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Abstract

Somatic structural variants are widespread in cancer, but their impact on disease evolution is 

understudied due to a lack of methods to directly characterize their functional consequences. We 

present a computational method, scNOVA, which utilizes Strand-seq to perform haplotype-aware 

integration of structural variant discovery and molecular phenotyping in single cells, by using 

nucleosome occupancy to infer gene expression as a read-out. Application to leukemias and 

cell lines identifies local effects of copy-balanced rearrangements on gene deregulation, and 

consequences of structural variants on aberrant signaling pathways in subclones. We discovered 

distinct SV subclones with dysregulated Wnt signaling in a chronic lymphocytic leukemia patient. 

We further uncovered the consequences of subclonal chromothripsis in T-cell acute lymphoblastic 

leukemia, which revealed c-Myb activation, enrichment of a primitive cell state and informed 

successful targeting of the subclone in cell culture, using a Notch inhibitor. By directly linking 

SVs to their functional effects, scNOVA enables systematic single-cell multiomic studies of 

structural variation in heterogeneous cell populations.

The mutational landscapes of numerous cancers were recently cataloged1,2, revealing 

that somatic structural variations (SVs) represent ~55% of driver mutations2,3. Somatic 

mutational processes generate a broad spectrum of SVs from simple (e.g. deletions and 

inversions) to complex classes (e.g. chromothripsis)4–8, and these SVs are important drivers 

of malignancy, metastasis and relapse9–12. However, with the exception of focal deletions 

and amplifications, somatic SVs have proven difficult to functionally characterize in cancer 

genomic surveys1–3,13. Studies integrating transcriptome and whole genome sequencing 

(WGS) data have inferred SV functional outcomes13–16, but these typically require large 

cohorts and do not account for intra-tumor heterogeneity (ITH)3. Instead, SV effects can 
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be directly measured by reading both genotype and molecular phenotype in the same cell, 

using single-cell multiomics17–21. Several such methods have been developed17–20, but these 

do not presently account for small (<10Mb) somatic copy number alterations (SCNAs), 

balanced SVs and complex rearrangement events, like chromothripsis4,5,7,22, which has 

limited efforts to functionally characterize the most common class of driver mutations in 

cancer.

To address this, we developed scNOVA (for single-cell Nucleosome Occupancy and Genetic 

Variation Analysis), a method enabling functional characterization of the full spectrum 

of somatic SV classes. scNOVA utilizes Strand-seq23 in two ways: [i] it uses the DNA 

fragmentation pattern resulting from Micrococcal nuclease (MNase) digestion23 to directly 

measure nucleosome occupancy (NO) and indirectly infer patterns of gene activity, and 

[ii] it couples this ‘molecular phenotype’ with SVs discovered by single-cell tri-channel 

processing (scTRIP - which jointly models read-orientation, read-depth, and haplotype-

phase24) – in the same cell. MNase digests the linker DNA between nucleosomes, leaving 

nucleosome-protected DNA intact, to enable genome-wide inference of NO by measuring 

sequence read counts25–28. Prior work has shown that active enhancers and transcribed 

genes exhibit reduced NO25–30. However, the relationships between NO and SV landscapes 

in cancer remain unexplored. scNOVA addresses this by integrating SVs and NO along the 

genome of a cell, to functionally characterize SV in heterogeneous samples.

Results

NO classifies cell types and predicts gene activity changes

Strand-seq data reveals NO—We hypothesized that NO patterns derived from MNase 

fragmentation during Strand-seq library preparation could represent a readout to allow 

functional characterization of SVs (Fig. 1a, Extended Data Fig. 1). To test this, we 

evaluated whether Strand-seq data revealed nucleosome positioning through comparison 

with bulk MNase-seq data. We used the NA12878 lymphoblastoid cell line (LCL), which 

has both datatypes available, and pooled 95 Strand-seq libraries (sequenced to a median of 

540,379 mapped non-duplicate reads per single cell31; Table S1), into a “pseudo-bulk” track, 

allowing direct comparison with the corresponding MNase-seq dataset (sequenced to 19-fold 

genomic coverage32). We measured NO along the genome (Methods) and found Strand-seq 

and MNase-seq were highly concordant in terms of uniformity of coverage and inferred 

nucleosome positions at DNase-I hypersensitive sites (Spearman’s r=0.68) (Fig. 1b,c). 

Nucleosome positioning near the binding site of CTCF26,28 (a key chromatin organizer) 

closely matched between both assays (Fig. 1d, Fig. S1), and estimated nucleosome repeat 

lengths28 were highly concordant (Fig. S1). In addition, both assays measured NO in 

all fifteen chromatin states identified by the Roadmap Epigenome Consortium33. Among 

these chromatin states, Strand-seq and MNase-seq revealed the highest NO signals on 

average for the polycomb-repressed state and the bivalent enhancer state, whereas the lowest 

average NO signals were consistently seen for the active transcription start site (TSS) state 

(Extended Data Fig. 2). This indicates that Strand-seq enables direct measurement of NO to 

reveal a ‘molecular readout’. We thus developed the scNOVA framework, which harnesses 
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Strand-seq to measure NO genome-wide and couples this with SVs discovered in the same 

sequenced cell (Fig. 1a).

As Strand-seq resolves its measurements by haplotype31, we considered that haplotype-

specific differences in NO (haplotype-specific NO) resulting from random monoallelic 

expression, germline SNPs, and local effects of SVs could be harnessed for scNOVA. To 

assess the utility of haplotype-resolved NO, we phased 24,652,658/49,205,197 (50.1%) of 

the NA12878 Strand-seq read fragments, and pooled these reads to generate pseudo-bulk 

NO tracks for each chromosomal haplotype (denoted ‘H1’ and ‘H2’, respectively; Fig. 

1b). Using the female-derived NA12878 cell line, we compared haplotype-specific NO to 

haplotype-resolved gene expression measurements from bulk RNA-seq data
34 (Methods). 

We identified a significant increase of NO in gene bodies mapping to H1 compared to 

H2 across the X chromosome (adjusted P = 0.0012; Wilcoxon ranksum test), suggesting 

that H1 represents the inactive X chromosome. These data were consistent with haplotype-

resolved gene expression measurements at loci subject to X-inactivation35, whereas genes 

escaping X-inactivation did not exhibit haplotype-specific NO (Fig. 1e–f, Fig. S3). We 

also investigated whether Strand-seq data is informative of haplotype-specific NO at 

cis-regulatory elements (CREs), and identified a 1.4–fold enrichment for allele-specific 

CRE binding on the X chromosome (P=0.015; hypergeometric test; based on 718 CREs 

with haplotype-specific NO genome-wide; 10% FDR) (Fig. S2). Moreover, CREs with 

haplotype-specific NO were significantly overrepresented near genes showing allele-specific 

expression in the genome (P<0.0018, hypergeometric test; Fig. S2). These data suggest 

that haplotype-specific NO, a signal directly obtained from Strand-seq datasets, reflects 

biological gene regulation patterns in the genome.

Cell-typing—Since NO within gene bodies reflects gene activity in MNase-seq data28, we 

hypothesized that Strand-seq based NO patterns could be used to infer gene expression.. To 

investigate this, we tested whether NO globally reflects cellular gene expression patterns 

in the Retinal Pigment Epithelium-1 (RPE-1) cell line, for which we previously generated 

both Strand-seq and RNA-seq data24. To profile NO globally, we pooled 33 Million read 

fragments (including phased and nonphased reads) from 79 Strand-seq libraries into pseudo-

bulk NO tracks. We identified an inverse correlation between NO at gene bodies and 

gene expression (P<2.2e-16; Spearman’s r of up to -0.24; Fig. 1g, Fig. S4), where highly 

expressed genes showed significantly lower NO within their gene bodies (and vice versa). 

We next explored the utility of NO for cell type inference (‘cell-typing’), based on the 

activity of lineage-specific genes, by implementing a multivariate dimensionalityreduction 

framework. We performed in silico mixing of Strand-seq libraries from different LCLs 

and RPE cell lines, and built a classifier that separates distinct cell types by partial least 

squares discriminant analysis (PLS-DA). We used a training set of 179 mixed libraries, and 

initially considered 19,629 features, which reflect ENSEMBL36 genes with sufficient read 

coverage (Methods). After feature selection, 1,738 features were retained. We then used a 

non-overlapping set of 123 cells to assess performance, all of which scNOVA classified 

accurately (area under the curve (AUC)=1; Extended Data Fig. 3). Our framework also 

discriminated between cells from three related RPE cell lines derived from the same donor, 
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which exhibit distinct SV landscapes24,37 (AUC=0.96; Fig. 1h) indicating that scNOVA 

enables accurate cell-typing.

Gene activity changes between cell populations—Having established that scNOVA 

can utilise the expression of lineage-specific genes for cell typing, we evaluated if it could 

predict gene expression differences between defined cell populations, such as subclones 

bearing distinct SVs. We devised a module that integrates deep convolutional neural 

networks and negative binomial generalized linear models (Fig. S5, S6), in order to 

measure differential gene activity between two defined cell populations. To benchmark 

this module, we mixed Strand-seq libraries from different cell lines in silico, creating 

“pseudo-clones”, and evaluated the predicted changes in gene activity between defined 

pseudo-clones (each composed of cells from one cell line) by analyzing NO at gene bodies 

(Fig. S7, Extended Data Fig. 4). We first compared RPE-1 to the HG01573 LCL line, and 

defined the ground truth of expression using RNA-seq. We found scNOVA’s differential 

gene activity score (Methods) was highly predictive of the 10 most differentially expressed 

genes, where analyses of pseudo-clones comprising 156 RPE-1 and 46 HG01573 libraries 

revealed an AUC of 0.93 (we observed a similar performance when analyzing the 50 most 

differentially expressed genes; Fig. 1i). Gene activity changes inferred included well-known 

markers of epithelial (e.g. EGFR, VCAN) and lymphoid (e.g. CD74, CD100) cell types 

(Table S2). The scNOVA predictions were informative also when we simulated minor 

subclones present with CF=20%, CF=5%, CF=1.3%, resulting in AUCs of 0.92, 0.79, 0.68, 

respectively (Extended Data Fig. 4). We obtained similar results when applying scNOVA to 

pseudo-clones derived from different (genetically related) RPE cell lines (Fig. S7). These 

benchmarking exercises suggest that scNOVA can accurately infer gene activity changes 

between defined cell populations, suggesting that this framework can be used to functionally 

characterize subclonal SVs.

Functional outcomes of SVs in cell lines

To test this, we set out to investigate the functional outcomes of somatic SV landscapes in 

a panel of LCL samples38 (N=25) from the 1000 Genomes Project39 (1KGP). Single-cell 

SV discovery in 1,372 Strand-seq libraries generated for this panel (Table S1) discovered 

205 somatic SVs – with 24/25 (96%) LCLs showing at least one SV subclone, a 7-fold 

increase compared to a prior report40 (Table S3, Supplementary Data). Thirteen of the 

cell lines (52%) contained an SV subclone above 10% CF. This included the widely-used 

NA12878 cell line34,39, in which we discovered a subclonal 500kb deletion at19q13.12 

(CF=21%) that was mutually exclusive with two 22q11.2 deletions seen at CFs of 21% 

and 57%, respectively (Fig. S9, S10). The 22q11.2 SVs mapped to the well-known site of 

IGL recombination occurring during normal B cell development41. We hence focused on the 

19q13.12 event, which resulted in the loss of a copy of ZNF382, a tumor suppressor and 

repressor of c-Myc42. Application of scNOVA measured significantly increased activity of 

ERCC6, a target gene of the c-Myc/Max TF dimer43, and decreased activity of PIEZO2 and 

TRAPPC9, in cells harboring this deletion (10% FDR; Table S2).

To validate these findings we reanalyzed Fluidigm and Smart-seq single-cell RNA-seq 

(scRNA-seq) datasets generated for NA1287844,45. We employed several established tools 
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for SCNAs discovery from scRNA-seq data46–48 (Table S4), all of which failed to discover 

any of the SV subclones seen in this cell line (Table S4). Yet, upon directly inputting the 

respective SV breakpoint coordinates into the CONICSmat tool46, we succeeded to identify 

the 19q13.12 deletion (denoted ‘19q-Del’) through ‘targeted SCNA recalling’. We next 

pursued differential gene expression analyses by scRNA-seq, comparing 19q-Del cells to 

unaffected (‘19q-Ref’) cells, and verified over-expression of ERCC6 in 19q-Del cells (10% 

FDR, Fig. S10). For PIEZO2 and TRAPPC9, the scRNA-seq-based expression trends were 

consistent with scNOVA (Fig. S10), but did not reach the FDR threshold. A search for the 

over-representated TF targets amongst the differentially active genes identified c-Myc and 

Max as the most over-represented TFs in 19q-Del cells (10% FDR, Fig. S10). These results 

indicate that scNOVA can functionally characterize SVs inaccessible to scRNA-seq-based 

SCNA discovery.

We next focused on NA20509, the LCL with the most abundant SV subclone (85% CF). 

Somatic SVs in NA20509 arose primarily through the breakage-fusion-bride-cycle (BFB) 

process24,49 involving a 49Mb terminal duplication on 5q, and a 2.5Mb inverted duplication 

on 17p with an adjacent terminal deletion (terDel) (Fig. 2a). The 5q and 17p segments 

became fused into a ~115Mb derivative chromosome (Fig. S13), which likely stabilized the 

BFB. We searched for global gene activity changes in this ‘17p-BFB’ subclone compared to 

the non-rearranged cells (‘17p-Ref’) and identified 18 dysregulated genes (Fig. 2b). Testing 

for gene set over-representation50 (Methods) revealed an enrichment of the target genes of 

c-Myc/Max heterodimers (10% FDR, Fig. 2c) – the same TFs we observed in the 19q-Del 

subclone in NA12878. Consistent with this, we identified somatic copynumber gain of 

MAP2K3, which encodes a gene activating c-Myc/Max51, resulting from the BFB (Fig. 2a).

We performed several orthogonal analyses to validate these findings. First, we verified all 

somatic SVs using deep WGS data generated for the 1KGP sample panel52 (Fig. S13). 

Second, we analyzed RNA-seq data38 for this LCL panel, which revealed that NA20509 

exhibits the highest MAP2K3 expression, and the highest c-Myc/Max target expression 

(Fig. S14, Fig. 2d). Third, we followed the 17p-BFB subclone in culture, by subjecting 

early (p4) and late passage (p8) cells to Strand-seq, which revealed outgrowth of the 

17p-BFB subclone (CF=23% at p4, CF=100% at p8; P<0.00001, Fisher’s exact test; Fig. 

2e), suggesting these cells have a proliferative advantage. Quantitative real-time PCR 

experiments verified this clonal outgrowth pattern (Fig. 2f).

Since the functional impact of SVs on clonal expansion is unexplored in LCLs, we more 

deeply characterized the molecular phenotypes of 17p-BFB cells by pursuing RNA-seq in 

p4 and p8 cultures. We observed increased MAP2K3 expression (1.39-fold, 10% FDR) at 

p8, consistent with MAP2K3 dysregulation as a result of copy-number gain in the 17p-BFB 

subclone (Fig. 2g, Supplementary Notes). Pathway-level analysis showed deregulation of 

c-Myc/Max target genes following clonal expansion (P=0.036; Wilcoxon rank-sum test; Fig. 

2h, Fig. S14). Collectively, these data link the outgrowth of SV subclones to the deregulation 

of c-Myc/Max targets, which could represent a common driver of clonal expansion in LCLs.
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Local effects of copy-balanced driver SVs in leukemia

To deconvolute the effects of driver SVs in patients, we applied scNOVA to analyze the local 

consequences of balanced SVs, which are widespread in leukemia3,53. We analyzed primary 

cells from an AML patient (32-year-old male; patient-ID=AML_1) bearing a balanced 

t(8;21) translocation that results in RUNX1-RUNX1T1 gene fusion54. We sorted CD34+ 

cells from AML_1 (Fig. S15), and sequenced 42 Strand-seq libraries. SV discovery revealed 

a 46,XY,t(8;21)(q22;q22) karyotype (Fig. 3a, Fig. S16, Table S3) consistent with clinical 

diagnosis. We fine-mapped the translocation breakpoint to intron 1 of RUNX1T1 and intron 

5 of RUNX1 (Fig. S17), and subsequently identified haplotype-specific NO at 11 genes, 

genome-wide (10% FDR, Table S2). This included RUNX1T1, which showed reduced NO 

on the derivative (H2) haplotype (Fig. 3b), consistent with increased gene activity mediated 

as a local effect of the translocation55. The remaining genes did not reside near a detected 

somatic SV, suggesting other factors (such as germline SNPs; Fig. S17) may have affected 

their NO.

To systematically investigate potential local effects, we used a sliding window (Methods) 

to measure NO on both sides of the translocation breakpoint. We observed decreased 

NO, suggesting increased chromatin accessibility, from the breakpoint junction up to 

the respective nearest topological associating domain (TAD) boundaries (Fig. 3c). This 

signal was most pronounced in an enhancer-rich region ~0.8 to 1.1Mb upstream of 

RUNX1 originating from chromosome 21 (P<0.003; likelihood ratio test, adjusted using 

permutations; Fig. 3c), found to physically interact with the RUNX1 promoter in CD34+ 

cells56. Within this segment, we identified two CREs with significantly reduced NO (10% 

FDR, Exact test) (Fig. 3d, Table S5), which may foster RUNX1-RUNX1T1 expression. 

Chromosome-wide analysis showed haplotype-specific NO patterns were restricted to the 

fused TAD (Fig. 3e-f), in line with these patterns resulting from the translocation.

We also revisited Strand-seq datasets with previously reported copy-neutral SVs, including 

the BM510 cell line in which copy-neutral inter-chromosomal SVs resulted in TP53-
NTRK3 gene fusion24. In agreement with the oncogenic role of TP53-NTRK324, scNOVA 

identified NTRK3 upregulation as the only significant local effect (10% FDR), consistent 

with allele-specific TP53-NTRK3 expression measured on the rearranged haplotype 

(Extended Data Fig. 5). Second, we revisited a 2.6 Mb inversion mapping to 14q32 in 

a T-cell acute lymphoblastic leukemia (T-ALL) patient-derived xenograft (T-ALL_P1)24. 

scNOVA discovered down-regulation of BCL11B, a known haploinsufficient T-ALL tumor 

suppressor57, as a significant local effect of this balanced inversion, supporting allele-

specific silencing of BCL11B on the rearranged haplotype as measured by RNA-seq24 

(Extended Data Fig. 6). These data collectively show that scNOVA allows linking balanced 

SVs to their local functional consequences, a functionality not provided by any prior single-

cell multiomic method20.

Dissecting functional effects of heterogeneous somatic SVs

We next set out to functionally dissect a leukemia sample with unknown genetic drivers, 

by characterizing B-cells from a 61-year-old chronic lymphocytic leukemia (CLL) patient 

(CLL_24)58. Analysis of 86 Strand-seq libraries revealed an unprecedented level of somatic 
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SVs, with 11 different karyotypes represented by 13 SVs occurring in subclones with CFs 

of 1–5% (Table S3). This vastly exceeds intra-patient diversity estimates for CLLs from 

the Pan-Cancer Analysis of Whole Genomes (PCAWG), where maximally three subclones 

were reported59 – highlighting how Strand-seq provides access to SVs escaping discovery 

by WGS3,24. Chromosome 10q showed especially pronounced subclonal heterogeneity; we 

identified 7 partially overlapping deletions ranging from 2-31 Mb in size, and residing 

proximal to the fragile site FRA10B60 (Fig. 4a, Fig. S18). These SVs clustered into a 1.4 Mb 

‘minimal segment’ at 10q24.32, arising independently from both haplotypes (Fig. 4b). While 

prior studies reported somatic 10q24.32 deletions in 1-4% of CLLs61–63, molecular analysis 

of this recurrent somatic SV has so far been lacking.

We first compared all cells bearing a 10q24.32 deletion (‘10q-Del’, N=11) to cells lacking 

such SV (‘10q-Ref’, N=75), hence disregarding the fine-scale subclonal structure of 

CLL_24, and predicted 115 dysregulated genes (Fig. 4c, Table S2). Next, we performed 

molecular phenotype analysis using MsigDB64 (Methods), which revealed that 10q-Del 

cells exhibit increased activity in several leukemia-relevant signaling pathways, including 

Wnt, c-Met (a pathway promoted by Wnt signaling65), B-cell receptor (BCR) signaling, 

phosphatidylinositol (3,4,5)-trisphosphate (PIP3) signaling, and the CREB pathway (10% 

FDR; Fig. 4d). RNA-seq data available for 178 CLLs62 and stratified by 10q24.32 status, 

revealed upregulation of Wnt and c-Met signaling – yet, not of BCR, PIP3 and CREB 

signaling – in CLLs exhibiting 10q24.32 deletions (10% FDR; CLLs with 10q-Del: N=4; 

10q-Ref: N=174; Fig. 4e, Fig. S24). These data therefore suggest a link between 10q24.32 

deletion and the promotion of Wnt signaling.

We further tested whether the different 10q-Del events seen in CLL_24 subclones have 

led to distinct functional outcomes, focusing on three subclones represented by at least 

two cells: ‘SCa’ - showing one interstitial deletion directly at the minimal segment, ‘SCb’ 

- harboring a terDel, with the breakpoint located at the minimal segment boundary, and 

‘SCc’-containing two interstitial deletions, at the minimal segment and at 10q23.31 (Fig. 

4b, Table S3). Molecular phenotype analysis of each subclone identified 109, 206, and 266 

differentially active genes, respectively (Table S2), with the most pronounced levels of Wnt 

upregulation in SCb and SCc (Fig. 4f). SCb showed the highest activation of c-Met, BCR, 

and PIP3 signaling, whereas CREB signaling was highest in SCc (Fig. S21). This suggests 

that deletion location and length at 10q24.32 affect their molecular consequences, and 

furthermore illustrates the ability of scNOVA to predict molecular differences in subclones 

represented by as few as two cells.

To more deeply characterize the CLL_24 subclones, we generated CITE-seq data, which 

couples scRNA-seq with protein surface marker measurements66. Again, we attempted 

SCNA discovery in the scRNA-seq data, which failed to detect any SCNAs, or subclones, 

in CLL_24 (Table S4). However, targeted SCNA recalling46 identified 82 CITE-seq cells 

harboring the >31 Mb 10q terDel of SCb (‘10q-terDel’), whereas the deletions in SCa (2.2 

Mb) and SCc (sized 2.1 Mb and 1.9 Mb, respectively) escaped detection (Extended Data 

Fig. 7, Supplementary Notes). Having recovered the SCb subclone in the CITE-seq data, 

we performed single-cell gene set enrichment analysis67 (Methods), which verified that all 

pathways inferred by scNOVA (Wnt, c-Met, BCR, PIP3, and CREB) are upregulated in 
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10q-terDel cells (Fig. 4d, g). A gene regulatory network analysis68 comparing 10q-terDel to 

10q-Ref cells identified 43 differentially active TFs (FDR 10%, Fig. 4h), and a functional 

enrichment analysis69 showed over-representation of Wnt signaling, BCR signaling, and the 

PD-1 checkpoint pathway (Table S16, Fig. 4h) – the latter of which has been linked to 

immune resistance and transformation of CLL to aggressive lymphoma70,71. Since somatic 

lesions mediating PD-1 expression in CLL have remained elusive, we utilized the CITE-

seq data to analyze PD-1 protein expression, which demonstrated up-regulation of PD-1 

in 10q-terDel containing cells as the only significant hit at the protein level (Fig. 4i). 

Notably, NFATC1, a TF predicted to be differentially active by both scNOVA and CITE-seq, 

regulates Wnt72, PIP373,74, CREB75, BCR signaling76 as well as PD-1 expression77, and 

thus may contribute to global pathway dysregulation in CLL_24. Our analysis reveals 

subtle pathway activities of somatic deletions present at low CF (Fig. 4f,j), and collectively 

implicates 10q24.32 deletions in dysregulated Wnt signaling, a crucial pathway for CLL 

pathogenesis78.

Functional characterization of subclonal chromothripsis

While chromothripsis is a widespread mutational process in cancer3,4,22, this process 

is not ascertained by prior single-cell multiomic methods, and its molecular outcomes 

remain largely elusive3,79. We previously discovered a subclonal chromothripsis event24 in 

T-ALL_P1 that affects most of 6q (denoted ‘6q-CT’; CF=30%) (Fig 5a; Table S3), however 

the consequences of this complex rearrangement were uncharacterized. Using scNOVA, 

we identified 12 genes with differential NO between 6q-CT and 6q-Ref cells (denoted the 

‘CT gene signature’; 10% FDR; Fig. 5a-b; Table S2). A closer analysis showed 27 TF 

genes overlapping the chromothriptic region (Fig. 5a). Gene set over-representation testing 

using the target genes of these TFs revealed that c-Myb, product of the MYB oncogene, 

was significantly enriched among the genes included in the CT gene signature (10% FDR; 

adjusted P=0.00015; Fig. 5b-c, Table S6). The MYB gene is located within a region that was 

duplicated (and inverted) as a result of 6q-CT, suggesting a potential dosage effect (Fig. 5a). 

Corroborating these predictions, we performed RNA-seq in a panel of 13 T-ALLs, amongst 

which T-ALL_P1 showed the highest expression of c-Myb targets (Fig. 5d, Table S7). 

We also verified that MYB is allele-specifically expressed from the SV-affected haplotype 

(P=0.0317; likelihood ratio test, Fig. S30), which together. nominates MYB as a candidate 

driver gene dysregulated as a consequence of 6q-CT.

To more deeply characterize this sample, we generated scRNA-seq data for T-ALL_P1 

(5,504 cells; Fig. 6a). Since scRNA-seq-based SCNAs discovery46–48 missed the 6q-CT 

event (Table S4), we again performed targeted SCNA recalling (Supplementary Notes) 

generating confident calls for 838 (~15%) cells in the scRNA-seq dataset (the remaining 

4,666 cells lacked a confident assignment; ‘NA’). Out of these 838 cells, 729 were predicted 

to harbor the 6q-CT event, and 109 were called 6q-Ref. Unsupervised clustering80 of the 

scRNA-seq data stratified by 6q status (Methods) revealed 6q-CT cells (as predicted through 

targeted recalling) were enriched in two expression clusters (clusters 3 and 7; P=3.43e-5 

and 1.15e-3; FDR-adjusted Fisher’s exact test; Fig. 6d; Fig. S34), in line with a distinctive 

expression profile. To corroborate this, we applied UCell81 to assign cells into ‘6q-CT’ or 

‘6q-Ref’ based on the CT gene signature, which confirmed enrichment of 6q-CT in clusters 
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3 and 7 (Fig. 6c,d; P=3.39e-38 and P=2.15e-4; FDR-adjusted Fisher’s exact test). Trajectory 

analysis82 showed the 6q-CT cells (as defined by UCell) were enriched for DNearly 

(double-negative early; P=2.78e-13), DNQ (double-negative quiescent; P=1.27e-05) and 

DPP (double-positive proliferating; P=1.88e-07) T-cells (FDR-corrected Fisher’s exact tests; 

Fig. 6b, Fig. S35), and depleted of mature CD4+ T-cells (P=1.45e-11, Fig. S35). This 

suggests a potential differentiation block at the progenitor stage as a result of 6q-CT, and 

more generally that 6q-CT cells bear a distinctive molecular phenotype as a result of the 

chromothriptic rearrangements.

Having identified c-Myb pathway activation as a consequence of 6q-CT in TALL_P1, 

we hypothesized this molecular phenotype could guide drug targeting in cell culture. We 

selected NOTCH1 as a suitable candidate for targeting this subclone because this c-Myb 

target i) was inferred by scNOVA to be highly upregulated in 6q-CT cells (Fig. 5b) and ii) 
is targetable by different compounds and strategies83. We treated T-ALL_P1 cell cultures 

with the CB-103 pan-NOTCH smallmolecule inhibitor (targeting the Notch1 intracellular 

domain (N1-ICD)84,85) or a vehicle control for 8h and 24h (Methods). Using scRNA-seq 

(3,663 single-cells) to analyze drug response patterns, we inferred 6q-CT and 6q-Ref cells 

at each timepoint by transferring the cell annotation labels from the untreated (reference) 

sample with Seurat80 (Fig. 6c, Fig. S37). After 24h in culture, vehicle-treated T-ALL_P1 

cells showed a 45% relative increase in the 6q-CT subclone compared to 8h (CF of 

17.1% to 24.6%; P=0.0180; FDR-adjusted Fisher’s exact test) – indicating 6q-CT cells 

expanded clonally. By contrast, upon CB-103 treatment, the CF of the 6q-CT subclone was 

reduced at 24h (to CF=15.5%; P=0.0064; Fig. 6e, Fig. S38) – indicating 6q-CT cells were 

preferentially lost with N1-ICD inhibition. Additionally, we observed specific depletion of 

the REACTOME N1-ICD gene set only in 6q-CT cells after 24h of CD-103 treatment, 

consistent with specific subclone targeting (P=0.0096; FDR-adjusted Wilcoxon-rank sum 

test; Fig. 6f, Fig. S39). These results highlight the potential of scNOVA to functionally 

characterize highly complex classes of DNA rearrangement (i.e., chromothripsis events), and 

to clinically target subclones bearing complex cancer driver SVs.

Discussion

The functional characterization of SVs is of critical importance for precision oncology1–3. 

Our method characterizes a wide spectrum of SV classes24, and couples these with NO 

analysis to link somatic SVs to local or global gene activity changes. Accounting for 

balanced SVs, scNOVA allows the investigation of copy-number stable (i.e., euploid) 

malignancies previously inaccessible to single-cell multiomics3,20 (Table S12). Strand-seq 

derived SCNA calls were far better resolved compared to scRNA-seq based calls (Table 

S4), suggesting a more limited utility of scRNA-seq data for discovering SCNA drivers in 

cancer, with the exception of malignancies displaying extremely high levels of chromosomal 

instability with particularly large-scale SCNAs3,86.

We uncovered unprecedented karyotypic diversity in a CLL sample, comprising distinct 

deletions at 10q24.32, which we link to leukemia-related signaling pathways, particularly 

Wnt signaling. Read-depth based profiling of SCNAs is prone to underreport such subclonal 

structural diversity3. Enrichment of cases bearing 10q24.32 deletions amongst relapsed/
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refractory and high-risk CLL87 suggests a potential role of Wnt pathway dysregulation 

mediated through 10q24.32 in disease progression. Whether the FRA10B fragile site is 

involved in the formation of these deletions remains to be seen and requires larger cohorts. 

Interestingly, CLL_24 exhibits a SNP (rs118137427; 3.7% allele frequency in Europeans) 

within FRA10B associated with the acquisition of 10q-TerDel in normal blood88. Based 

on the PCAWG resource comprising 94 CLLs2, rs118137427 is seen in 2/4 (50%) CLLs 

with 10q24.32 deletions, but in only 6/90 (6.7%) CLLs with 10q-Ref (P=0.035; Fisher’s 

exact test), suggesting a possible link between SNPs at FRA10B and ITH in leukemia that 

warrants future investigation.

Our framework readily functionally characterizes complex rearrangements previously 

inaccessible to single-cell multiomics3. Complex somatic SVs are prevalent in cancer and 

linked with aggressive tumor phenotypes2,3,22 underlining significant potential of scNOVA 

for the comprehensive functional characterization of cancer cells. Since scNOVA does 

not require coupling distinct experimental modalities in each individual cell, it overcomes 

important methodological challenges20 including data sparseness and higher costs from 

generating data for more than one modality20,89. Additionally, the coverage achieved by 

Strand-seq enables the analysis of haplotype-specific NO along the entire genome (Fig. 

S41), providing advantages over classical allele-specific analyses that are restricted to 

regionally phased SNPs15.

Nonetheless, important challenges remain, and the full spectrum of mutations arising in 

an individual cell is likely to remain inaccessible to a single method in the foreseeable 

future. Strand-seq does not capture SVs <200kb that more rarely acts as cancer drivers2. 

Additionally, while scNOVA infers differentially active genes, it does not span the same 

dynamic expression range as scRNA-seq (Table S12). This suggests that pairing scNOVA 

with targeted SCNA recalling by scRNA-seq can provide added value by allowing to 

characterize variants outside of the detection range of other methods. Finally, Strand-seq 

requires dividing cells for BrdU labeling23 (Fig. 1a), and is therefore not applicable for 

non-dividing cells or fixed samples. However, it can be utilized for dividing cells in 

organoids, primary fresh frozen progenitor cells, cells in regenerating tissues, and cancer 

samples amenable to culture. Our study used cell lines for benchmarking followed by proof-

of-principle application in patient samples. Generalization of these analyses to larger cohorts 

will allow systematic investigation of the roles subclonal SVs play in leukaemogenesis.

We foresee a wide variety of potential future applications. Our framework offers potential 

for studies on the determinants and consequences of chromosomal instability in cancer, and 

may promote research into the interplay of genetic and non-genetic cancer determinants20. 

It likewise could be used to advance surveys of precancerous lesions3,90. Additionally, 

scNOVA may offer value in precision oncology by exposing subclonal driver alterations 

along with their targetable functional outcomes, to target cancer subclones in patients. 

Furthermore, SVs can accidentally arise in key model cell lines, as we demonstrate for 

widely used LCLs, and scNOVA’s features are ideally suited to functionally characterize 

unwanted heterogeneity in such samples. Unwanted somatic SVs also arise as a by product 

of CRISPR-Cas9 genome editing, which generates micronuclei and chromosome bridges in 

human primary cells, structures that initiate the formation of chromothripsis91. scNOVA 
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could promote the safety of therapeutically relevant genome editing in the future, by 

enabling the simultaneous detection and functional characterization of such potentially 

pathogenic editing outcomes.

In summary, scNOVA moves directly from SV landscapes to their functional consequences 

in heterogeneous cell populations. By making a broad spectrum of somatic SVs accessible 

for functional characterization genome-wide, this single-cell multiomic framework serves as 

a foundation for deciphering the impact of somatic rearrangement processes in cancer.

Methods

Strand-seq library preparation

NA20509 Strand-seq libraries were prepared as previously described98. Strand-seq libraries 

of primary leukemia samples were generated as follows: Peripheral blood mononuclear cells 

of a previously untreated female CLL patient (routine diagnostics: IGHV unmutated, no 

TP53 mutation, no detected alteration in 6q21, 8q24, 11q22.3, 12q13, 13q14 und 17p13) 

were isolated after obtaining informed consent. Cells were isolated and cultured using 

previously established protocols99. CLL cells were cultured at 1x106 cells/ml in Roswell 

Park Memorial Institute (RPMI) medium (Gibco by Life technologies), supplemented with 

10 % human serum (PAN BIOTECH), 1 % Pen/Strep (GIBCO by Life Technologies) 

and 1 % Glutamine (GIBCO by Life Technologies). Cells were stimulated with 1 μg/ml 

Resiquimod (Enzo) and 50 ng/ml IL-2 (Sigma). BrdU (40 μM; Sigma) was incorporated 

for 90 h and 120 h, respectively, to perform non-template strand labeling. Single nuclei 

from each timepoint were sorted into 96-well plates using a BD FACSMelody cell sorter, 

followed by Strand-seq library preparation (described below). In the case of the AML 

sample, frozen primary mononuclear cells from a bone marrow aspirate were thawed and 

stained with CD34-APC (clone 581; Biolegend), CD38-PeCy7 (clone HB7; eBioscience), 

CD45Ra-FITC (clone HI100; eBioscience), CD90-PE (clone 5E10; eBioscience), and LIVE/

DEAD™ Fixable Near-IR Dead Cell Stain (Thermofisher). Single, viable, CD34+ cells 

(Fig. S15) were sorted using a BD FACSAria™ Fusion Cell Sorter into ice-cold Serum-

Free Expansion Medium (SFEM) supplemented with 100 ng/ml SCF and Flt3 (Stem Cell 

Technologies), 20 ng/ml IL-3, IL-6, G-CSF and TPO (Stem Cell Technologies). Cells 

were plated in Corning Costar Ultra-Low Attachment 96-well flat-bottom plates (Sigma) 

at 1x105 cells/ml in warm medium as above. 24 h after culture, 40 μM BrdU was added. 

Nuclei were isolated after 43 h total culture time, and BrdU-incorporating nuclei sorted 

into 96-well plates followed by Strand-seq library preparation. All Strand-seq libraries were 

automatically prepared using a Biomek FXP liquid handling robotic system, as described 

previously23,100. Libraries were sequenced on an Illumina NextSeq500 sequencing platform 

(MID-mode, 75 bp paired-end sequencing protocol).

Strand-seq data preprocessing

Reads from Strand-seq (fastq) libraries were aligned to the hg38 assembly using bwa101, 

as previously described24. Sequence reads with low quality (MAPQ<10), supplementary 

reads, and duplicated reads were removed. Single cell library selection was performed as 

described previously24. The single-cell footprints of different SV classes were discovered 
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using the principle of single cell tri-channel processing (scTRIP) of Strand-seq data, using 

the MosaiCatcher computational pipeline with default settings24.

scNOVA: coupling NO measurements and SV discovery in the same cell

We developed scNOVA as a computational framework for coupling discovered somatic 

SVs with analyses of NO profiles – in the same cell. The scNOVA workflow covers a 

set of different operations from single-cell SV discovery (using the previously described 

scTRIP method24) to NO profiling at CREs, and gene as well as pathway dysregulation 

inference based on NO at gene bodies, and can be used in a haplotype-aware or -unaware 

manner (Extended Data Fig. 1). To maximize reusability, interoperability and reproducibility 

we combined all of scNOVA’s modules into a coherent workflow using snakemake. 

Alternatively, these modules can be executed individually.

Nucleosome occupancy (NO): data analysis and operational definition utilized
—We operationally defined nucleosome occupancy (NO) closely following definitions from 

a prior study28: NO maps were calculated by counting how many reads from the Strand-seq 

libraries (which typically comprise mono-nucleosomal fragments ~140-180 base pairs in 

size; see Table S1, Fig. S1) covered a given base pair based on aligning reads to the GRCh38 

(hg38) genome assembly with BWA101. Genomic regions with unusual (such as artificially 

high) coverage were considered artifacts, and were automatically excluded (“blacklisted”) 

by our Strand-seq analysis workflow as previously described24. No further peak calling or 

smoothing was conducted, and no assumptions on the length of the nucleosomal DNA were 

made to derive NO maps, as nucleosome boundaries were determined on both sides of the 

nucleosome by paired-end sequencing28. For the calculation of NO around bound CTCF 

binding sites (downloaded from ENCODE34), the averaged profile was scaled28 to yield an 

NO equal to 1 at position -2000bp from the center of the bound CTCF site.

Cell type classification—We generated feature sets from the NO at the body of genes 

(defined as the region from the TSS to the transcription termination site (TTS), which 

includes exons and introns) at the single-cell level. When there were multiple sequencing 

batches from the same samples available, we applied batch correction to the NO count 

matrix using ComBat-seq102. NO in gene body regions was normalized by segmental copy 

number status, and by library size to obtain reads per million (RPM), which we transformed 

into log2 scale. This feature set was used for the unsupervised dimension reduction plot 

(Extended Data Fig. 3) and for training of a supervised classification model based on partial 

least squares discriminant analysis (PLS-DA)103.

Haplotype-phasing of single-cell NO tracks—As previously described, Strand-

seq directly resolves its underlying sequence reads onto haplotypes ranging from 

telomere to telomere31 (chromosome-length haplotyping). scNOVA phases NO profiles 

onto a chromosomal homolog using the StrandPhaseR algorithm31, which is employed 

wherever the template strand segregation pattern of a chromosome enables unambiguous 

haplotype-phasing – that is, for Watson/Crick (WC) or Crick/Watson (CW) template 

state configurations in Strand-seq libraries31,100. Haplotype-specific analyses pursued 

by scNOVA employ phased reads (normalized by locus copy number), whereas the 
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inference of gene activity changes uses both phased reads (from chromosomes with a 

WC or CW configuration) and unphased reads (from chromosomes with a CC or WW 

configuration31,100).

Inference of haplotype-specific NO and identification of local effects of SVs—
To dissect local effects of SVs, the scNOVA framework performs a genome-wide haplotype-

specific NO analysis at gene bodies in pseudo-bulk, which yields a haplotype-specific NO 

matrix. Using this matrix, scNOVA then scans up to +/-1Mb around each somatic SV 

breakpoint to infer local effects of these breakpoints on haplotype-specific gene activity, 

using FDR-adjusted Wilcoxon rank sum tests. Once a local effect on gene activity is 

identified, scNOVA additionally provides the option to locally scan for CREs exhibiting 

haplotype-specific NO. To do so, user-provided CRE positions from the cell type of interest 

are used by scNOVA to calculate haplotype-specific NO at CREs, and the Exact test (10% 

FDR) is used for significance testing.

Inference of genome-wide changes in gene activity—This haplotype-unaware 

module of scNOVA considers all reads – whether they are phased or not – to infer 

gene activity alterations via analysis of differential patterns of NO along gene bodies. 

scNOVA obtains gene loci from ENSEMBL (GRCh38.81), converted into bed format 

(Genebody_hg38.81.bed). Strand-seq reads falling within the start and end position of 

genes (Genebody_hg38.81.bed) were identified with the Deeptool multiBamSummary 

function104, using the following parameters: [multiBamSummary BED-file --BED 

Genebody_hg38.81.bed --bamfiles Input.bam --extendReads --outRawCounts output.tab 

-out output.npz] scNOVA’s gene dysregulation inference module contains two steps. Step 1 
filters out genes unlikely to be expressed (‘not expressed’, NEs). Step 2 infers dysregulated 

(i.e. differentially expressed) genes between subclones using a generalized linear model In 

Step 1, scNOVA first aims to infer gene expression ‘On’ and ‘Off states105 from NO, by 

analysing NO as well as gene context-specific sequence features along gene bodies using 

deep convolutional neural networks106 (CNNs).

By default, scNOVA operates with the model trained with a pseudo-bulk of 80 cells, to 

estimate the probability of each gene to represent an NE in each clone. Genes likely to 

be unexpressed (NE status probability≥0.9) across clones are filtered out in Step 1, and all 

remaining genes used in Step 2.

In Step 2, scNOVA by default employs negative binomial generalized linear models, 

available in the DESeq2 algorithm107, to infer genes with differential activity between 

individual cells or clones. As an input, scNOVA computes single-cell count tables of gene 

body NO. When running this step with subclones, all individual cells of the subclone 

are considered ‘replicates’ in DESeq2 terminology107. Subclones (or cells) are compared 

in a pairwise manner using a two-sided Wald test to infer genome-wide alterations in 

gene activity. Based on this, we defined the differential gene activity score as the sign 

of the fold change in NO at gene bodies, multiplied by –log10 p-values. Genes with 

significantly altered activity were identified using a 10% FDR threshold. Additionally, to 

facilitate the analysis of small CF subclones, scNOVA provides an alternative mode which 

employs partial least squares discriminant analysis (PLS-DA)103 to identify discriminatory 
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feature sets as gene sets showing altered activity. To do this, scNOVA builds a PLS-DA103 

discriminant model to classify cells in a given subclone 1 and subclone 2 based on single-

cell count tables of gene body NO as feature sets. This model provides a variable importance 

of projection (VIP) and significance compared to a null distribution in the form of a P-value 

for each gene analyzed. Similar to the default setting, genes with altered activity were 

identified using a 10% FDR cutoff when using PLS-DA for inferring changes in gene 

activity between subclones. Benchmarking both modes (see Extended Data Fig. 4) suggested 

that whereas both DESeq2 and PLS-DA offer acceptable performance, the alternative mode 

(PLS-DA) outperforms the default setting when the subclonal CF is below 10%, whereas the 

default mode (DESeq2) generated superior results for CF values of 10% or greater.

Genes with altered somatic copy number were masked (removed) when investigating gene 

activity changes based on NO at gene bodies, since differences in copy number status could 

confound differential NO measurements.

Molecular phenotype analysis in gene sets—This module of scNOVA uses defined 

gene sets, obtained from public resources, to identify over-represented sets of functionally 

related genes changing in activity between subclones (or individual cells). Two types of 

analyses are enabled by this module: (1) gene set over-representation analysis, which, for 

example, can be used to investigate the enrichment of targets of a major transcription 

factor (TF) among genes showing a change in activity according to gene body analysis of 

NO; (2) joint modeling of NO across predefined gene sets, using pathway definitions from 

MSigDB64. Throughout the manuscript, we applied an FDR of 10% (adjusted P < 0.1) as a 

significance threshold.

In the case of gene set over-representation analysis, we collected TF target genes from 

database entries (EnrichR50) as well as by reviewing the literature. When reviewing the 

literature, we created curated lists of target genes for TFs based on published genome-wide 

studies using the following strict criteria: (i) target genes show evidence of binding of the TF 

of interest by ChIP-seq; (ii) the same genes must additionally show differential expression 

when the TF of interest is experimentally silenced (our curated target gene lists are available 

in Table S7). For each TF, the significance of overlap between its target gene set and 

genes exhibiting differential NO was computed using hypergeometric tests, followed by 

controlling the FDR at 10%.

To jointly model differential NO across all genes of predefined pathways, scNOVA first 

generates a single-cell gene body NO table using Strand-seq read count data, with these read 

counts then being normalized using the median-of-ratios method from DESeq2107. For each 

member in the biological pathway gene sets from MSigDB64, scNOVA then computes mean 

normalized NO values, in each single-cell, as a proxy for pathway-level NO. Lowly variable 

genes (standard deviation <80%) are removed. Pathway-level NO is compared between cells 

with and without SVs using linear mixed model fitting followed by likelihood ratio testing, 

and controlling the FDR at 10%. For linear mixed model fitting, SV status is defined as 

a fixed effect and different Strand-seq library batches are defined as random effects, by 

scNOVA.
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Quantitative real time PCR (qPCR)

NA20509 was ordered from Coriell and taken into culture at passage 4. The late passage 

was grown until passage 8 in a time span of 8 weeks. HG01505 was taken into culture 

at passage 5 and was grown until passage 9 within a total time span of 6 weeks. DNA, 

RNA and Protein were isolated with the NucleoSpin TriPrep Mini kit (740966.50) according 

to the manufacturer’s protocol. qPCR was performed on genomic DNA. PCR primers for 

MAP2K3 and TP53 were obtained from Sigma. qPCR was performed using BD SYBR 

Green PCR Master Mix (4309155) with a final primer concentration of 300nM each 

and 10ng input gDNA. A GAPDH control region was used as a normalizer. The primer 

sequences for DNA qPCR are provided in Table S17.

Drug treatment with CB-103

Primary human T-ALL cells were recovered from cryopreserved bone marrow aspirates 

of patients enrolled in the ALL-BFM 2009 study. Patient-derived xenografts (PDX) were 

generated as previously described by intrafemoral injection of 1 Million viable primary 

ALL cells in NSG mice108 PDX-derived (T-ALL_P1)24 cells were frozen until processing. 

Human hTERT immortalized primary bone marrow mesenchymal stroma cells (MSC; 

provided by D. Campana, St. Jude Children’s Research Hospital, Memphis, TN) were 

cultured in RPMI 1640 medium supplemented with 10% heat-inactivated fetal bovine 

serum, L-glutamine (2 mM), penicillin/streptomycin (100 IU/ml) and hydrocortisone (1 

μM). MSCs were seeded in 24-well plates at a concentration of 500.000 cells per well in 

1 ml Aim V medium. After 24 hours, T-ALL cells were added at a concentration of 1.5 

million cells per well in 1 ml Aim V. CB-103 (MedChemExpress, HY-135145) or DMSO 

(vehicle) as control was added after an additional 24 hours at a concentration of 10 μM. 

After 8 hours and 24 hours, cells were trypsinized, collected and frozen in 90% FBS/10% 

DMSO.

Single-cell RNA sequencing and data processing

For scRNA-seq library preparation, cryopreserved cells were thawed rapidly at 37 °C and 

resuspended in 10 ml warm Roswell Park Memorial Institute (RPMI) medium with 100 

μg/ml Dnase I. Cells were centrifuged for 5 mins at 300 g, and resuspended in ice-cold 

phosphate buffered saline (PBS) with 2% foetal bovine serum (FBS) and 5mM EDTA. Cells 

were stained on ice with anti-murine-CD45-PE (mCD45)(clone 30-F11; BioLegend; 1:20) in 

the dark for 30 mins. 1:100 DAPI was added and incubated in the dark for 5 mins before 

sorting. Triple negative cells (DAPI-mCD45-GFP-) were sorted (Fig. S32) using a BD 

FACSAria™ Fusion Cell Sorter into ice cold 0.03% bovine serum albumin (BSA) in PBS. 

All isolated cells were immediately used for scRNA-seq libraries, which were generated 

as per the standard 10x Genomics Chromium 3’ (v.3.1 Chemistry) protocol. Completed 

libraries were sequenced on a NextSeq5000 sequencer (HIGH-mode, 75 bp paired-end).

Sequenced transcripts were aligned to both human and mouse genomes (GRCh38 and 

mm10) and quantified into count matrices using Cellranger mkfastq and count workflows 

(10X Genomics, V 3.1.0, default parameters). The R package Seurat80 (V 4.0.3) was used 

for QC of single cells and unsupervised clustering of the data. Briefly, human cells were 

separated from multiplets/mouse contamination based on >97 % of their reads aligning to 
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GRCh38. Further filtering for high quality cells accepted only those with >200 but <20,000 

total RNA counts, and a percentage of mitochondrial reads <10% for the untreated data, and 

<40% for the drug treated samples. Finally, remaining mouse transcripts were removed prior 

to further analysis.

In the untreated data, normalisation, scaling and regression of mitochondrial read percentage 

was carried out using the scTransform package109. Dimensionality reduction and differential 

expression analysis of identified clusters was performed as standard using Seurat. Trajectory 

analysis was performed using Monocle3110. In the drug treatment data, individual Seurat 

objects which had been quality controlled as above were normalised by scTransform109,111 

and then integrated to correct for batch effects and allow for comparative analysis. To 

re-annotate clusters from the untreated data in the drug treatment data, the TransferData() 

function from Seurat80 was used to project labels from our reference (i.e. untreated data) 

onto the integrated drug treatment data. Single-cell gene set enrichment analysis was 

performed using the R package ‘escape’67.

Cellular indexing of transcriptomes and epitopes by single-cell sequencing (CITE-seq)

A peripheral blood-derived sample (CLL_24) was recovered from cryopreservation as 

previously described112 to reach viability above 90%. Then, 5 x 105 viable cells were 

stained by a pre-mixed cocktail of oligonucleotide-conjugated antibodies (Table S14) and 

incubated at 4 °C for 30 minutes. We provided dilution used for each antibody in Table 

S14. Cells were washed three times with icecold washing buffer. After completion, bead-

cell suspensions, synthesis of complementary DNA and single-cell gene expression and 

antibody-derived tag (ADT) libraries were performed using a Chromium single cell v3.1 

3’ kit (10x Genomics) according to the manufacturer’s instructions. 3’ gene expression and 

ADT libraries were pooled in a ratio of 3:1 aiming for 40,000 reads (gene expression) 

and 15,000 reads per cell (ADT), respectively. Sequencing was performed on a NextSeq 

500 (Illumina). After sequencing, the cell ranger wrapper function (10x Genomics, v6.1.1) 

cellranger mkfastq was used to demultiplex and to align raw base-call files to the human 

reference genome (hg38). The obtained FASTQ files were counted by the cellranger 
count command. If not otherwise indicated default settings were used. Single-cell gene set 

enrichment analysis was performed using the R package ‘escape’67.

Single-cell gene signature scoring using UCell

The activity of the scNOVA-identified gene set from T-ALL_P1 in scRNA-seq data was 

profiled using the UCell package 81. Briefly, signature genes considered were those 

with either increased (implying decreased expression) or decreased (implying increased 

expression) nucleosome occupancy (see Fig. 5b), or genes encoding TFs whose targets 

showed differential nucleosome occupancy (see Fig. 5c). The following gene set was 

used for T-ALL_P1: “PRKCB-”, “RPS6KA2-”, “FAM120B-”, “FAM86C1+”, “FBXO22+”, 

“RHOH+”, “SLC9A7+”, “NASP+”, “NOTCH1+”, “MRPL48+”, “MFSD9+”, “MVB12B+”, 

“MYB+” (with “+” for upregulated, and “-” for downregulated). The score per single cell for 

the entire directional gene set was calculated using the AddModuleScore_UCell() function. 

Cells were considered to be ‘active’ for the signature genes if their respective UCell score 
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was greater than or equal to the median UCell score of the entire dataset, plus the standard 

deviation.

Similarly, for T-cell cell-type labelling, marker gene sets for T-cell subsets were obtained 

from113 and single cells were scored for their activity in each gene set. Cells were labelled 

by their best-fit cell type, i.e. the cell-type whose gene set gave the highest UCell score.

Extended Data

Extended Data Fig. 1. Overview of components of the scNOVA computational workflow.
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scNOVA employs single cell tri-channel processing (scTRIP) as realized in the 

MosaiCatcher pipeline to perform haplotype-aware somatic SV discovery24. Modules 

of scNOVA enable single-cell mulitomics of these somatic SVs, including inference of 

haplotype-specific NO to investigate local (cis) effect of SVs, and inference of altered 

gene/pathway activity to investigate global (trans) effect of SVs detectable between 

geneticlaly distinct subclones. To infer alterations in gene activity, scNOVA integrates 

deep convolutional neural network (CNN) based machine learning, and negative binomial 

generalized linear models. The framework dissects intra-sample genetic heterogeneity at 

single-cell resolution, measures the local haplotype-specific impact of somatic SVs, can 

be used to explore global gene dysregulation in SV-containing cells, can discriminate 

between genetically-distinct subclones, and can uncover shared functional consequences 

of heterogeneous SVs affecting the same chromosomal interval.
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Extended Data Fig. 2. Read depth of Strand-seq and MNase-seq data stratified into 15 chromatin 
states defined by Roadmap epigenome consortium33.
15 chromatin states based on the NA12878 cell line were utilized in this genome-wide 

analysis. Plots generated represent Strand-seq data from NA12878 (n = 95 cells) (a), and 

publicly available MNase-seq from NA12878, NA19193, and NA19238 (n = 1 sample each) 

(b-d). The bulk MNase-seq experiment of NA12878 was pursued using single-end SOLID 

sequencing reads, and that of NA19193 and NA19238 was done using paired-end Illumina 

reads. The X-axis in the box plot indicates reads per kilobase per million (RPKM) measured 
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for each genomic segment annotated by one of the 15 chromatin states. Abbreviations 

for chromatin states33 are: TssA-Active TSS, TssAFlnk-Flanking Active TSS, TxFlnk - 

Transcription at gene 5’and 3’, Tx - Strong transcription, TxWk - Weak transcription, 

EnhG - Genic enhancers, Enh - Enhancers, ZNV/Rpts - ZNF genes & repeats, Het - 

Heterochromatin, TssBiv - Bivalent/Poised TSS, BivFlnk - Flanking Bivalent TSS/Enh, 

EnhBiv - Bivalent Enhancer, ReprPC - Repressed PolyComb, ReprPCWk - Weak Repressed 

PolyComb, Quies - Quiescent/Low. Boxplots were defined by minima = 25th percentile - 

1.5X interquartile range (IQR), maxima = 75th percentile + 1.5X IQR, center = median, and 

bounds of box = 25th and 75th percentile. Both Strand-seq and MNase-seq assays measured 

NO in all fifteen chromatin states. Among these chromatin states, Strand-seq and MNase-seq 

revealed the highest NO signals on average for the polycomb repressed state and the bivalent 

enhancer state; whereas the lowest average NO signals were consistently seen for the active 

transcription start site (TSS) state.
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Extended Data Fig. 3. Utility of NO for cell-typing.
(a) Cell-typing based on NO at gene bodies (AUC=1). Epi1: RPE-1 replicate 1 (79 cells); 

Epi2: replicate 2 (77 cells); LCL1: HG01573 (46 cells); LCL2: HG02018 (50 cells), LCL3: 

NA19036 (50 cells); LV: latent variable. (b) UMAP visualization of Strand-seq libraries 

based on NO at gene-bodies (normalized by segmental ploidy status24). (c) We also explored 

dimensionality reduction of Strand-seq libraries based on DNA motif accessibility. Using the 

chromVAR package94, single-cell NO profiles for 2kb DNase I hypersensitive sites (DHSs) 

were transformed into a deviation Z-score, which measures how likely a certain motif 
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accessibility would occur when randomly sampling sets of peaks with similar GC content 

and read depth. For each single-cell, the deviation Z-score was calculated for 870 human 

TF motifs from the cisBP database95. These dimensionality reduction plots suggest that 

batch effect within the same cell type (three individuals in LCL, and two batches in RPE-1 

sequenced separately) is minimal, and far less than the cell-type dependent variability. (d) 
UMAP using scMNase-seq26, including 45 NIH3T3 cells and 272 murine naive T cells, 

based on NO at the gene-bodies. (e) UMAP of RPE-1 (the originally commercially available 

cell line) and its transformed derived37 cell lines (BM510 and C7). Two biological replicates 

were sequenced for each cell line. (f) Receiver operating characteristic (ROC) using the 

PLS-DA based classifier.

AUC for classifying each cell line was 0.9614, 0.9694, and 0.9892 for RPE-1, BM510, 

and C7 respectively. (g-h) Cell-typing for LCL, RPE-1, skin fibroblast, AML, T-ALL, and 

umbilical cord blood cells (g), and ROC curve depicting classification performance (overall 

AUC = 0.998) (h). (i-j) Cell-typing in five RPE-1 derived cell lines37 (RPE-1, BM510, C7, 

C29, and C11) (i), and ROC curve depiciting classification performance (overall AUC = 

0.9648) (j).

Extended Data Fig. 4. In silico downsampling experiments.
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We performed in silico cell mixing of RPE-1 and HG01573 cells to simulate application 

of scNOVA to different cell fractions (CFs). In this analysis six different CF ranges were 

considered (20, 10, 5, 3.3, 2, and 1.3). For each in silico cell mixing experiment, a total 

of 150 single cells were randomly subsampled for the major pseudo-clone (containing 

RPE-1 cells) and the minor pseudo-clone (HG01573 cells), by controlling the minor pseudo-

clone CF at 20, 10, 5, 3.3, 2, and 1.3%, respectively. AUC, area under the curve. DEGs, 

differentially expressed genes. For each CF, we performed random subsampling of single-

cell libraries 10 times, and depicted the respective mean AUC in the plot. Two different 

analysis modes - default (dashed lines, CNN with negative binomial generalized linear 

model), and alternative (solid lines, CNN with PLS-DA) are depicted. When the CF is 

larger than 10%, the default mode performs better, whereas for CFs smaller than 10%, the 

alternative mode outperforms the default mode.
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Extended Data Fig. 5. Haplotype-specific NO analysis in RPE-1 and BM510.
(a-b) Haplotype-specific NO analysis of NO at gene bodies genome-wide in RPE-1 (a) 

and BM510 (b). For each chromosomal karyogram, the y-axis indicates the significance 

of haplotype-specific NO for each gene (-log10 p.adjust). All the significant genes were 

indicated in red dots (FDR 10%; two-sided wilcoxon ranksum test followed by Benjamini 

Hochberg multiple correction; derived from n = 33 cells and n = 79 cells for RPE-1 

and BM510, respectively; Boxplots were defined by minima = 25th percentile - 1.5X 

interquartile range (IQR), maxima = 75th percentile + 1.5X IQR, center = median, and 

bounds of box = 25th and 75th percentile.). NTRK3 (identified in BM510) is the only 

significant gene adjacent to an SV breakpoint. Haplotype-resolved RNA expression at the 

NTRK3 locus is depicted using bar graphs in the right panel (two-sided likelihood ratio test 
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followed by Benjamini Hochberg multiple correction; n = 2 biological replicates; Data are 

presented as mean values +/- SEM). (c-d) Haplotype-specific NO analysis at CREs. Browser 

track depicts the haplotype-resolved NO of the not rearranged (Ref) homolog in red, and 

the SV homolog in blue. scNOVA identified two CREs with significant haplotype-specific 

NO, including an intergenic CRE spanning chr15:87527100-87528100 (p.adjust = 0.029, 

log2-fold change = - 2.01) (c) and an intronic CRE at chr15:88246388-88247388 (p.adjust = 

0.076, log2-fold change = -1.39) (d).
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Extended Data Fig. 6. Haplotype-specific NO analysis in T-ALL_P1.
(a) For each chromosomal karyogram, the y-axis indicates the significance of haplotype-

specific NO at each gene (-log10 p.adjust). Genes with haplotype-specific NO are indicated 

using red dots (FDR 10%). An inlet figure depicts haplotype-specific NO (two-sided 

wilcoxon ranksum test and Benjamini Hochberg multiple correction; n = 56 cells) and 

RNA expression at the BCL11B gene locus (two-sided likelihood ratio test and Benjamini 

Hochberg multiple correction; n = 2 biological replicates), which has a nearby somatic 

SV (within 1 Megabase) and represents the (only) predicted local SV effect. (b) We did 

not measure haplotype-specific NO for TCL1A (two-sided wilcoxon ranksum test and 

Benjamini Hochberg multiple correction; n = 56 cells), a small gene with 4229 bp in size, 

in spite of its haplotype-specific gene expression24 (two-sided likelihood ratio test and 

Benjamini Hochberg multiple correction; n = 2 biological replicates). Boxplots were defined 

by minima=25th percentile-1.5X interquartile range (IQR), maxima=75th percentile+1.5X 

IQR, center=median, and bounds of box=25th and 75th percentile. For bargraphs, data 

are presented as mean values +/- SEM (a-b). (c) Simulation analysis revealed a minimum 

gene length (7219 bp) needed to robustly detect haplotype-specific NO at gene bodies, a 

gene length met by 80% of genes in the genome (Supplementary Notes). (d) Inversion 

breakpoints and rearranged TADs. Known 3’ BCL11B enhancers96 are depicted in orange. 

In the not rearranged haplotype, they are located proximal to BCL11B, but in the inverted 

haplotype these enhancers they are located far away from BCL11B, and proximal to TCL1A 
in the different TAD boundary. (e) Application of scNOVA identified an intergenic CRE near 

the BCL11B with haplotype-specific NO. The browser track depicts the haplotype-resolved 

NO of the not rearranged (Ref) homolog in red and the SV homolog in blue. (f) The known 

3’ BCL11B enhancer does not show significant haplotype-specific NO, but the inversion 

physically relocates these enhancers to the far distance from the BCL11B. A representative 

CRE is shown amongst four CREs overlapping with known 3’ BCL11B enhancers.

Extended Data Fig. 7. Inference of SCNAs using CITE-seq data from the CLL_24 sample.
(a) InferCNV48 analysis of 3,919 high quality CLL cells, and 540 control cells (cells 

sequenced by CITE-seq not originating from the B-cell lineage; see Fig. S25), profiled by 

CITE-seq. This analysis did not discover any subclones in CLL_24. (Note that the high 

Jeong et al. Page 27

Nat Biotechnol. Author manuscript; available in PMC 2023 June 16.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



variability observed on the 6p-arm, not only seen in CLL cells but also in control cells, 

likely arose from the presence of MHC genes in this locus, whose expression is cell cycle 

dependent97.) (b) CONICSmat based targeted SCNA recalling of the 10q-terDel (previously 

discovered in SCb; see Fig. 4b) using the high-resolution breakpoints derived from Strand-

seq. Use of these SV breakpoints allowed CONICSmat to confidently call the 10q-terDel in 

82 single-cells from the CITE-seq data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Haplotype-aware single-cell multiomics to functionally characterize SVs.
(a) Leveraging Strand-seq, scNOVA first performs SV discovery and then using phased NO 

tracks identifies functional effects of SVs locally (via evaluation of haplotype-specific NO) 

and globally (clone-specific NO). Orange: Strand-seq reads mapped to the W (Watson) 

strand; green: C (Crick) strand. (b) Strand-seq based NO tracks in NA12878 reveal 

nucleosome positions well-concordant with bulk MNase-seq, depicted for a chromosome 

12 locus with relatively regular nucleosome positioning92. Red: NO tracks mapping to 

haplotype 1 (H1); blue: H2; black: combining phased and unphased reads; grey: MNase-seq. 
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The y-axis depicts the mean read counts at each base pair in 10bp bins. (c) Correlated 

NO at consensus DNase I hypersensitive sites33 for NA12878. (d) Averaged nucleosome 

patterns at CTCF binding sites34 in NA12878, using pseudo-bulk Strand-seq and MNase-

seq. (e) Fold changes of haplotype-resolved NO in gene bodies plotted for chromosome 

X and chromosome 7 (a representative autosome) in NA12878. Fold changes of haplotype-

resolved RNA expression measurements are shown to the right. (f) Pseudo-bulk haplotype-

phased NO track of exons of the representative chromosome X gene SH3KBP1 based 

on Strand-seq. Boxplots comparing H1 and H2 use two-sided wilcoxon ranksum tests 

followed by Benjamini-Hochberg multiple testing (FDR) correction (boxplots defined by 

minima=25th percentile-1.5X interquartile range (IQR), maxima=75th percentile+1.5X IQR, 

center=median, and bounds of box=25th and 75th percentile; n=47 single-cells). Bar charts 

show haplotype-specific RNA expression of SH3KBP1 (two-sided likelihood ratio test 

followed by FDR correction; n=4 biological replicates; data are presented as mean values 

+/- SEM). (g) Inverse correlation of NO at gene bodies and gene expression. NO is based 

on pseudo-bulk Strand-seq libraries from RPE-1. RPM: reads per million. TTS: transcription 

termination site. Gene bodies were scaled to the same length. (h) Cell-typing based on NO 

at gene bodies (AUC=0.96). Cell line codes: Blue: RPE-1. Purple: BM510. Magenta: C7. 

LV: latent variable. (i) Receiver operating characteristics for inferring altered gene activity 

by analyzing NO at gene bodies, using pseudo-bulk Strand-seq libraries from in silico cell 
mixing.
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Figure 2. Linking subclonal SVs to their functional consequences in LCLs.
(a) Complex SVs in NA20509, with BFB-mediated rearrangements (17p) and a terminal 

dispersed duplication (5q) present with CF=85%, shown for representative single cells. 

Ref: cells lacking complex SVs. InvDup: inverted duplication. terDel: terminal deletion. 

Reads are mapped to the W (Watson, orange) or C (Crick, green) strand. Grey: single 

cell IDs. (b) Heatmap of 18 genes with altered gene activity amongst subclones, based on 

scNOVA (‘17p-BFB’, SV subclone; ‘17p-Ref’, 17p not rearranged). Asterisks denote TF 

targets of c-Myc and Max. (c) Gene set overrepresentation analysis for TF target genes 

showing significant enrichment of c-Myc and Max targets in the 17p-BFB subclone. Right 

panel: Model for c-Myc/Max target activation in NA20509 based on scNOVA, combined 

with prior knowledge. (d) Mean RNA-seq expression Z-scores of c-Myc/Max target genes 

across 33 LCLs. (e) Fishplot showing CF changes over long-term culture from 23.3% 

(7/33 cells; p4) to 100% (30/30 cells; p8). (f) qPCR verifies clonal expansion of the BFB 

clone in p8 compared to p4 (P-value based on FDR-corrected two-sided unpaired t-tests; 

n = 3). HG1505, control cell line with a somatically stable MAP2K3 locus. Note that 
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for both NA20509 and HG1505 the germline copy number of the MAP2K3 locus was 

consistently estimated to be 3. Data are presented as mean values +/- SEM. (g) RNA-seq 

shows significant increase of MAP2K3 at p8 versus p4 (FDR-corrected two-sided Wald test, 

based on DESeq2; n=5 and 3 biological replicates for p4 and p8, respectively). (h) Mean 

RNA expression Z-scores of c-Myc/Max target genes in NA20509 (differences between 

p4 and p8 were evaluated using a two-sided Wilcoxon ranksum test; n=5 and 3 biological 

replicates for p4 and p8, respectively). Boxplot was defined by minima = 25th percentile - 

1.5X interquartile range (IQR), maxima = 75th percentile + 1.5X IQR, center = median, and 

bounds of box = 25th and 75th percentile (g-h).
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Figure 3. Haplotype-specific NO analysis shows local effects of a copy-neutral driver SV in AML.
(a) Balanced t(8;21) translocation in AML_1, discovered based on strand co-segregation (P-
value for translocation discovery using strand co-segregation24: P=0.00003, FDR-adjusted 

Fisher’s exact test, Fig. S16). The SV breakpoint was fine-mapped to the region highlighted 

in light blue. Composite reads shown were taken from all informative cells in which reads 

could be phased (WC or CW configuration; Methods). (b) A violin plot demonstrates 

haplotype-specific NO at the RUNX1T1 gene body (10% FDR; two-sided wilcoxon 

ranksum test followed by Benjamini Hochberg multiple correction; n = 17 single-cells; 
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boxplot was defined by minima = 25th percentile - 1.5X interquartile range (IQR), maxima 

= 75th percentile + 1.5X IQR, center = median, and bounds of box = 25th and 75th 

percentile), consistent with aberrant activity of the locus on der(8). (c) Haplotype-specific 

NO around the SV breakpoint. Fold changes of haplotype-specific NO, measured between 

the RUNX1-RUNX1T1 containing derivative chromosome (der(8)) and corresponding 

regions on the unaffected homologue (Ref), are shown in black, and -log10(P-values) in 

light blue. Enhancer-target gene physical interactions based on chromatin conformation 

capture56–93 are depicted in orange (interactions involving RUNX1 and RUNX1T1) and 

grey (involving other loci). (d) Significant CREs located within the distal peak region, 

demonstrating haplotype-specific absence of NO on der(8) at 10% FDR, suggesting 

increased CRE accessibility on der(8). Within the segment ~0.8 to 1.1Mb upstream 

of RUNX1, which showed pronounced haplotypespecific NO, we tested 69 CREs for 

haplotype-specific NO, which identified two significant CREs. (e) Haplotype-specific NO 

measured between der(8) and corresponding regions of the unaffected homologue. Red: 

regions corresponding to the fused TAD. (f) A beeswarm plot shows that the fused TAD 

(red) is an outlier in terms of haplotype-specific NO on der(8) (P-values based on KS tests; 

n = 83 TADs in der(8); boxplot was defined by minima = 25th percentile - 1.5X interquartile 

range (IQR), maxima = 75th percentile + 1.5X IQR, center = median, and bounds of box = 

25th and 75th percentile).
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Figure 4. Deconvoluting consequences of subclonal SV heterogeneity in a CLL primary sample.
(a) Single-cell SV discovery in CLL_24. All cells exhibiting deletions (10q-Del) shown 

in Fig. S18. 10q-Ref, cells bearing a not rearranged 10q. (b) Minimally deleted region 

(chr10:101615000-103028000; hg38), displaying recurrent deletions in a separate cohort 

of CLLs62. (c) Heatmap of genes with altered activity in 10q-Del based on scNOVA 

(alternative mode; 10% FDR). Genes from all significant pathways reported in (d) are 

highlighted. (d) Pathway modules with differential activity, in cells exhibiting 10q-Del (10% 

FDR). (e) Minimal deletion region-bearing CLL samples from the International Cancer 
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Genome Consortium (ICGC) demonstrate overexpression of Wnt signaling genes compared 

to 10q-Ref (P=0.0098; two-sided likelihood ratio test; n=174 and n=4 independent CLL 

samples for 10q-Ref and 10q-Del, respectively). (f) Pathway activities ((-1)*Z-score of 

NO) derived from jointly modeled NO at the gene bodies of Wnt signaling pathway genes 

for each SV-bearing CLL_24 cell. SIa-SId correspond to single cells exhibiting a deletion 

at 10q24 not shared by any other cell. n = 2, 3, 2, 1 cells are depicted in the plot for 

SCa, SCb, SCc, and SIa-SId, respectively. (g) Single-cell gene set enrichment scores for 

five leukemia-related pathways from CITE-seq. Enrichment scores for 10q-terDel (n=82) 

and 10q-Ref (n=2,381) cells were compared using two-sided t-tests .(h) Chart depicting 

43 differentially active TFs between 10q-terDel and 10q-Ref cells based on DoRothEA68. 

Genes involved in the pathways over-represented by these TFs are annotated using colored 

dots. (i) Differentially expressed surface protein CD279 (PD-1) in 10q-terDel (n=82) 

compared to 10q-Ref (n=2,381) cells based on a two-sided wilcoxon ranksum test. (j) 
Wnt pathway diagram showing the altered genes or TFs in SCb (10q-terDel) identified 

by scNOVA (blue nodes) and CITE-seq (red borders). Gray, known (see PubmedIDs) and 

computationally predicted regulators (based on Gene Ontology Biological Process (GOBP)) 

of Wnt signaling that are deleted in SCb. Throughout the figure, boxplots were defined by 

minima = 25th percentile - 1.5X interquartile range (IQR), maxima = 75th percentile + 1.5X 

IQR, center = median, and bounds of box = 25th and 75th percentile.
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Figure 5. scNOVA identifies functional effects of a subclonal chromothripsis event.
(a) 27 TF genes located in a segment that underwent chromothripsis24 on 6q in T-ALL_P1. 

Haplotype-specific NO measurements, which scNOVA generated for CREs assigned to the 

nearest genes, are depicted below. FC: fold-change of normalized haplotype-specific NO 

(shown for each subclone). 6q-CT: subclone bearing chromothripsis on 6q. 6q-Ref: subclone 

bearing a not rearranged chromosome 6. (b) Heatmap of 12 genes with differential activity 

between subclones in T-ALL_P1, based on scNOVA (denoted CT gene signature). Asterisks 

denote TF targets highlighted in (c). (c) TF target over-representation analyses for CT gene 

signature, revealing c-Myb as the only significant hit. Venn diagram depicts enrichment of c-

Myb targets (P-value based on an FDR-adjusted hypergeometric test). Upper right: network 

with c-Myb and its target genes based on scNOVA, combined with prior knowledge. (d) 

Mean Z-scores of c-Myb target gene expression measured by bulk RNA-seq in a panel of 13 

T-ALL-derived samples. T-ALL_P1 (P1) exhibited the overall highest expression of c-Myb 

targets.
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Figure 6. Targeting the chromothriptic subclone in cell culture.
(a) UMAP of scRNA-seq data showing ten unsupervised clusters in T-ALL_P1. (b) Overlay 

of gene set-derived cell-type annotation and inferred lineage trajectory onto this UMAP. 

(c) Single-cells whose expression profiles matched the CT gene signature (gene set UCell 

score > (median score + standard deviation)) are assigned to ‘6q-CT’ and shown in red; 

the remaining cells did not meet the threshold for the CT gene signature (assigned ‘6q-Ref’ 

status’). P-values depict enrichment of 6q-CT cells in clusters 3 and 7. (d) Significant 

enrichment of 6q-CT cells in clusters 3 and 7 based on scRNA-seq. Upper panel: A dot 

plot shows the significance of over-representation of 6q-CT calls in scRNA clusters based 

on targeted SCNA recalling (P-values based on FDR-adjusted Fisher’s exact tests). Lower 

panel: Gene set-level expression summary for the CT gene signature, which was derived 

using UCell81 with the directionality of expression changes taken into account. (e) Clonal 

frequency (CF) of 6q-CT cells after treatment with Notch inhibitor CB-103 (green) and 

vehicle control (brown) along a time course – 8h and 24h after treatment. CF was estimated 

by transferring gene set based CT annotations obtained from the scRNA-seq of T-ALL_P1 

before treatment, to the scRNA-seq of T-ALL_P1 after treatment. Changed CF (%) at 24h 

compared to 8h is shown in the plot on top of the 24h data points. For each time point, the 
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difference of CF under vehicle and CB-103 was evaluated by Fisher’s exact test (results are 

based on pairwise comparisons). (f) Scaled enrichment scores obtained by single-cell gene 

set enrichment analysis for the ‘N1-ICD transcriptional pathway’ gene set. Scores across 

treatment conditions (vehicle versus CB-103) were compared using two-sided Wilcoxon 

ranksum tests. (Boxplot was defined by minima=25th percentile-1.5X interquartile range 

(IQR), maxima=75th percentile+1.5X IQR, center=median, and bounds of box=25th and 

75th percentile; n=665, 978, 915, and 556 cells for 6q-Ref from 8h Vehicle, 8h CB-103, 

24h Vehicle, and 24h CB-103 (n=91, 157, 213, and 88) cells for 6q-CT for each condition 

respectively.) (g) Network representation of GOBPs enriched by differentially expressed 

genes in 6q-CT compared to 6q-Ref cells under CB-103 treatment (24h), subtracting any 

genes not specific to the drug treatment.
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