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Abstract

Purpose—Precise mechanism-based gene expression signatures (GESs) have been developed 

in appropriate in vitro and in vivo model systems, to identify important cancer-related signaling 
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processes. However, some GESs originally developed to represent specific disease processes, 

primarily with an epithelial cell focus, are being applied to heterogeneous tumor samples where 

the expression of the genes in the signature may no longer be epithelial-specific. Therefore, 

unknowingly, even small changes in tumor stroma percentage can directly influence GESs, 

undermining the intended mechanistic signaling.

Experimental Design—Using colorectal cancer as an exemplar, we deployed numerous 

orthogonal profiling methodologies, including laser capture microdissection, flow cytometry, bulk 

and multiregional biopsy clinical samples, single cell RNA-Seq and finally spatial transcriptomics, 

to perform a comprehensive assessment of the potential for the most widely used GESs to 

be influenced, or confounded, by stromal content in tumor tissue. To complement this work, 

we generated a freely-available resource, ConfoundR; https://confoundr.qub.ac.uk/, that enables 

users to test the extent of stromal influence on an unlimited number of the genes/signatures 

simultaneously across colorectal, breast, pancreatic, ovarian and prostate cancer datasets.

Results—Findings presented here demonstrate the clear potential for misinterpretation of the 

meaning of GESs, due to widespread stromal influences, which in-turn can undermine faithful 

alignment between clinical samples and preclinical data/models, particularly cell lines and 

organoids, or tumor models not fully recapitulating the stromal and immune microenvironment.

Conclusions—Efforts to faithfully align preclinical models of disease using phenotypically-

designed GESs must ensure that the signatures themselves remain representative of the same 

biology when applied to clinical samples.
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Introduction

Although the publication of gene expression-based signatures (GES) continues to grow each 

year in the research setting, these published signatures rarely make any clinical impact.(1) 

In addition to potentially-addressable technical confounders, such as sample size issues 

or lack of validation cohorts, the biology underpinning the signature may also expose a 

critical weakness in current translational bioinformatics research pipelines, when applied to 

clinical samples either in retrospective collections or prospective trials. This is particularly 

pertinent as researchers now have unparalleled access to cancer datasets that can be 

routinely characterized using the tens of thousands of GESs already available in molecular 

databases such as TCGA.(2) The contribution of the stroma to the cancer transcriptome 

is well established and has been the subject of numerous studies.(3,4) We and others 

have previously demonstrated the confounding effects of stroma on molecular subtypes 

in colorectal cancer,(5,6) alongside specific influences of the tumor microenvironment on 

EMT-related signatures.(7,8) While such studies have clearly defined the importance of the 

stroma, there remains a need for a more detailed assessment, and subsequent enumeration, 

of the consequences of the stromal influence on gene expression in terms of pathway and 

ontology associations and subsequent biological interpretation of the resulting GESs.
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A number of recent studies have highlighted the characterization required to ensure 

faithful alignment between human tumors and preclinical models, in terms of the 

biological signaling and therapeutic responses in both.(9–11) Integrity and robustness in 

aligning models with human tumors is critical in the era of precision medicine, where 

treatments are tailored for the biology underpinning specific cancer subtypes. Furthermore, 

signature development and testing is increasingly performed in disease-matched preclinical 

models, using in vitro, in vivo or ex vivo systems, enabling almost absolute control 

over the experimental conditions employed during biology-driven GES development.

(12–14) Although such “clean” models are exquisitely suited for precise identification 

and characterization of discrete mechanistic signaling, when compared to the relative 

unpredictable nature of diagnostic sample acquisition, differences in the epithelial, immune 

and stromal composition between the models and clinical samples(15) has the potential 

to confound our understanding and interpretation of these signatures in specific domains. 

While this will in no way alter the prognostic/predictive statistical value of such signatures, 

differences in cellular composition and tumor stroma percentage (TSP) might not be 

accounted for during the interpretation of the true biological meaning of the GES result 

in bulk tumor datasets. Conversely, when biomarkers of prognosis, response or molecular 

subtypes are identified from tumor datasets, approaches to reverse-translate these findings 

into preclinical models introduces the potential for assessment of these genes/signatures in 

lineages that do not represent the true cellular source of the signaling in clinical samples.

The prognostic value of stromal content in cancer can be reproduced using molecular or 

histological methods, and is one of the most robust predictors of relapse in stage II/III CRC, 

where tumours with a higher tumour stroma percentage are associated with poor outcomes.

(6,16–19) It is important to note that the statistical correlation between a specific biomarker/

signature and a clinical variable like relapse, are in no way weakened if the enduser does 

not accurately consider the true biological interpretation of the signature itself. As such, for 

GESs that aim to provide the most statistically significant prognostic/predictive value, the 

true meaning of the biology underpinning the signature may be irrelevant, however for GESs 

that are designed to represent mechanistic biology, the integrity of the biology they represent 

is critical. While biological researchers understand that correlation does not always equate 

to causation,(20) there remains a potential gap in our understanding when interpretation of 

GESs can be influenced by the cellular composition of a tumor sample. The potential for 

misinterpretation is an issue that has become even more important in the precision medicine 

era,(21) where it is now essential that therapeutic targeting is based on robust and accurate 

mechanistic-driven evidence performed in models that are representative of specific patient 

subtypes.(9)

To examine if variations in TSP can distort GES results, which in-turn could lead to 

biological misinterpretation, we performed a comprehensive assessment and quantification 

of the extent that stromal composition in bulk tumors can skew the expression levels 

of n=7835 of commonly employed gene sets and signatures in cancer research. Using a 

combination of discovery and independent validation cohorts, including tissues from laser 

capture microdissection, flow cytometry, bulk clinical samples, single cell RNA-Seq and 

finally spatial transcriptomics, enabled a detailed interrogation of widely used transcriptomic 

signatures to enumerate the extent to which stromal composition can confound their 
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classification. The pan-cancer nature of these findings were subsequently assessed across a 

number of publicly-available laser capture microdissection datasets derived from pancreatic, 

breast, ovarian and prostate cancer. Furthermore, to ensure that our findings can be 

widely applied, we have developed the freely-available ConfoundR online resource; https://

confoundr.qub.ac.uk/, which gives a user the ability to quickly and easily interrogate the 

potential confounding effects on any individual gene, combination of genes, and GES across 

colorectal, pancreatic, breast, ovarian and prostate cancer datasets.

Materials and Methods

Datasets

When publicly available, the data were assessed via GEO and the processed data matrix 

downloaded. All array data were collapsed using the collapseRows function within WGCNA 

(RRID:SCR_003302; v1.70-3) R package. In the case of duplicated genes, the probe 

with the highest mean expression across all samples was used and those genes with no 

expression across the dataset were removed. All GEO datasets are available via https://

www.ncbi.nlm.nih.gov/geo/ using GSE codes below:

Discovery—LCM GSE35602; Matched epithelium and stroma from thirteen colorectal 

tumors transcriptionally profiled using Aligent array. Validation: LCM GSE31279; 

Matched epithelium and stroma from eight colorectal tumors (with both compartments) 

transcriptionally profiled using Illumina sentrix-8 chip. Validation: FACS GSE39396; 

Six CRC tumors were FACS into four cell populations: epithelial cells (EPCAM+), 

leukocytes (CD45+), fibroblasts (FAP+) and endothelial cells (CD31+). Validation: Breast 
Cancer GSE14548; Matched LCM epithelium and stroma from nine invasive ductal 

carcinomas transcriptionally profiled using the Affymetrix Human X3P Array. Validation: 
TNBC GSE81838; Matched LCM epithelium and stroma from ten triple negative breast 

cancers transcriptionally profiled using the Affymetrix Human Gene 1.0 ST Array. 

Validation: PDAC GSE164665; Matched LCM epithelium and stroma from nineteen 

PDACs transcriptionally profiled by Illumina NextSeq 500. Validation: Ovarian Cancer 
GSE9899; Matched LCM epithelium and stroma from five ovarian tumors transcriptionally 

profiled using the Affymetrix Human Genome U133 Plus 2.0 Array. Validation: Prostate 
Cancer GSE97284; Matched LCM epithelium and stroma from 25 prostate tumors, 

of which 12 were low grade (Gleason 3+3) and 13 were high grade (Gleason 8 

or above) transcriptionally profiled using the Affymetrix Human Gene 1.0 ST Array. 

Clinical Validation: FOCUS trial GSE156915; The UK Medical Research Council FOCUS 

[Fluorouracil, Oxaliplatin and CPT11 (irinotecan)] trial involving stage IV patients with 

primary CRC resection transcriptionally profiled on Almac Xcell chip, only those with 

matched histology remained for analysis (n=356). Validation: scRNA-Seq GSE144735; 

The border and central tumor from six colorectal patients were single cell sequenced. 

Count matrix was aligned to annotation file within Partek Genomics Suite. Genes with an 

expression <1 in at least 99.9% of cells were removed. Data was normalized by counts per 

million, +1 and log2 transformed. Validation: BOSS biopsy GSE85043; Multiple biopsies 

obtained with different regions of seven CRC resection specimens. Profiled on Affymetrix 

array.
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GeoMx Digtial Spatial Profiler (DSP)

The whole slide was imaged at 20x magnification using the GeoMx DSP 

(RRID:SCR_021660) with the integrated software suite then used to select 300-600um 

diameter regions of interest (ROIs) from which the instrument focuses UV light (385nm), 

to cleave the UV-sensitive probes with the subsequent release of the hydridized barcodes. 

11 ROIs corresponding to epithelial tumor center, abundant TME regions and regions 

representing an interface between tumor and TME and were selected. The DSP software 

enabled Areas of Interest (AOI) contained in individual ROIs to be defined and selected. 

Firstly segments containing PanCK+ IF signal were masked for tumor epithelium and 

extracted, then the complementary inverse segments (PanCK-) was masked and captured 

corresponding to the TME. For additional information see Supplementary Methods.

Digital histology scoring

H&Es from FOCUS (N=356) were scanned at high resolution on an Aperio scanner 

at a total magnification of 20X. Tissue segmentation was run on H&E images by 

deep convoluted neural net (Very Deep Convolutional Networks for Large-Scale Image 

Recognition(22)) using the HALO platform (RRID:SCR_018350) (Indica Labs). Supervised 

training had been performed using >1,500 tissue areas, combining visual pathological 

review and deep convoluted neural network, from four CRC cohorts as previously described.

(23) Counts of single cells were utilized to assess the proportion of desmoplastic stroma 

compared to total cell counts.

Data Analysis

MCP—MCPcounter (v1.2.0) R package was used to generate scores for 10 cell populations.

CMS—Consensus Molecular Subtype classification utilized ‘classifyCMS.SSP’ function 

within the CMSclassifier (v1.0.0) R package and the CMScaller (v2.0.1) R package. 

ssGSEA. Single sample gene set enrichment analysis was performed using gsva 

(RRID:SCR_021058; v1.38.2) R package with the following non-default settings: min.sz=5, 

verbose = TRUE, method = ‘ssgsea’, on the HALLMARK, Gene Ontology: Biological 

Processes and the KEGG genesets. ESCAPE (v1.4) R package was utilized to generated 

single sample scores for the HALLMARK pathways within the single cell cohort using the 

‘enrichlt’ function: groups= 1000, cores=2.

GSEA—Pair-wise gene set enrichment analysis was performed using fgsea 

(RRID:SCR_020938; v1.16.0) R package (minSize=1, maxSize=Inf, nperm=10000), on the 

HALLMARK, Gene Ontology: Biological Processes and the KEGG genesets accessed via 

msigdb (RRID:SCR_016863; v7.4.1). Within the FOCUS validation dataset a median split 

of DS was used for comparison, followed by DGEA.

DoRothEA—Transcriptional factor activity was assessed using dorothea (v1.2.2) R 

package, within the ‘run_viper’ function (filtered for high confidence regulons). Within 

LCM cohorts, rowTtest with a P <0.05 was considered significant to obtain consensus LCM 

TFs. Plots in subsequent cohorts include all TF, regardless of significance.
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ESTIMATE—estimate (v1.0.13) R package was used to generate stromal and immune 

scores. R studio (v1.3.1073), R Project for Statistical Computing (RRID:SCR_001905; 

v4.0) used for all analysis. All heatmaps were plotted using ComplexHeatmap 

(RRID:SCR_017270) and all additional plots using ggplot2 (RRID:SCR_014601).

ConfoundR Shiny application

Development and Access—The ConfoundR application was created using R version 

4.1.2 in combination with the R package shiny (RRID:SCR_001626; v1.7.1) and is running 

on the Shiny Server (v1.5.17) hosted on the Queen’s University Belfast virtual server 

(CentOS 7, 64-bit, Intel Xeon Gold E5-2660 v3 @2.60 GHZ, 16 Core). ConfoundR is 

accessible at https://confoundr.qub.ac.uk.

Datasets—The datasets used in the ConfoundR application are described above, along 

with the pre-processing methods applied to each dataset.

Expression Boxplots—The Expression Boxplots module allows the user to enter 

the gene symbol for a single gene into the input box. Boxplots in the Expression 

Boxplots module are created using ggplot2 (RRID:SCR_014601; v3.3.5) and Mann-

Whitney U tests are performed using the stat_compare_means function from the ggpubr 

package (RRID:SCR_021139; v0.4.0) with method = “wilcox.test”. Boxplots for the 

PDAC dataset (GSE164665) are plotted using normalized counts calculated by DESeq2 

(RRID:SCR_015687; v1.34.0), using the size factors calculated by the estimateSizeFactors 

function, accessed via the counts function with normalized = TRUE. Plots for each of the 

datasets can be downloaded in png format using the Save Plot button.

Expression Heatmap—The Expression Heatmap module enables users to enter a list of 

gene symbols with each gene symbol on a new line. For the RNA-Seq dataset, variance 

stabilizing transformed counts, calculated using the vst function (blind = FALSE), from 

the DESeq2 package (RRID:SCR_015687; v1.34.0), are used as the gene expression values 

for samples. The gene expression values for each user selected gene in each dataset are 

converted to Z-scores using the scale function (center = TRUE, scale = TRUE) prior 

to plotting heatmaps. Heatmaps of the gene expression Z-scores are plotted using the 

ComplexHeatmap package (RRID:SCR_017270; v2.10.0) with the samples grouped by the 

respective cell/tissue types to aid visual comparison between groups.

GSEA—The GSEA module enables users to select an existing gene set from established 

gene set collections using dropdown menus or to enter a custom user-defined gene set 

by entering a list of gene symbols with each symbol on a new line. The existing gene 

sets available to the user are the Hallmark, KEGG, Reactome, BioCarta and Pathway 

Interactions Database (PID) gene sets as curated by the Molecular Signatures Database 

(RRID:SCR_016863) and accessed via the msigdbr package (v7.4.1).

In order to perform pre-ranked GSEA, differential analysis is performed for each of the 

datasets, comparing stromal samples to epithelial samples. For the GSE39396 dataset 

the user can specify the cell types (epithelial, leukocytes, endothelial, fibroblasts) to 

compare using the input boxes provided. Differential analysis is performed using limma 
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(RRID:SCR_010943; v3.50.0) for microarray datasets (GSE39396, GSE35602, GSE31279, 

GSE81838, GSE14548, GSE9899, GSE97284) and using DESeq2 (RRID:SCR_015687; 

v1.34.0) for the RNA-Seq dataset (GSE164665). Following differential analysis, genes are 

ranked according to the t-statistic (limma) or Wald statistic (DESeq2). Pre-ranked GSEA 

is performed by the GSEA function from the clusterProfiler package (RRID:SCR_016884, 

v4.2.1) using the fgseaSimple method with 10,000 permutations (by = “fgsea”, nPerm = 

10000) and a random seed of 123. Plots of GSEA results are produced using a modified 

version of the gseaplot2 function from the enrichplot package.

Packages used—The ConfoundR app uses the following R packages: shiny (v1.7.1), 

shinydashboard (v0.7.2), dashboardthemes (v1.1.5), shinyFeedback (v0.4.0), shinybusy 

(v0.2.2), shinyccssloaders (v1.0.0), msigdbr (v7.4.1), ggplot2 (v3.3.5), cowplot(v1.1.1), 

ggbeeswarm (v0.6.0), ggpubr (v0.4.0), ComplexHeatmap (v2.10.0), limma (v3.50.0), 

DESeq2 (v1.34.0), clusterProfiler (v4.2.1), fgsea (v1.20.0), enrichplot (v1.14.1) and 

RColorBrewer (v1.1-2). Schematics drawn using BioRender.

Results

Initial characterization of tumor epithelium and stromal datasets

To assess the influence that TSP has on commonly used transcriptional signatures, 

we designed a study to identify, characterize, and orthogonally validate the 

tumor microenvironment (TME) compartments and lineages associated with specific 

transcriptional signatures within primary colorectal cancer (CRC). This approach utilized 

a series of independent primary tumor samples that had undergone laser capture 

microdissection (LCM), to segregate tissue into epithelial and stromal components, for 

discovery (n=26 samples from n=13 tumors; GSE35602) and validation (n=16 samples 

from n=8 tumors; GSE31279) (Figure 1A). Further delineation of cell-type-specific 

transcriptional signaling was performed using transcriptional data generated from FACS-

purified epithelial, fibroblast, endothelial and leukocyte cell populations from CRC 

resections (n=6 tumors, n=24 populations; GSE39396) (Figure 1A).

To confirm the purity of these datasets, we utilized the microenvironment cell population 

(MCP)-counter algorithm(24) to assign single sample scores for n=10 stromal (fibroblasts, 

endothelial cells) and immune lineages (T cells, CD8 T cells, cytotoxic lymphocytes, B 

lineages, natural killer (NK) cells, monocytic lineages, myeloid dendritic cells, neutrophils) 

to each individual sample (Figure 1B-D). In the LCM cohorts, these analyses confirmed that 

the majority of TME lineage signatures are exclusively stromal, particularly those aligned 

to fibroblast and endothelial cells (Figure 1B, C). Although most immune lineages appeared 

to align to the stroma, we did observe signaling indicative of CD8 T cells, NK cells and 

neutrophils within the epithelial compartment, indicative of intra-epithelial infiltration of 

these specific immune lineages (Figure 1B, C). In line with this LCM data, within the 

FACS cohort we observed fibroblast and endothelial populations aligned exclusively to 

the MCP-counter signature for fibroblasts and endothelial cells respectively, supporting the 

suitability of our approach and the utility of the MCP-counter signatures (Figure 1D). While 

T cell, CD8 T cell, cytotoxic lymphocyte and B cell lineage scores all closely aligned to 
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the purified leukocyte population as expected, we did observe signaling indicative of NK 

cells, myeloid dendritic cells and neutrophils in non-leukocyte populations, suggesting that 

there was some crossover in these specific populations during cell sorting for epithelial cells 

(EPCAM+), leukocytes (CD45+), fibroblasts (FAP+) and endothelial cells (CD31+), or that 

the signatures cannot be used for precise enumeration of these lineages in CRC tissue.

Association of CRC molecular subtypes with stromal components

A number of studies including our own have identified the stromal and immune 

contributions to the CRC consensus molecular subtypes (CMS)(3,5,6,19), in particular to 

CMS1 and CMS4, however the relative contributions of TME compartments and specific 

lineage contributing to CMS calls using the original classifier have not been detailed. To 

test this, we classified the epithelial and stromal components from each tumor using the 

CMSclassifier(19) algorithm, where we found that with the exception of one unclassified 

samples (UNK), the stroma was exclusively classified as CMS4 in the LCM cohorts (Figure 

1E, F), as were both the purified fibroblast and endothelial lineages in the FACS cohort 

(Figure 1G), suggesting that transcriptional signaling from these components alone, even in 

the absence of the epithelial transcriptome, is sufficient for tumor classification as CMS4, 

the group with the worst prognosis in CRC.

When the epithelium was examined, with the exception of two samples, we observed a 

strong tendency for classification of CMS2 and CMS3, both well-characterized epithelial-

rich subtypes, across the LCM and FACS cohorts (Figure 1E, F, G). In contrast to the 

association between stromal/endothelial cells and CMS4, when the leukocyte FACS purified 

population calls were assessed, we observed uniform unknown/unclassified assignments, 

indicating that the presence of immune infiltration alone is not sufficient for classification 

of a tumor as an immune-rich CMS1 tumor (Figure 1G) and more complex histological 

features involving tumor infiltrating lymphocytes and epithelial components are required. 

Furthermore, these issues remain apparent when using the CMScaller classifier,(25) 

specifically modified to classify epithelial-based preclinical models according to CMS 

(Supplementary Figure 1).

Stromal influence on widely used transcriptional signatures

While individual studies have highlighted the stromal origins of a number of key genes/

proteins, using methods similar to MCP, it remains unknown how influential the stromal 

transcriptome is on some of the most widely-employed GESs. To investigate this, we 

performed pair-wise gene set enrichment analysis (GSEA)(26) comparing epithelium to 

stroma using one of the most commonly used pathway/ontology collections, the Molecular 

Signatures Database (MSigDB)(27) of n=50 “Hallmarks” (Supplementary Figure 2A, B). 

By performing these analyses in both LCM cohorts in tandem, we observed that n=21 

Hallmarks were significantly (padj <0.02; more stringent that the accepted 0.25 cut-off) 

and consistently associated with either stroma (n=17) or epithelium (n=4) across both 

LCM cohorts (Figure 2A). These findings were further validated using single-sample 

GSEA (ssGSEA) in the FACS cohort (Supplementary Figure 2C), where the n=17 

stromal-associated and n=4 epithelial-associated Hallmarks were again enriched in the 

corresponding cell populations (Figure 2B). Despite being developed and named to classify 

Fisher et al. Page 8

Clin Cancer Res. Author manuscript; available in PMC 2022 September 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



samples associated with specific biology, these analyses reveal the signaling underpinning 

of these signatures may be entirely, albeit unintentionally, misinterpreted due to the 

confounding effects of the stromal transcriptome in bulk tumor data. To ensure that this 

confounding effect is not an artifact of the Hallmark signatures specifically, we performed 

the same analyses using the n=186 KEGG and n=7481 gene ontology biological processes 

(GO BP) signatures, where again we found widespread stromal influence in 50/186 

(Supplementary Figure 2D) and 949/7481 (Supplementary Table 1) signatures consistently 

in both cohorts, validated within the FACS cohort (Supplementary Figure 2E-F).

We also observed similar confounding effects at the transcription factor (TF) activity 

level, when assessed using the n=118 defined regulons within the Dorothea algorithm.(28) 

These analyses revealed the extent to which numerous seemingly epithelial-specific cancer-

associated TFs are influenced by stromal content, across both LCM cohorts (Figure 2C); 

with n=48 TFs significantly activated in stromal components, compared to only n=8 TFs 

being significantly activated in the epithelium. As with the transcriptional signatures, when 

extended into the FACS purified populations, we observed a near identical overlap with 

the LCM findings and identified a number of lineage-specific associations (Figure 2D). 

Given the potential implications of the CRC findings described above, we next questioned 

if this was a pan-cancer phenomena, by performing the same analysis in LCM cohorts from 

breast cancer (BC), triple-negative breast cancer (TNBC), pancreatic ductal adenocarcinoma 

(PDAC), ovarian cancer (OvC) and prostate cancer (PrC). Despite some small organ-specific 

discrepancies in individual GESs, these analyses again revealed that the presence and extent 

of the confounding effect of the stroma is not CRC-specific, highlighting the potential for 

widespread biological misinterpretation of these signaling pathways across multiple cancer 

types (Supplementary Figure 2G-K).

The ConfoundR resource enables estimation of stromal influence on transcriptional 
signatures simultaneously across multiple cancer types

Our findings of the presence of the stromal confounding effect across cancers, coupled with 

the widespread interest in biomarker/GES identification and application, motivated us to 

develop the online resource, ConfoundR (www.confoundr.qub.ac.uk). ConfoundR enables 

users, regardless of their bioinformatics skillset, to examine individual genes, combinations 

of genes, and GES of interest to identify if they could be susceptible to the same stromal 

confounding issues we have identified in this study. This freely-available online resource 

enables users to interrogate the CRC, BC, TNBC, PDAC, OvC and PrC datasets through 

three analysis modules; gene expression boxplots, gene expression heatmaps and GSEA 

(Figure 3A).

The boxplots module of ConfoundR allows gene expression comparisons of a single gene 

between epithelial samples and stroma samples in each dataset, by creating boxplots and 

providing accompanying p-values for Mann-Whitney U tests (Figure 3B). ConfoundR’s 

heatmap module allows expression levels of multiple genes to be visually compared between 

epithelial and stromal samples in each dataset using a heatmap (Figure 3C). Finally, the 

GSEA module of ConfoundR, enables the user to perform GSEA comparing stromal and 

epithelial samples in each dataset from established gene set collections; Hallmarks (n=50), 
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KEGG (n=186), Reactome (n=1604), BioCarta (n=292), Pathway Interactions Database 

(PID; n=196). In addition, as many researchers will be interested in assessing their own 

bespoke or unpublished gene signatures, ConfoundR also provides the end-user with 

complete control to input and generate GSEA results from an unlimited number of custom 

gene sets (Figure 3D). To exemplify the utility of the ConfoundR resource, we examined 

the expression of the fibroblast activated protein (FAP) gene using the Expression Boxplots 

module, the expression of a subset of genes from the Hallmark EMT gene set using the 

Expression Heatmap module and the GSEA module to perform GSEA for the Hallmark 

EMT gene set (Figure 3B-D). The ConfoundR application provides all cancer researchers 

with a freely-available and novel resource to test the susceptibility of any gene, lists of genes 

or gene signatures to the stromal confounding phenomenon described in the present study.

Application of findings to bulk CRC tumor data

To test these findings further in bulk tumor datasets, we utilized transcriptional data from 

n=356 primary tumors used in the FOCUS clinical trial (Figure 4A; GSE156915)(29), 

alongside digital pathology-derived desmoplastic stromal percentage score derived from 

H&Es (desmoplastic stroma percentage [DS%]; detailed in Methods). We confirmed the 

previously-reported associations between CMS4 and stromal content are also observed in 

this tumor cohort (Supplementary Figure 3A) alongside strong correlation between our 

digital pathology assessments of stroma and the MCP fibroblast score (ρ=0.64, p<2.2e-16) 

(Supplementary Figure 3B) and ESTIMATE (30) stromal score (ρ=0.73, p<2.2e-16) (Figure 

4B). Using DS% to rank the tumor samples from low to high, we next assessed all the 

Hallmarks (Supplementary Figure 3C), alongside the subset of Hallmarks and TFs that were 

found to be significantly associated with stroma/epithelium in the LCM and FACS cohorts 

(Figure 4C and 4D), revealing a strikingly clear pattern that again indicates how widely the 

stromal components of a tumor can confound the interpretation of transcriptional signatures 

and TF activity scores in the bulk tumor setting. The Hallmarks associated with the immune 

component within the FACS validation analysis (n=7) (Supplementary Figure 2C), ranked 

by DS content, also correlated to DS% (Supplementary Figure 3D).

Throughout our analyses a number of individual signatures were consistently associated 

with the strongest confounding effects of stromal content, and therefore we selected 

these as specific exemplars related to DS%; namely the EPITHELIAL MESENCHYMAL 

TRANSITION (Spearman’s rho = 0.69, p < 2.2e-16), KRAS SIGNALING UP (Spearman’s 

rho = 0.48, p < 2.2e-16) and MYC TARGETS V2 (Spearman’s rho = -0.41, p < 2.2e-16) 

(Figure 4E) Hallmark signatures. We identified two cases representative of low and 

high DS% in each of these analyses (Figure 4E, red circles) and assessed histological 

features according to H&Es with AI-guided tissue segmentation, which provided a visual 

confirmation that these Hallmark signatures are confounded by quantity of desmoplastic 

stroma across the tissue section (Figure 4F).

Lineage-specific scRNA-Seq assessment of the Hallmarks EMT signature

Single cell RNA-Seq (scRNA-Seq) can be deployed to provide exceptional lineage-specific 

resolution in transcriptional studies, and this method has been used to great effect in the 

identification of tumor heterogeneity and phenotypic associations.(31) To assess how far 
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our findings extend in such data, we utilized a scRNA-Seq cohort derived from n=6 CRC 

primary tumors (Figure 5A; GSE144735), where across all regions at a single cell resolution 

the Hallmark EMT signature displays a significant enrichment in stromal cells compared 

to all other cell types (p <2.2e-16; Figure 5B) and in particular when comparing epithelial 

and stromal only (p <2.2e-16; Figure 5C). The highest EMT scoring epithelial cells only 

ever display an EMT gene expression signature score that reaches the lowest quartile of 

EMT signature score for stromal cells across all samples (Figure 5D). Based on these 

data, despite EMT signatures proving to be highly-tractable biomarkers of epithelial cells 

undergoing transitions when utilized in in vitro, preclinical or scRNA-Seq data, these data 

provide further proof that when applied to clinical samples, any EMT-related signature 

score, regardless of how well refined it is from preclinical models or scRNA-Seq data, 

becomes a definitive measurement of stromal content rather than epithelial to mesenchymal 

transition.

Multi-regional biopsy assessment

We next wished to test the potential clinical implications of these findings, in terms of 

patient misclassification, using the biopsy of surgical specimens (BOSS)(32) cohort of n=7 

primary colon tumor resections, where each patient tumor has bulk transcriptional profiles 

derived from up to n=5 multi-regional biopsies (Figure 5E). Application of ssGSEA for 

the Hallmarks revealed some signature- and patient-specific variations indicative of stromal-

derived intratumoral heterogeneity. When assessed individually, all n=5 biopsy samples 

derived from patient BOSS01 display low expression of all n=17 Hallmarks and n=42 

TFs we have previously associated with stroma, in line with this patient having a largely 

uniform epithelial-rich tumor (Figure 5F and 5G). However, the remaining patient samples, 

particularly from patient BOSS11, BOSS13 and BOSS17, all displayed large variation in 

gene expression between their patient-matched biopsies for each of the stromal-associated 

n=17 Hallmark signatures and n=48 TFs (Figure 5F and 5G), suggesting that these tumors 

in particular displayed intratumoral heterogeneity in tumor stroma percentage. To test if 

the source of this intratumoral heterogeneity in Hallmark scores was due to variation in 

DS% content across biopsies, we assessed the individual ssGSEA signature scores correlated 

with the ESTIMATE stromal score which we previously confirmed as an accurate surrogate 

of DS% (Figure 4B). Remarkably, these analyses revealed the extent to which stromal 

content can accurately predict transcriptional signature scores regardless of the patient-of-

origin. This was particularly evident for the signatures we have identified to be confounded 

by stromal content in our LCM, FACS and bulk tumor datasets, exemplified by positive 

correlation of EPITHELIAL MESENCHYMAL TRANSITION (Spearman’s rho = 0.96, p = 

1.7e-08), KRAS SIGNALING UP (Spearman’s rho = 0.87, p = 7.9e-07), alongside negative 

correlation with the MYC TARGETS V2 (Spearman’s rho = -0.63, p = 0.00037) signature 

(Figure 5H).

Spatial transcriptomics confirms the confounding effects of the stroma

In this study, we have shown the potential for TSP to confound transcriptional signature 

scores, which in turn can result in misinterpretation of their meaning. Furthermore, analysis 

in the BOSS cohort also reveal the potential clinical implications of intratumoral stromal 

heterogeneity, which could result in patient misclassification, or indeed multiple conflicting 
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classifications, when using GESs. To directly assess if spatial transcriptomics (ST) can 

alleviate some of the confounding variations in transcriptional signaling and inaccurate 

interpretation of findings when using bulk data, we profiled n=11 regions of a colon tumor 

sample using the GeoMx ST platform (Figure 6A). While the GeoMx Cancer Transcriptome 

Atlas gene panel employed was more limited (n=1825 core genes in total) when compared 

to the profiling in our other cohorts; we demonstrated that the reduced total number of 

genes still represent excellent surrogates for the whole transcriptome by assessing ssGSEA 

scores of the full signatures alongside the reduced genes available in the ST data. To test 

this further, using data from the FOCUS cohort, we observed excellent concordance in 

ssGSEA scores of the full MSigDB Hallmark EMT signature (ρ=0.95; n=200 genes) and 

MYC Targets V2 signature (ρ=0.75; n=58 genes), when assessed using the corresponding 

reduced signatures that were present on the GeoMx panel (n=81 genes and n=8 genes 

respectively) (Figure 6B, Supplementary Figure 4A). The ST platform provided the option 

to stratify our regions of interest into epithelium and stroma, using cytokeratin (pan-CK) 

staining, enabling calculation of total cellularity for each transcriptional pool. Using the 

ST data, we next performed ssGSEA using the Hallmarks we have previously shown to 

be most confounded by stroma, which again revealed the same general pattern across 

the n=17 stromal-associated and n=4 epithelial-associated signatures (Figure 6C). These 

findings were further confirmed when ST data from across the entire slide was pooled 

into two groups for pair-wise GSEA, PanCK- and PanCK+ (Supplementary Figure 4B), 

which again revealed a significant enrichment for the EMT Hallmark signaling cascade 

in the stromal (PanCK-) regions (Figure 6D). While bulk tumor datasets will remain an 

essential tool for statistical association studies, these data clearly highlight the need for the 

compartment and/or lineage-specific stratification, as afforded by ST, to ensure accurate 

biological interpretation of GESs.

Discussion

In this study, we provide a comprehensive characterization of the tumor transcriptome, 

stratified primarily into epithelium and stroma using LCM and spatial transcriptomics, 

alongside a more granular assessment of individual lineages using FACS and scRNA-Seq 

analysis. These analyses provide insight into the extent of the stroma’s contribution to 

some of the most widely-employed signatures in cancer research, and also the potential for 

biological misinterpretation of resulting data when extrapolating biology from preclinical 

models that do not contain a full tumor microenvironment (Figure 7). Furthermore, we can 

clearly show the potential clinical implications of these issues in terms of variable patient 

classification, both through the use of standard annotation and macrodissection to extract 

and profile RNA from bulk tumor data (as demonstrated in this study from the FOCUS 

clinical trial) and through the use of multi-regional biopsies from primary resection material. 

To ensure that all users can benefit from the findings of this study, we have developed 

a user-friendly and freely-available resource, ConfoundR, which enables assessment of 

individual genes, pathways and bespoke signatures across a number of CRC, BC, TNBC, 

PDAC, OvC and PrC datasets.

Preclinical models, particularly epithelial-rich systems where near-complete control over 

lineage purity and environmental conditions can be achieved and reproduced, represent ideal 
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systems to develop transcriptional signatures that correlate with phenotypes of interest. We 

and others have previously highlighted discrepancies between the nomenclature used for 

such published signatures,(6,33) when named to reflect the phenotypes they characterize in 
vitro, and the actual biology they can represent when applied to bulk tumor datasets. This 

is primarily due to the fact that while lineage purity is fixed in such preclinical models, 

a tumor mass is composed of a milieu of lineages,(15) the proportions of which are most 

often unknown at the time of processing for bulk transcriptomic profiling. This becomes 

particularly problematic for signatures and biomarkers that are developed to characterize 

mesenchymal traits, as although they will track with precise epithelial biology in in vitro 
systems, when applied to tumor data they are more likely to become highly-accurate tumor 

stromal percentage estimates, rather than measures of subtle epithelial transitions.(7,8) Our 

current study addresses the importance of also ensuring that the transcriptional signatures 

faithfully represent the same biology during forward and reverse translation studies, and are 

not undermined by changes in conditions between clinical and preclinical settings. As such, 

the most faithful alignment of biological traits between models and clinical samples should 

be based on deeper phenotyping assessments, that incorporate histology and lineage-specific 

assessments in addition to transcriptional signatures.

Data presented here gives researchers the opportunity to assess the extent of the stroma’s 

influences on specific genes/signatures of interest to them. The stromal influence on 

the general transcriptome in bulk tumor data has been demonstrated by Isella and 

colleagues(3,4) who identified a set of 4,434 genes present in cancer datasets but exclusively 

expressed by the tumor stroma. While the nomenclature used in each of the signatures 

tested may lead researchers to conclude that the biology of that pathway is elevated, data 

presented here clearly demonstrates that when these otherwise mechanistic-driven signatures 

are composed of genes expressed at higher levels in stromal cells, the signatures themselves 

become surrogate markers, to different extents, of the tumor stroma percentage within a 

bulk tumor sample. Given the extent to which the stroma appears to confound biological 

interpretation of the thousands of signatures and TFs we have assessed in this study, there 

may be a significant body of research published that has inadvertently derived conclusions 

based on inaccurate interpretations of results.

Data presented here do not challenge the use or value of using signatures to interpret data 

from bulk tumors, but present unambiguous intelligence around the caution that should 

be applied when interpreting what these signature scores can reflect, despite what the 

signature name suggests. An inaccurate biological conclusion in itself will not have major 

consequences for prognostic/predictive signatures in terms of their statistical correlation 

to identify tumors that are most likely to relapse/respond. However, an issue arises when 

signatures are being used to describe precise mechanisms across sample types, or when 

inaccurate biological interpretations of such results are being used as the basis for ongoing 

clinical therapeutic developments, which themselves are also potentially being tested in 

models that bear little relevance to the patient tumor samples they are derived from. This 

is particularly important, as most users are reliant on utilizing existing molecular datasets, 

where there is no control over the initial profiling steps, or indeed representative histological 

images that precisely align to the tumor region used for nucleic acid extraction. As such, 
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while the signatures presented here represent large collections of experimentally-validated 

genes associated with specific phenotypes or biological cascades, our findings support the 

conclusion that unless users adjust their interpretation based on the extent to which genes/

signatures can be influenced by TSP, there is potential for widespread misconceptions when 

interpreting the meaning underlying transcriptional signatures in tumor studies, given the 

discordance between their development and application.

Genes can have many functions, and in some cases the genes that strongly demark a 

specific phenotype in a preclinical model system can also be expressed and perform entirely 

different mechanistic signaling roles in stromal lineages that make up a TME. If the 

magnitude of expression of these genes is low in the stromal/immune lineages, this may 

cause minimal impact when interpreting the precise nature of the transcriptional signature in 

bulk tumor data. However, if the genes within these signatures are expressed at higher levels 

in non-epithelial lineages, they can become strong surrogate markers for levels of TME 

components, rather than reflecting any of the mechanistic biology that they were designed to 

identify. It is this potential for misinterpretation that our paper wishes to highlight, thereby 

enabling researchers to assess the potential for their mechanistic signature of choice to be 

confounded in bulk tumor data using our ConfoundR resource. While data presented here 

identifies a potential issue in the interpretation of GESs, there is no singular solution given 

that each gene, and near infinite combination of genes that can be generated to make up 

signatures, will be influenced to different extents in every individual lineage present in every 

individual tumor. However, the accompanying ConfoundR resource will allow researchers to 

make a more informed interpretation of the true biology underlying the signature in these 

tumor samples, and to adjust their analyses based on the extent to which the TME can 

influence gene expression of their GES of interest when compared to controlled preclinical 

models.

Although the use of scRNA-Seq analysis can provide high quality lineage-specific 

transcriptional data, this comes at the expense of spatial information.(34) Conversely, spatial 

transcriptomics can regionalize transcriptional signaling but lose the single cell resolution.

(35) While both approaches, individually or in combination,(36,37) have revolutionized 

the field of transcriptional profiling, the use of bulk transcriptomics datasets available in 

publicly-accessible databases like TCGA and GEO, remain the mainstay for alignment 

of transcriptional signatures to clinical outcome data for prognostic assessment and 

mechanistic/biological interpretation. It is likely that with reducing costs and expansion 

of technologies, the generation of tumor-matched scRNA-Seq, spatial and bulk cohorts in 

both clinical samples and preclinical models will become more routine in future, and at 

some point may supersede that of existing bulk data. However, as this is unlikely to be in the 

immediate future, the findings of this study and the unique ConfoundR application we have 

made publicly-available provide every user the opportunity to assess their gene signatures 

for themselves, enabling them to adjust their interpretations, if required, of the meaning of 

their data based on information about the lineage-of-origin of their biomarker or signature 

when applied to samples with mixed histology. As such, the ConfoundR tool represents an 

important resource to ensure that translational researchers can more accurately interpret the 

information underpinning the transcriptional biomarker(s) used to stratify patient samples 

and inform cancer care.
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Statement of translational relevance

Integrity and robustness in aligning models with human tumors, based on comparable 

mechanistic and biological signaling representative of specific patient subtypes, is critical 

to ensure successful translation of preclinical understanding of disease and treatment 

efficacies into clinical benefit. The versatility and accessibility of transcriptional 

signatures renders them a fundamental tool in aligning clinical phenotypes and 

mechanisms across human tumors and preclinical models. Therefore, it is crucial to 

ensure that the biological meaning of transcriptional signatures remains faithful across 

different contexts.

In this study, we objectively measure the presence and extent to which the biology 

represented by transcriptional signatures can be altered by differences in tumor 

microenvironment conditions when moving between the preclinical and clinical settings. 

Importantly, we provide a freely-available resource (https://confoundr.qub.ac.uk) that 

allows users to test the extent to which their gene or signatures of interest might become 

confounded due to the stromal transcriptome during forward and reverse translation.
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Figure 1. Initial characterization of tumor epithelium and stromal datasets.
A Schematic of the segregation strategies in the discovery and validation cohorts, drawn 

using BioRender. B Heatmap of MCP-counter scores for the laser capture microdissected 

(LCM) discovery cohort, according to epithelium and stromal regions. C Heatmap of MCP-

counter scores for the LCM validation cohort, according to epithelium and stromal regions. 

D Heatmap of MCP-counter scores for the FACS validation cohort. E CMS classifications 

(using CMSclassifier) for the matched epithelium and stroma samples in the laser capture 

microdissected discovery cohort. F CMS calls (using CMSclassifier) for the matched 

epithelium and stroma samples in the laser capture microdissected validation cohort. G 
CMS calls (using CMSclassifier) for the four lineages in the FACS validation cohort.
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Figure 2. Stromal influence on widely used transcriptional signatures.
A Gene set enrichment analysis (GSEA) of Hallmark gene sets in LCM discovery and 

validation cohorts. Only gene sets significantly and concordantly enriched in stroma or 

epithelium in both the discovery and validation cohorts are shown (adjusted p-value < 0.02). 

B Heatmap of single sample GSEA (ssGSEA) scores for the Hallmark gene sets in the FACS 

validation cohort samples. Only the gene sets significantly and concordantly enriched in 

stroma or epithelium in both the LCM discovery and validation cohorts are shown (adjusted 

p-value < 0.02). C Transcription factors whose activity was significantly and concordantly 

enriched in stroma or epithelium in both the LCM discovery and validation cohorts (p < 

0.05). D Heatmap of the inferred activity scores for the same transcription factors in the 

FACS validation cohort. For all panels in Figure 2, gene sets/transcription factors with 

names/symbols colored orange were significantly and consistently enriched in stroma in the 

LCM discovery and validation cohorts, whereas gene sets/transcription factors with names/

symbols colored blue were consistently and significantly enriched in epithelium in the LCM 

discovery and validation cohorts (gene sets: adjusted p-value < 0.02; transcription factors: p 

< 0.05).
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Figure 3. The ConfoundR resource enables stromal influence estimation in cancer tissue.
A Schematic overview of the cohorts and analyses available within the ConfoundR app, 

accessible via https://confoundr.qub.ac.uk/. B Expression Boxplots analysis module of 

ConfoundR enabling the expression of a single gene to be compared between stroma and 

epithelium samples in each of the ConfoundR datasets. C Expression Heatmap analysis 

module of ConfoundR enabling the expression of multiple genes to be visually compared 

between stroma and epithelium samples in each of the ConfoundR datasets. D GSEA 

analysis module of ConfoundR allowing GSEA of existing gene sets from established gene 

set collections or custom user defined gene sets to be performed comparing stroma to 

epithelium in each of the ConfoundR datasets.
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Figure 4. Application of findings to bulk CRC tumor data.
A Schematic summary of the clinical validation dataset from the FOCUS clinical trial. B 
Scatterplot showing correlation between desmoplastic stroma percentage determined from 

H&E assessment and ESTIMATE Stromal Score determined by transcriptomic data in the 

FOCUS clinical trial samples (Spearman’s rho = 0.73, p < 2.2e-16), colored by Consensus 

Molecular Subtype (CMS) calls (CMS1: n=62; CMS2: n=155; CMS3: n=29; CMS4: n=66; 

UNK: n=44). C Heatmap of ssGSEA scores for the Hallmark gene sets (identified in Figure 

2 as significantly enriched in the stroma/epithelium in the LCM discovery and validation 

cohorts) for the FOCUS clinical trial samples. Samples ranked in order of desmoplastic 

stroma percentage (DS%) from lowest (left) to highest (right). Gene sets with names colored 
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orange were significantly enriched in stroma in the LCM discovery and LCM validation 

cohorts and gene sets with names colored blue were significantly enriched in epithelium 

in the LCM discovery and LCM validation cohorts. D Heatmap of activity scores for 

transcription factors (identified as significantly enriched in the stroma/epithelium in the 

LCM discovery and validation cohorts) for the FOCUS clinical trial samples. Samples are 

arranged in order of desmoplastic stroma percentage (DS%) from lowest (left) to highest 

(right). Gene sets with names colored orange were significantly enriched in stroma in the 

LCM discovery and LCM validation cohorts and gene sets with names colored blue were 

significantly enriched in epithelium in the LCM discovery and LCM validation cohorts. E 
Scatterplots showing the correlation between desmoplastic stroma percentage determined 

from H&E and ssGSEA scores for the Epithelial Mesenchymal Transition (left) (Spearman’s 

rho = 0.69, p < 2.2e-16), KRAS Signaling Up (middle) (Spearman’s rho = 0.48, p < 2.2e-16) 

and MYC Targets V2 (right) (Spearman’s rho = -0.41, p < 2.2e-16) Hallmark gene sets. We 

identified two cases representative of low and high desmoplastic stromal percentage in each 

of these analyses (red circles). F H&E along with HALO mark-up for the representative low 

and high desmoplastic stromal percentage samples identified in E.
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Figure 5. Single cell and multi-regional biopsy analyses.
A Schematic of scRNA-Seq cohort derived from n=6 CRC primary tumors. B-D Boxplots 

showing ssGSEA scores for the Hallmark Epithelial Mesenchymal Transition gene set 

B across the various cell types C and specifically between epithelial and stromal cells 

(from all six CRC tumors) in the scRNA-Seq dataset (p < 2.2x10-16; Wilcoxon test). D 
Comparison of ssGSEA scores for the Hallmark Epithelial Mesenchymal Transition gene 

set between epithelial and stromal cells in each primary CRC (n=6) in the scRNA-Seq 

dataset (all p < 2.2x10-16; Wilcoxon test). Epithelial cells are shown in green and stromal 

cells in pink. E Schematic overview of the BOSS Biopsy cohort consisting of colon cancer 

resections from seven patients each with up to n=5 multi-regional biopsy samples. F-G 
Heatmaps of F ssGSEA scores for the Hallmark gene sets and G transcription factor 

activity scores for the BOSS Biopsy samples. Samples are grouped according to patient 

of origin and the ESTIMATE StromalScore of each biopsy sample is indicated by the 
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ESTIMATE StromalScore bar at the top of the heatmap. Only the gene sets/transcription 

factors significantly and concordantly enriched in stroma or epithelium in both the LCM 

discovery and LCM validation cohorts are shown (from Figure 2) (adjusted p-value < 0.02 

– Hallmarks; p < 0.05 – transcription factors). Gene sets/transcription factors with names/

symbols colored orange were significantly enriched in stroma in the LCM discovery and 

LCM validation cohorts and gene sets/transcription factors with names/symbols colored 

blue were significantly enriched in epithelium in the LCM discovery and LCM validation 

cohorts. H Scatterplots showing correlation between the ESTIMATE StromalScore and 

ssGSEA scores for the Hallmark Epithelial Mesenchymal Transition (left) (Spearman’s rho 

= 0.96, p = 1.7e-08), KRAS Signaling Up (middle) (Spearman’s rho = 0.87, p = 7.9e-07) 

and MYC Targets V2 (right) (Spearman’s rho = -0.63, p = 0.00037) gene sets. Samples are 

colored by patient of origin.
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Figure 6. Spatial transcriptomic confirms the confounding effects of the stroma.
A Whole slide image of colon cancer case selected for spatial transcriptomic analysis. 

The tissue was stained with Pan-Cytokeratin (PanCK) and CD45 with PanCK+ regions 

(green) identifying epithelium and CD45+ regions (purple) identifying immune components. 

Small circles indicate the regions of interest selected for spatial transcriptomic analysis; 

ROI 4: high epithelial content, ROI 11: mixed epithelial content, ROI 10 demonstrates a 

ROI with low epithelial content, ROI 6: no epithelial content. B Scatterplot showing the 

correlation between ssGSEA scores for the full Hallmark Epithelial Mesenchymal Transition 
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gene set (n=200 genes) and the corresponding reduced GeoMx Epithelial Mesenchymal 

Transition gene set (n=81 genes) in the FOCUS clinical trial cohort (Spearman’s rho 

= 0.95). Samples colored by Consensus Molecular Subtype (CMS) calls (CMS1: n=62; 

CMS2: n=155; CMS3: n=29; CMS4: n=66; UNK: n=44). C Heatmap of ssGSEA scores 

for the Hallmark gene sets for the PanCK+ (epithelium) (n=8) and PanCK- (stroma) (n=11) 

areas within the regions of interest. Only the Hallmark gene sets identified as significantly 

and concordantly enriched in stroma or epithelium in both the LCM discovery and LCM 

validation cohorts are shown (the GeoMx versions of these Hallmark gene sets were used). 

D GSEA comparing PanCK- areas (stroma) (n=11) to PanCK+ areas (epithelium) (n=8) for 

the Hallmark Epithelial Mesenchymal Transition gene set (GeoMx version).
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Figure 7. Summary diagram.
Precise gene expression signatures have been developed to accurately reflect phenotypic 

changes in epithelial-based models, when assessed under tightly controlled in vitro 
modelling conditions. When these signatures are used to stratify bulk tumor data, there 

is an expectation that the same signatures can be used to stratify tumors based on the same 

distinct phenotypes (Top Panel). However, if the genes that make up these signatures are 

expressed at relatively higher levels in non-epithelial lineages, the signatures can become 

confounded by even small variations in stromal components, stratifying tumors based on 

stromal content rather than the phenotype they were developed to represent (Bottom Panel).
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