cohort had a median age of 75 years at the 

diagnosis of breast cancer and a median follow-up of 4 years (Table 1). Responses to 

endocrine therapy were categorized as intrinsic resistance (non-response, n=3), acquired 

resistance (initial response followed by tumor regrowth, n=19), or ongoing sensitivity (initial 

response that was maintained or no evidence of recurrence, n=13) (Fig. 1, Supplementary 

Fig. 1). 33 patients received letrozole as initial neoadjuvant therapy, 1 received anastrozole 

and 1 received 2-weeks of fulvestrant prior to surgery and subsequent adjuvant tamoxifen, 

as part of a clinical study. Of the 33 who received primary letrozole, 3 were changed to 

alternative endocrine therapies (2 received tamoxifen and 1 received anastrozole) due to 

side-effects with letrozole. All patients had ER+ tumors (Allred score 7-8, Table 1) by 

clinical pathologic report and 3 had HER2+ tumors by immunohistochemistry (IHC 3+) 

(Figure. 1). We applied the PAM50 subtype predictor to determine their intrinsic molecular 

subtype (35,36). Of 32 primary tumors with successful RNA-seq, 14 were Luminal A 

(LumA); 14 were Luminal B (LumB), 3 were Her2-enriched and 1 was Normal-like. Among 

the three HER2-enriched primary tumors, 2 were HER2+ by IHC and 1 was HER2- by IHC. 

Of note, the three intrinsically resistant primary tumors had subtypes of LumA, LumB and 

Normal-like. This Normal-like primary tumor had very close correlation to LumA centroid 

and to the Normal-like centroid, which is not uncommon for many low cellularity LumA 

tumors (4). Of all 167 tumor specimens subtyped including the primary tumors, 79 were 

LumA, 50 were LumB, 17 were Her2-enriched, 1 was Basal-like and 20 were Normal-like. 

Only 8 patients had consistent subtypes across all samples from that patient, and there were 

cases when even two specimens of the same tumor showed different subtypes, indicating 

that spatial and temporal tumor heterogeneity does occur.
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Genomic landscape of endocrine resistance

Whole exome sequencing revealed many somatic mutations and especially many copy 

number alterations (CNA). Previous work has shown that low-frequency subclones present 

at 1% to 5% in the primary tumor can be enriched to greater than 40% in related metastases 

(41). Despite this some have used cutoffs of variant allele of frequency (VAF) to exclude low 

frequency variants (42,43). To minimize false positives while maintaining high sensitivity, 

we followed a computational re-interrogation approach described by our group previously 

(34). Briefly, high-quality somatic variants called from the multiple samples of the same 

patient were combined into a single file per patient. The combined file containing all 

variants from the same patient were then re-interrogated across all samples from that patient. 

This method greatly improved detection of variants of low VAF and increased the percentage 

of shared variants across samples from each patient (Supplementary Fig. 2). Using the 

re-interrogated variants set, we explored the somatic mutation landscapes (Supplementary 

Table S4).

Genes previously shown to be recurrently altered in breast cancers were prevalent in this 

cohort. PIK3CA had the highest mutation rate with occurrence in 15 out of 35 patients. 

The other frequently mutated genes in our set included GATA3, CDH1, TP53 and ESR1, 

with mutation occurrences over 7 patients. The frequency in gene alterations reflected the 

multiple timepoints for a patient and/or multiple biopsies at a given timepoint (Fig. 2A). 

Of note, PIK3CA hotspot mutations were observed recurrently in all 3 patients that had 

de novo endocrine resistance, providing supporting evidence for previous findings that 

demonstrate hyperactivation of the PI3K pathway can promote endocrine therapy resistance 

(Supplementary Fig. 3) (44). Mutations in the ESR1 gene have been extensively linked to 

endocrine therapy resistance with the missense mutation D538G being the most prevalent 

(45,46); this mutation confers ligand-independent constitutive activation. Consistent with 

previous findings, ESR1 D538G had the highest frequency in our cohort, showing a pattern 

of enrichment in resistant tumors (Fig. 2B). It was observed in none of the intrinsic resistant 

patients and in 5 acquired resistance patients during treatment with aromatase inhibition. Of 

these, 1 patient had the variant in the primary tumor with a very low variant allele frequency 

which increased in frequency in the subsequent endocrine-resistant tumor; 1 patient did 

not have the variant in primary tumor and acquired the variant in the subsequent resistant 

tumor; and the remaining 3 patients had the variant in resistant tumors with unknown status 

in primary tumors (DNA sequencing not available). Interestingly, we also found an ESR1 
E380Q variant present at diagnosis in one responsive patient with ongoing response to 

letrozole. The VAFs gradually decreased in subsequent samples, in line with this mutants’ 

estradiol hypersensitivity nature (47). GATA3 was the second highest mutated gene; with a 

range of detected variants (Fig. 2C). GATA3 is an ESR1-cooperating transcription factor 

with frame-shift mutations being most commonly reported, however, there have been 

few studies of its potential role in endocrine resistance (48,49). Recently Takaku et al. 

demonstrated that a specific type of GATA3 mutations in the second zinc-finger region 

reprogramed progesterone receptor signaling (50). Accordingly, we saw mostly frame-shift 

mutations in our cohort, with 4 variants residing in the second zinc finger region and 2 

acquired in resistant tumors (Fig. 2C).
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To identify genes enriched in resistant tumors genome wide, we focused on the patients 

with DNA-seq matched pre- and on-treatment samples who acquired resistance in the 

neoadjuvant setting (N=12) and performed a matched mutation analysis (i.e. primary vs. 

matched later resistant samples per patient). We constructed count tables for each gene 

summarizing its mutation status in any of the sensitive and resistant tumors for each patient. 

Using a previously identified Pan-Cancer significantly mutated gene list (51), we found a 

variety of driver genes that were acquired in resistance in at least 1 patient (Supplementary 

Table 2). ESR1 appeared at the top of the list with 2 patients having the mutation acquired in 

resistant tumors. We identified 38 such genes including GATA3.

DNA copy number alterations including chromosome arm and subarm level changes were 

called using SynthEx (Supplementary Table S5) (30). The copy number gain and loss 

frequencies were comparable to the TCGA ER+ cohort (4). For example, we saw frequent 

1q gain and 16q loss, noting that 16q loss is specific to luminal/ER+ breast cancers 

(Fig. 2D). Across the whole data set, there were some differences between copy number 

landscapes of sensitive and resistant tumors, however, using a linear mixed model comparing 

copy number values between sensitive (N=18 from 13 patients) and resistant tumors (N=20 

from 13 patients, see Methods section for detail), and accounting for patients in the acquired 

resistant patient group, no significant regions of loss or gain were identified. This may be 

due to our small sample size.

We calculated the weights of known DNA mutational signatures (COSMIC v2) for each 

sample using DeconstructSigs. We then investigated both known DNA copy number changes 

that confer endocrine resistance, i.e. ERBB2 and FGFR1, and mutational signatures that 

are important in breast cancer, i.e. age, apobec and homologous directed repair (HDR) 

related signatures in each patient that acquired endocrine resistance (Supplementary Fig. 4). 

Results demonstrated that few patients showed potential resistance mechanisms related to 

investigated CNA and mutational signatures. For example, patient 020 showed acquired 

ERBB2 amplification in resistant samples and patient 022 showed acquired FGFR1 

amplification in one of the resistant samples. These selected genetic features also showed the 

vast genetic heterogeneity among patients and spatial biological replicates.

Differential transcriptional program in endocrine resistant tumors compared to paired 
sensitive tumors

To identify genes differentially expressed in resistant versus sensitive tumors, we used 

linear mixed models to compare matched sensitive tumors to resistant tumors accounting for 

patients using the RNA-seq data. Briefly, biological replicates of the same tissue were first 

collapsed to construct a pseudo-sample by taking mean expression values across samples 

for each gene. We used RNA-seq data from 19 patients with acquired resistance and did 

matched comparisons of the untreated primary and the same tumor after acquisition of 

resistance. The t-statistic derived from the linear mixed model defines how consistently 

a gene is altered comparing resistant and sensitive tumors from each patient. The labels 

indicating treatment response were randomized 100 times to calculate false discovery rates 

(FDR).
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We found 316 up-regulated genes and 123 down-regulated genes in resistant tumors that 

have FDR < 5% and fold change > 4 (for up-regulated genes) or < 0.25 (for down-regulated 

genes) (Supplementary Table S6). Hierarchical clustering of these significantly expressed 

genes across the whole dataset encompassing all patients and samples largely separated 

sensitive and resistant tumors (Fig. 3A, Supplementary Table S7). Primary tumors and 

biopsy samples from tumors that retained endocrine sensitivity clustered together and 

resistant tumors also clustered together. Gene ontology (GO) analysis revealed that the 

up-regulated genes in acquired resistant tumors were associated with cell proliferation, with 

GO terms chromatin assembly, nucleosome assembly and DNA packaging (Fig. 3B). We 

then checked a known proliferation score and it was higher in resistant tumors among the 19 

patients (Fig. 3C) (52).

To fully characterize tumor transcriptional portraits, we used a panel of 654 previously 

published gene expression signatures measuring a variety of tumor phenotypes including 

amplicon signatures, oncogenic pathways, proliferation and the tumor microenvironment 

(Supplementary Table S2) (26). We calculated gene expression signature scores for each 

tumor and performed similar differential expression analysis using these signatures features. 

Among the acquired resistance tumors compared with their matched untreated primary, we 

found 37-upregulated gene signatures with FDR <0.01 and fold change >1.15, and 3 down-

regulated gene signatures with FDR <0.05 and fold change <1 (Supplementary Table S8). 

Hierarchical clustering of differentially expressed signature scores again separated resistant 

and sensitive tumors (Fig. 4A, Supplementary Table S9). In particular, PAM50 subtype 

correlation to LumA centroids signature was one of the 3 down-regulated signatures, 

concordant with the fact that resistant tumors were enriched with HER2-enriched and LumB 

subtypes. Among the up-regulated signatures include 2 amplicon signatures, i.e. 16q23 and 

8q, hypoxia, and several oncogenic pathway signatures; both estrogen and HER2 signaling 

pathways were also up-regulated. A signature composed of GATA3 induced genes was 

also up-regulated in resistant samples. In addition, AKT, RAS and p63 pathways showed 

higher expression in resistant tumors, consistent with previous findings that growth factor 

signaling pathways play important roles in endocrine resistance (Fig. 4B) (53). These results 

demonstrate resistant tumors harbor many transcriptional program changes compared to 

sensitive tumors.

Molecular Portraits of selected patients

Lastly, we sought to integrate our DNA and RNA analysis for each patient to identify the 

mechanisms of resistance in individual patients. Patient 006 was responsive to letrozole 

treatment, and the tumor volume changes clearly showed a good response to treatment 

(Supplementary Fig. 5A). VAF plots showed a decreased number of variants and lower VAF 

likely due to low tumor purity, although cancer cell cellularity remained high as assessed 

by a pathologist (Supplementary Fig. 5B). This patient had ESR1 E380Q hypersensitivity 

variant in the primary tumor and the following two samples had a lower VAF in later tumors 

specimens, suggesting selective death of these endocrine sensitive cells (Supplementary Fig. 

5C). E380Q is characterized as hypersensitive to estrogen ligand, which likely contributed to 

this tumor’s responsiveness. Accordingly, proliferation rate was initially high in the primary 
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tumor, which subtyped as LumB, and decreased in subsequent LumA tumor specimens from 

this patient (Supplementary Fig. 5D).

Patient 020 acquired resistance and had only received letrozole treatment (Fig. 5A). The 

primary tumor and the second specimen were taken while the patient was responding, while 

the third and the fourth specimens were collected when the cancer was growing and thus 

was resistant. A number of somatic mutations were detected (Fig. 5B), and there was a 

clear clonal shift from the second sensitive specimen to the fourth resistant specimen, from 

which there were five biological replicates (Fig. 5C). This patient gained both ESR1 and 

GATA3 mutations along with many other mutations including CHD4, CDH1, PIK3R1. Gene 

expression showed a decreased proliferation rate in the second sensitive tumor that increased 

in the subsequent resistant tumors. Molecular subtype switched from primary tumor of 

LumB to LumA and back to LumB (Fig. 5D). Copy number landscapes showed increased 

genome instabilities in resistant specimens as well (Fig. 5E).

Lastly, patient 028 had high ERBB2 mRNA expression and had a HER2-enriched gene 

expression subtype but lacked clinical HER2 status. This patient had multiple lines of 

endocrine therapy including fulvestrant, tamoxifen and letrozole. Detected somatic variants 

showed clear clonal shifts (Fig. 6A, B), and acquired mutations included FGFR3 and 

GABRA6. There was also expansion of an existing clone in primary tumor containing 

mutations of PTEN, PIK3R1 and TP53, which are all recurrent variants. In terms of gene 

expression, all samples were classified as HER2-enriched subtype, with high ERBB2 and 

FGFR4 mRNA expression. Recently Garcia et al. showed that high FGFR4 expression 

plays an important role in HER2-enriched breast cancers and was associated with disease 

progression (54). Proliferation was lowest in the primary tumor and increased in later 

resistant tumors (Fig. 6C). The resistant tumor samples showed higher levels of copy 

number gains and losses (Fig. 6D).

Discussion

Endocrine therapy resistance remains the biggest barrier to prolonged survival and cure for 

patients with ER+ breast cancer. There have been many studies investigating mechanisms 

of resistance and several have been defined, including acquired ESR1 mutations (14,45,53). 

Here we sought to understand more about the development of endocrine resistance in a 

series of ER+ patients during hormonal therapy treatment utilizing integrated DNA and 

RNA sequencing. We identified mutations that were enriched in resistant tumors, and we 

identified transcriptional profiles specific to tumor resistance, thus providing a molecular 

mechanism of resistance for some patients. This study is unique in its ability, through 

repeated and serial tissue acquisition during different phases of endocrine sensitivity within 

individual patients, to examine real-time alterations contributing to endocrine resistance.

Our work confirmed previous findings related to endocrine resistance mechanisms. 

Mutations enriched in resistant tumors include ESR1, GATA3 and FGFR3. Multiple 

signaling pathways were activated in resistant tumors including HER2, AKT, and RAS 

signaling, leading to increased proliferation rates within resistant specimens. Due to our 

sample size, larger cohort studies are needed to confirm mutations we identified that only 
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were acquired by one patient, and increased power may allow detection of recurrent copy 

number changes.

Studies of sensitive breast cancers showed that clones that are sensitive to endocrine therapy 

can disappear under selective drug pressure. This was clearly seen in the patient with 

a sensitizing ESR1 E380Q variant that was present in the primary tumor and gradually 

disappeared in later samples. The genomic complexity seemed to reduce in sensitive cancers 

during treatment with a possible explanation being reduced cancer cellularity although the 

samples analyzed contained significant amounts of tumor on histological assessment. It is 

well known that multiple clones can exist within a primary cancer. Our observations show 

some clones are eliminated or reduced while others present at a low VAF at diagnosis 

increase and new clones with new mutations not detectable evolve possibly under the 

pressure of drug treatment.

A powerful aspect of this study is our unique series of patients that included patients 

who remained sensitive during treatment, and others with acquired resistance, with serial 

sampling over time from the same tumor in vivo. This study shows very clearly that there 

is no one mechanism that explains resistance in even a majority of patients. Each patient 

was unique in genetic and transcriptomic profiles. The most common ESR1 mutation only 

accounts for the resistance mechanism for 2 out of the 19 patients with acquired resistance 

by paired sensitive/resistant tumor analysis, and suggests that, although an important 

mechanism of resistance, it accounted for only a small number of resistant tumors in this 

study.

We collected multiple biological replicate samples from the same resistant tissue to assess 

tumor spatial heterogeneity. We observed clear heterogeneity between biological replicates 

in genetic and transcriptomic features. The biological replicates had both shared and unique 

mutations (Fig. 5C, Fig. 6C). As we used computational re-interrogation to recover low-

frequency variants in related specimens, the unique mutations specific to each replicate are 

likely truly unique clones. Overall, gene expression profiles were highly correlated, and 

hierarchical clustering showed that replicates tended to cluster together (Fig. 3A). Subtle 

differences in gene expression were observed (Fig. 5D), with these findings suggesting 

that spatial heterogeneity (i.e. intra-tumor heterogeneity) could play a role in resistance to 

endocrine therapy. This study has confirmed some known mechanisms of resistance and 

identified some novel mechanisms. Most importantly it has highlighted the heterogeneity 

that underlies breast tumor biology and shows that endocrine resistance is complex and that 

more studies of patient-derived breast cancers are required. Taken together, it is clear that 

multiple molecular mechanisms underlying endocrine therapy resistance exist and there is a 

need to understand the mechanism in individual patients to effectively combat resistance in 

each patient.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Translational Relevance

Many patients with estrogen receptor positive breast cancer develop drug resistance 

during endocrine therapy treatment. The molecular mechanisms underlying endocrine 

therapy resistance are not fully understood. We sought to investigate this by utilizing 

comprehensive and integrated DNA and RNA analysis of samples of breast cancers from 

35 patients treated over time with endocrine therapy, whose cancers were responsive, 

had intrinsic resistance or developed acquired resistance. We identified known and novel 

mutations enriched in resistant tumors, as well as unique transcriptomic profiles specific 

to resistant tumors leading to increased activation of multiple oncogenic signaling 

pathways. Each patient displayed distinct molecular profiles, showing a variety of 

mechanisms of resistance, corroborating the highly heterogeneous nature of endocrine 

resistance. Improving the treatment of resistant tumors will require a personalized 

approach tailored to patient-specific causes of resistance.
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Figure 1. Patient scheme
Swimmerplot indicating timing of endocrine therapy treatment and tumor tissue sampling 

for each patient stratified by patient response to endocrine therapy. For each tumor 

sample, response to treatment defined by assessment of tumor volume change and 

number of biological replicates were indicated. Clinically HER2+ patients with positive 

immunohistochemistry (IHC) staining were highlighted in pink box.
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Figure 2. Genomic characteristics
A, The pattern, frequency and type of genomic alterations of key breast cancer genes across 

patients. Samples were ordered by patient and response to endocrine therapy treatment. B-C, 

The type of variants detected shown in lollipop plot with labeling color indicating variants 

observed in sensitive tumors only (cyan), that observed in resistant tumors only (orange 

and boxed) and that observed in both sensitive and resistant tumors (orange) for ESR1 

(N=8 patients with 23 samples) (B) and GATA3 (N=13 patient with 31 sampels) (C). D, 

Copy number frequency landscape plots showing copy number altered genes in sensitive and 
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resistant tumors respectively. For each patient, copy number values were averaged among 

all sensitive samples and resistant samples from that patient, resulting in 23 sensitive tumors 

and 21 resistant tumors. Copy number gains are plotted above the x axis in red and copy 

number losses are plotted below the x axis in green. The frequency of alterations is indicated 

on the y axis from 0 to 100%.
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Figure 3. Differential gene expression in resistant tumors
A, Hierarchical clustering of batch corrected RNA gene expression of significantly 

differentially expressed genes in resistant tumors (N=24 from 17 patients) compared to 

matched sensitive tumors (N=29 from 17 patients) using linear mixed models. B, Gene 

ontology terms associated with up-regulated genes in resistant tumors. C, Boxplot indicating 

median score and inter-quartile range of proliferation scores in resistant and sensitive 

tumors.
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Figure 4. Differential expression of gene signatures in resistant tumors
A, Hierarchical clustering of significantly differentially expressed gene signatures in 

resistant tumors (N=24 from 17 patients) compared with matched sensitive tumors (N=29 

from 17 patients) identified through linear mixed models. B, Boxplots indicating median 

score and inter-quartile range of significant signatures showing elevated signaling pathways 

in resistant tumors.
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Figure 5. Molecular portraits of a luminal patient with acquired endocrine resistance
A, Line plot showing tumor volume change indicating resistance to endocrine therapy 

acquired for the last two samples. Red dots indicate timing for tissue sampling. B, Box plots 

indicating median score and inter-quartile range of VAF of detected variants stratified by 

synonymous and nonsynonymous variants. C, Heatmap showing VAF of nonsynonymous 

variants of Pan-Cancer drivers. D, Heatmap showing gene expression of hormone receptors 

and key signaling pathways. E, Heatmap showing copy number landscapes of all tumors 

from the patient.
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Figure 6. Molecular portraits of a HER2-enriched patient with acquired endocrine resistance
A, Box plots indicating median score and inter-quartile range of VAF of detected variants 

stratified by synonymous and nonsynonymous variants. B, Heatmap showing VAF of 

nonsynonymous variants of Pan-Cancer drivers. C, Heatmap showing gene expression 

of hormone receptors and key signaling pathways. D, Heatmap showing copy number 

landscapes of all tumors from the patient.
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Table 1
Clinical characteristics of the study population (n = 35). Pathologic characteristics are 
from institutional clinical pathologic assessment without central review.

Age at diagnosis 75 yr (mean) - 43-95 yrs (range)

ER Status

ER positive (Allred 7) 7

ER positive (Allred 8) 28

HER2 Status

HER2 positive 3

HER2 negative 32

Histological Grade

1 2

2 22

3 11

Lymph Node Status

Positive 14

Negative 20

Unknown (no surgery) 1

Menopausal Status

Pre 1

Post 34

Surgery

Wide local excision 23

Mastectomy 11

No surgery 1

Adjuvant Therapy

Endocrine Therapy 35

Chemotherapy 6

Radiotherapy 17
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