Skip to main content
. Author manuscript; available in PMC: 2022 Sep 30.
Published in final edited form as: Front Bioinform. 2022 Jun 17;2:885983. doi: 10.3389/fbinf.2022.885983

Table 2.

Non-exhaustive list of deep learning architectures for protein-ligand binding affinity prediction and their performance on the CASF-2016 scoring benchmark (if available). MLPs are included regardless of the number of hidden layers. Some methods are described in multiple publications and the ones referenced in this table are the ones where the model has been evaluated on the PDBbind Core set 2016/CASF-2016 set (or the original publication, if this evaluation is not available). The best result (the highest Pearson’s r) is reported. Different publications might use slightly different custom variations of the CASF-2016 benchmark and the overlap between training and test sets might be taken into account in different ways. We refer the reader to the original publications for details, but we also report the number, N, of systems in the test set to outline possible differences. RMSEs are expressed in pK units.

Model Reference Architecture Pearson’s r RMSE N
Artemenko (2008) MPL
NNScore 2.0 Durrant and McCammon (2011b) MPL
BgN- & BsN-Score Ashtawy and Mahapatra (2015) MPL
DLscore Hassan et al. (2018) MPL
PLEC-NN Wójcikowski et al. (2018) MLP 0.82 290
pair Zhu et al. (2020) MLP 0.75 1.44 285
AEScore Meli et al. (2021) MLP 0.83 1.22 285
TopologyNet Cang and Wei (2017) CNN 0.81 1.34 290
Kdeep Jiménez et al. (2018) CNN 0.82 1.27 290
Pafnucy Stepniewska-Dziubinska et al. (2018) CNN 0.78 1.42 290
1D2D-CNN Cang etal. (2018) CNN 0.85 1.21 290
DeepAtom Li et al. (2019c) CNN 0.81 1.32 290
OnionNet Zheng et al. (2019) CNN 0.82 1.28 290
Gnina Francoeur et al. (2020) CNN 0.80 1.37 280
RosENet Hassan-Harrirou et al. (2020) CNN 0.82 1.24
AK-Score Kwon et al. (2020) CNN 0.81 285
LigityScore1D Azzopardi and Ebejer (2021) CNN 0.74 1.46 285
OnionNet-2 Wang et al. (2021d) CNN 0.86 1.16 285
SE-OnionNet Wang et al. (2021a) CNN 0.83 285
ACNN Gomes et al. (2017) GNN
PotentialNet Feinberg et al. (2018) GNN
graphDelta Karlov et al. (2020) GNN 0.87 1.05 285
SIGN Li et al. (2021c) GNN 0.80 1.32 290
InteractionGraphNet Jiang et al. (2021) GNN 0.84 1.22 262
GraphBAR Son and Kim (2021) GNN 0.78 1.41 290
PLIG/GATNet Moesser et al. (2022) GNN 0.84 1.22 272
PIGNet Moon et al. (2022) GNN 0.76 283
Berishvili et al. (2019) CNN/RNN
FAST Jones et al. (2021) CNN + GNN 0.81 1.31 290
BAPA Seo et al. (2021) CNN + ATT 0.82 1.30 285
PointTransformer Wang et al. (2021c) CNN + ATT 0.85 1.19 285