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24Department of Renal Medicine, University College London, London, UK

Abstract

Background—Large trials have shown sodium glucose co-transporter-2 (SGLT2) inhibitors 

reduce risk of kidney and cardiovascular outcomes in patients with heart failure and chronic 

kidney disease (CKD), but were not powered to assess outcomes in patients with and without 

diabetes separately.

Methods—We did a meta-analysis of large placebo-controlled SGLT2 inhibitor trials 

(PROSPERO:CRD42022351618). The main outcomes were kidney disease progression 

(standardised to a definition of a sustained ≥50% decline in estimated glomerular filtration rate 

(eGFR), end-stage kidney disease, or death from kidney failure), acute kidney injury (AKI), 

mortality and the composite of cardiovascular death or hospitalisation for heart failure.

Findings—13 trials involving a total of 90,413 participants were included (15,605 [17%] without 

diabetes; trial average baseline eGFR range: 37-85 ml/min/1·73m2). Compared with placebo, 

allocation to an SGLT2 inhibitor reduced the risk of kidney disease progression by 37% (relative 

risk [RR] 0·63, 95% confidence interval 0·58-0·69) with similar RRs in patients with and without 

diabetes (heterogeneity p=0·31). In the 4 CKD trials, RRs were similar irrespective of primary 

kidney diagnoses (heterogeneity p=0·67). SGLT2 inhibitors reduced the risk of AKI by 23% 

(0·77, 0·70-0·84) and the risk of cardiovascular death or hospitalisation for heart failure by 23% 

(0·77, 0·74-0·81), again with similar effects in those with and without diabetes (heterogeneity p 

values=0·12 and 0·67, respectively. Allocation to an SGLT2 inhibitor did not significantly reduce 

the risk of non-cardiovascular death (0·94, 0·88-1·02), with similar RRs in patients with or without 

diabetes. For all outcomes, results were also broadly similar irrespective of trial-average baseline 

eGFR (all trend tests p>0·05). In the trial populations studied to date, the absolute benefits of 

SGLT2-inhibition outweigh any serious hazards.

Interpretation—The totality of the randomised data supports the use of SGLT2 inhibitors to 

modify risk of kidney disease progression and AKI, not only in patients with type 2 diabetes, but 

also in patients with CKD or heart failure irrespective of diabetes status, primary kidney disease or 

kidney function.

Funding—MRC-UK&KRUK.

Keywords

sodium glucose co-transporter-2 inhibitors; CKD, AKI, randomised trials

Introduction

Large placebo-controlled trials have demonstrated that sodium glucose co-transporter-2 

(SGLT2) inhibitors reduce the risk of cardiovascular disease, and particularly hospitalisation 

for heart failure, in patients with type 2 diabetes at high risk of atherosclerotic cardiovascular 

disease (ASCVD), heart failure, or chronic kidney disease (CKD). There is good evidence 

to support SGLT2 inhibitors as a foundational therapy to prevent cardiovascular death or 

hospitalisation for heart failure in patients with heart failure irrespective of history of prior 

diabetes or ejection fraction. (1–5) Large trials have also shown that SGLT2 inhibitors 
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reduce the risk of kidney disease progression in patients with type 2 diabetes and proteinuric 

CKD, (1, 6–8) but there were relatively few patients with CKD without diabetes in the three 

previously reported CKD trials. (1) CREDENCE and SCORED exclusively studied patients 

with CKD with type 2 diabetes, (7, 9) and the DAPA-CKD trial in patients with proteinuric 

CKD reported just 109 kidney disease progression outcomes in patients without diabetes. (1, 

8, 10) Although evidence on the effect of SGLT2 inhibitors on kidney disease progression 

in patients without diabetes is also available from the heart failure trials - where decreased 

kidney function was common - previous meta-analysis had limited power as there were only 

98 kidney disease progression outcomes in participants without diabetes in such trials. (1, 

11)

Two recent placebo-controlled SGLT2 inhibitor trials provide important new information on 

the effects of kidney disease progression and other outcomes in patients without diabetes. 

DELIVER randomised 6263 patients with stable heart failure and an ejection fraction >40%, 

including 3457 (55%) of patients without diabetes (mean estimated glomerular filtration 

rate [eGFR] 61 mL/min/1·73m2), (4) and EMPA-KIDNEY randomised 6609 patients with 

CKD at risk of progression (mean eGFR 37 mL/min/1·73m2), including 3569 (54%) without 

diabetes. (12) Although there is geographic variation, globally the majority of people with 

CKD do not have diabetes. (13, 14) There is therefore a need to incorporate these data and 

perform an updated meta-analysis to summarise definitively the relative and absolute effects 

of SGLT2 inhibitors on kidney disease progression and other outcomes according to whether 

or not trial participants had diabetes.

Another limitation of previous meta-analyses has been the inability to standardise between-

trial differences in thresholds of eGFR decline used to define categorical kidney disease 

progression composite outcomes (Webtable 1). (1, 6) We therefore aimed to perform a 

collaborative meta-analysis assessing the effects of SGLT2 inhibitors on kidney disease 

progression according to a standardised outcome definition, as well as effects on acute 

kidney injury (AKI), mortality, heart failure and key safety outcomes by diabetes status. 

Secondarily, we aimed to assess whether the relative effects of SGLT2 inhibitors on 

outcomes are modified by mean baseline kidney function (at a trial level) or by primary 

kidney diagnosis.

Methods

Literature search and data extraction

Our outline protocol was registered in the International Prospective Register of Systematic 

Reviews (PROSPERO) on 5th August 2022 (CRD42022351618). The Preferred Reporting 

Items for Systematic Reviews and Meta-Analysis (PRISMA) statement was followed. A 

systematic search of MEDLINE and Embase databases via OVID was performed to cover 

the period of inception to 5th September 2022. Trials were eligible if they were double-blind 

and placebo-controlled, performed in adults, and large (defined as ≥500 participants in each 

arm, thereby minimising any potential for publication bias to distort findings) and at least 6 

months in duration. Titles and abstracts were initially screened, with subsequent screening 

of full texts and risk of bias assessments (using Version 2 of the Cochrane Risk-of-Bias 

tool (15)) completed independently by two authors (see Webmethods). For each included 
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trial, data were extracted from the principal (3, 4, 7–9, 16–23) and relevant subsidiary 

peer-reviewed publications (10, 11, 24–40).

The main pre-specified efficacy outcome was a composite kidney disease progression 

outcome defined as a sustained ≥50% eGFR decline from randomisation, end-stage kidney 

disease (ESKD, i.e. start of maintenance dialysis or receipt of a kidney transplant), a 

sustained low eGFR (usually <15 mL/min/1·73m2) or death from kidney failure (Webtable 

1 provides details). For eight trials this kidney disease progression outcome was unavailable 

publicly, so individual trial investigators provided a re-analysis of eGFR data to derive this 

meta-analysis’ pre-selected composite kidney disease progression outcome as well as any 

other unavailable outcomes of interest (3, 4, 7, 8, 12, 17, 21, 41) (excluding the short 

duration SOLOIST-WHF trial (18)). Previously reported results mean we now consider 

AKI an efficacy outcome (rather than a safety outcome). AKI was defined by its specific 

MedDRA Preferred Term, wherever possible. Other efficacy outcomes were the composite 

of hospitalisation for heart failure or cardiovascular death (excluding urgent heart failure 

visits to enable standardisation across trials), cardiovascular mortality (based on individual 

trial definitions), non-cardiovascular mortality, and all-cause mortality. Safety outcomes 

were focused on key medical complications that previous meta-analyses have indicated 

are potentially caused by SGLT2 inhibition: ketoacidosis and lower limb amputation (1) 

with information on lower limb amputation particularly sought because the CANVAS 

trial reported a significant excess among participants allocated SGLT2 inhibition. (20) 

Additional information on urinary tract infections (all and restricted to the subset which are 

serious), mycotic genital infections, severe hypoglycaemia and bone fractures are included 

for completeness (Webtable 2 provides details of derivation of each outcome by trial).

For the CKD trials, subgroups by investigator-reported primary kidney diagnosis were 

grouped as pre-specified in DAPA-CKD and EMPA-KIDNEY into: diabetic kidney 

disease/nephropathy; ischaemic and hypertensive kidney disease; glomerular disease (also 

known as glomerulonephritis); and other/unknown combined. (10, 12) CREDENCE 

excluded suspected non-diabetic kidney disease, and so all participants were considered 

to have diabetic kidney disease. (7) Based on previous DAPA-CKD publications, (28, 

29) exploratory analyses were also conducted by subtype of glomerular disease: IgA 

nephropathy versus focal segmental glomerulosclerosis versus other glomerulonephritides.

Statistical analysis

Analyses were performed separately in patients with and without diabetes at baseline 

(except for analyses by primary kidney diagnosis). Wherever possible, diabetes-specific 

(or other primary kidney diagnosis-specific) effects of treatment were obtained from Cox 

models reported in trial publications. Where unavailable (see Webtable 2), log RRs and the 

associated standard errors (SEs) were estimated from the numbers of events and participants 

in each arm. Inverse-variance-weighted averages of log hazard ratios/RRs were then used 

to estimate the treatment effects in each patient group and overall. (42, 43) This information-

weighted-average approach has the desirable property that, at the point of randomisation, 

every participant has the same opportunity to contribute the same amount of statistical 
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information to the meta-analysis as every other participant, without making any assumptions 

about the nature of any true heterogeneity in results between the trials.

Standard chi-square tests for heterogeneity were used to assess whether treatment effects 

differed between those with and without diabetes at recruitment, by trial population (based 

on primary eligibility [Table 1]), and by primary kidney diagnosis. In figures, trials were 

ordered by their mean baseline eGFR levels and effect modification by kidney function was 

assessed by a standard test for trend in the set of ordered results. For trials reporting median 

eGFR and its interquartile range, mean and standard deviation values were estimated. (44) A 

sensitivity analysis reordering trials by median baseline level of albuminuria was conducted.

Absolute benefits and harms of SGLT2 inhibitors versus placebo per 1000 patient-years of 

treatment were estimated by diabetes status for each patient group. Absolute effects were 

estimated by applying the diabetes status-specific RRs, or their 95% confidence limits, 

to the corresponding mean event rates in the placebo arms (first event only). As in our 

previous report, (1) data from SOLOIST-WHF were excluded from these analyses due to the 

extremely high absolute risks in this trial in patients with a recent hospitalisation for heart 

failure. (18) All analyses were performed in SAS version 9.4 (SAS Institute, Cary NY, USA) 

and R v3.6.2.

Role of funding source

The funders had no role in meta-analysis design, analysis, interpretation, writing of the 

report, or the decision to submit for publication. The senior author accepts full responsibility 

for the content of the paper.

Results

Eligible trial characteristics

Literature searches identified 15 large trials (Webfigure 1). Two trials, one of 1402 

participants with type 1 diabetes (inTandem3) and one of 1250 people hospitalised with 

Coronavirus-19 (DARE-19) were excluded from meta-analyses as follow-up was too short. 

(1, 23, 45) The remaining 13 trials involved a total of 90,413 randomised patients. All were 

judged to be at low risk of bias (Webtable 3).

Four trials involving 42,568 patients included people with type 2 diabetes and high-ASCVD 

risk, five trials involving 21,947 patients included people with heart failure (11,305 with 

and 10,642 without diabetes), and four trials involving 25,898 patients included people 

with CKD (20,931 with and 4967 without diabetes) (Table 1/Webtable 4). Average eGFR 

ranged from 74-85 mL/min/1·73m2 in the type 2 diabetes high-ASCVD risk trials, from 

50-66 mL/min/1·73m2 in the heart failure trials, and from 37-56 mL/min/1·73m2 in the CKD 

trials. Median follow-up was longest for the type 2 diabetes high-ASCVD risk trials (range: 

2.4-4·2 years), intermediate for the CKD trials (range: 1·3-2·6 years) and shortest for the 

heart failure trials (range 0·8-2·2 years).
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Effects on kidney disease outcomes

Compared with placebo, allocation to an SGLT2 inhibitor reduced the risk of kidney disease 

progression by 37% overall (RR 0·63, 95%CI 0·58-0·69; Figure 1). The RR for the kidney 

failure subcomponent of this outcome overall was 0.67 (0·59-0·77, Webfigure 2). For kidney 

disease progression, there were similar relative risk reductions in patients with diabetes 

(0·62, 0·56-0·68) and patients without diabetes (0·69, 0·57-0·82) (heterogeneity p=0·31). 

There was no evidence that the relative risk reduction varied depending on average baseline 

eGFR, either in those with diabetes (trend p=0·87) or those without diabetes (trend p=0·86; 

Figure 1). Nor was there a significant trend in a sensitivity analysis in which trials were 

reordered by trial median baseline urine albumin-to-creatinine ratio (trend p=1·00 and·0·47 

respectively, Webfigure 3).

Suitable data on reported AKI were available from all included trials (Webtable 2). 

Compared with placebo, allocation to an SGLT2 inhibitor reduced the risk of AKI by 23% 

overall (0·77, 0·70-0·84), again with similar reductions observed in patients with diabetes 

(0·79, 0·72-0·88) and patients without diabetes (0·66, 0·54-0·81) (heterogeneity p=0·12). 

There was no strong evidence for differences in the relative effects by average baseline 

eGFR (trend p=0·02 in patients with diabetes and p=0·66 for patients without diabetes; 

Figure 1).

In the CKD trials, the RRs for kidney disease progression were similar when analyses were 

split by primary kidney diagnosis (heterogeneity p=0·67; Figure 2). In the four trials that 

included patients with diabetic kidney disease, SGLT2 inhibitors reduced the risk of kidney 

disease progression by 40% (0·60, 0·53-0·69). Data from patients with non-diabetic causes 

of CKD were available from DAPA-CKD and EMPA-KIDNEY. SGLT2 inhibitors reduced 

the risk of kidney disease progression by 30% (0·70, 0·50-1·00) in patients with ischaemic 

and/or hypertensive kidney disease, by 40% (0·60, 0·46-0·78) in patients with glomerular 

diseases, and by 26% (0·74, 0·51-1·08) in patients with other kidney diseases/unknown 

causes. When glomerular diseases were further split into disease subcategories, there was 

no evidence of heterogeneity between patients with IgA nephropathy, focal segmental 

glomerular sclerosis or other glomerulonephritis (heterogeneity p=0·30; Webfigure 5).

Effects on heart failure and mortality outcomes

Overall, compared with placebo, allocation to an SGLT2 inhibitor reduced the risk of 

the composite of cardiovascular death or hospitalisation for heart failure by 23% (RR 

0·77, 0·74-0·81; Figure 3). The RRs were similar irrespective of a history of diabetes 

(0·77, 0·73-0·81 in patients with diabetes and 0·79, 0·72-0·87 in those without diabetes; 

heterogeneity p=0·67; Figure 3 and Webfigure 6). Allocation to an SGLT2 inhibitor 

reduced the risk of cardiovascular death by 14% (0·86, 0·81-0·92), again with similar 

effects observed in those with diabetes (0·86, 0·80-0·92) and those without diabetes (0·88, 

0·78-1·01; heterogeneity p=0·68). Allocation to an SGLT2 inhibitor did not significantly 

reduce the risk of non-cardiovascular death (0·94, 0·88-1·02), with similar RRs in patients 

with or without diabetes. There was no evidence that the effects on heart failure or mortality 

outcomes differed when trial results were ordered by average baseline eGFR (all trend 

p>0·05; Webfigures 6&7).
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Effects on ketoacidosis, lower limb amputation and other safety outcomes

In patients with diabetes, the absolute risk of ketoacidosis was low (~0.2 per 1000 patient 

years in placebo arms). The RR for ketoacidosis in patients with diabetes, compared with 

placebo, allocated to an SGLT2 inhibitor was 2·12 (1·49-3·04) and there was no evidence 

that this differed when trial results were ordered by average baseline eGFR (trend p=0·69; 

Webfigure 8). There was only one event of ketoacidosis among patients without diabetes 

during ~30,000 participant years of follow-up.

In the CANVAS trial, allocation to an SGLT2 inhibitor was associated with a doubling in 

risk of lower limb amputation (6.3 vs 3.4 per 1000 patients year; Webfigure 9). However 

in the other 12 trials, allocation to an SGLT2 inhibitor was not significantly associated with 

lower limb amputation (RR 1·06, 0·93-1·21); Figure 4; heterogeneity p for CANVAS vs 

other 12 trials <0.001). Across all trials, therefore, allocation to an SGLT2 inhibitor was 

associated with a 15% increase in the risk of lower limb amputation (RR 1·15, 1·02-1·30). 

Compared with patients with diabetes, the risk of lower limb amputation was much lower 

among patients without diabetes. There was no evidence that the RRs for amputations 

varied depending on average baseline eGFR (trend p>0.05; Webfigure 9). The effects of 

SGLT2 inhibition on urinary tract infection (1·08, 1·02-1·15), serious urinary tract infection 

(1·07, 0·90-1·27), mycotic genital infections (3·57, 3·14-4·06), severe hypoglycaemia (0·89, 

0·80-0·98) and bone fracture (1·07, 0·99-1·14) are shown in Webfigure 10.

Estimates of absolute effects of SGLT2 inhibitors

We estimated absolute rates, benefits and harms of SGLT2 inhibitors by diabetes status and 

type of trial population (Figure 5). In the studied participants, the absolute risks of kidney 

disease progression, AKI and cardiovascular death or hospitalisation for heart failure were, 

generally, slightly lower in patients without diabetes compared to patients with diabetes. 

Consequently, by population, the absolute benefits were somewhat larger for patients with 

diabetes. For example, treatment for one year of 1000 patients with CKD and type 2 

diabetes with an SGLT2 inhibitor was estimated to result in 11 fewer patients developing 

kidney disease progression, 4 fewer patients with AKI, and 11 fewer cardiovascular deaths 

or hospitalisations for heart failure, and cause ~1 episode of ketoacidosis and ~1 lower 

limb amputation, respectively. The corresponding benefits in patients with CKD without 

diabetes were 15 fewer patients with kidney disease progression, 5 fewer with AKI, and 2 

fewer cardiovascular deaths or hospitalisations for heart failure per 1000 patient-years of 

treatment, with no excess risk of ketoacidosis or amputation observed.

Discussion

Large placebo-controlled trials of SGLT2 inhibitors have randomised patients with type 2 

diabetes, CKD and heart failure, but no trial was specifically powered to assess kidney 

or cardiovascular effects in patients without diabetes. Our key objective was to perform 

a collaborative meta-analysis incorporating all of the available evidence from all large 

SGLT2 inhibitor trials in CKD, heart failure, and type 2 diabetes at high cardiovascular 

risk populations to compare definitively their effects on risk of a standardised definition 

of kidney disease progression, AKI and other key outcomes in patients with and without 
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diabetes. Analyses include information from ~90,000 trial participants, including ~16,000 

people without diabetes. Using a definition based on ≥50% sustained decline in eGFR 

from randomisation, the need to start maintenance dialysis or receive a kidney transplant, 

sustained low eGFR, or death from kidney disease, our results demonstrate that SGLT2 

inhibitors reduce the risk of kidney disease progression by about two-fifths and AKI by 

about one-quarter, and do so similarly in patients with and without diabetes. Patients with 

a wide range of kidney function have been studied in the reported trials, and despite 

attenuation of the effects of SGLT2 inhibitors on glycosuria with lower kidney function, 

(46) there was no suggestion kidney benefits were attenuated when trials were ordered 

by average baseline kidney function. SGLT2 inhibitors also appear safe at low levels of 

kidney function down to at least 20 ml/min/1·73m2, with patients without diabetes being at 

particularly low risk of ketoacidosis or amputation (whether they are receiving an SGLT2 

inhibitor or not). In all the trial populations studied to date, the absolute benefits of SGLT2-

inhibition considerably outweigh any serious hazards.

The outcome of a sustained ≥50% decline in eGFR from randomisation has been widely 

used to explore effects on kidney disease progression in subanalyses of the DAPA-CKD 

trial. (1, 8, 10, 28, 29). This definition appears to be more specific for progression to kidney 

failure than a sustained ≥40% decline in eGFR for interventions with a negative “acute 

dip” effect on eGFR, like SGLT2 inhibitors (47–49). The optimal percentage decline in 

eGFR used to assess kidney disease progression is a trade-off between specificity (increased 

by larger percentage declines) and outcome event rate (increased by smaller percentage 

declines). DAPA-CKD suggested the effects of dapagliflozin on kidney disease progression 

were similar in participants with diabetic kidney disease/nephropathy, glomerular diseases, 

ischaemic or hypertensive CKD, and CKD of other or unknown cause considered separately. 

(10, 12) Furthermore, the DAPA-CKD investigators have reported results for 270 patients 

with IgA nephropathy, the commonest cause of glomerulonephritis worldwide, and reported 

kidney benefits in this particular subgroup (based on 25 kidney disease progression events). 

(28) Analyses from EMPA-KIDNEY include a further 817 patients with IgA nephropathy 

and 80 kidney disease progression outcomes. The current meta-analysis shows that the 

benefits of SGLT2 inhibitors on kidney disease progression extend to patients irrespective 

of diabetes status (Figure 1) and in patients with CKD irrespective of their primary cause of 

kidney disease (Figure 2).

Based on the average risk in different trial populations we estimated that for every 1000 

patients with CKD treated for one year with an SGLT2 inhibitor, 11 and 15 first kidney 

disease progression events would be prevented in patients with and without diabetes, 

respectively. Such treatment also resulted in an estimated 4-5 fewer AKI events in both 

patients with and without diabetes. Individual trials have shown that kidney benefits translate 

into important reductions in the need for dialysis or kidney transplantation (7, 8) (Webfigure 

2), and the cardiovascular and kidney benefits appear to be cost saving in diabetic CKD. 

(50) We found no good evidence that the kidney benefits were modified by the average 

level of kidney function studied in the trials. Importantly, efficacy and safety data from 

EMPA-KIDNEY and DAPA-CKD combined include information on nearly 3000 patients 

with an eGFR between 20-30 mL/min/1·73m2. A total of 489 kidney disease progression 

outcomes accrued in those with an eGFR <30 mL/min/1·73m2 in those two trials. (7, 8, 
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51) Although some clinical practice guidelines have started recommending use of SGLT2 

inhibitors in type 2 diabetes at eGFRs down to 20 mL/min/1·73m2 (based on grade B levels 

of evidence), (52, 53) many other recommendations limit initiation to those with eGFR 

above 25 or 30 mL/min/1·73m2. (54–56) As patients with decreased eGFR are at the highest 

absolute risk of kidney disease progression, (57) our findings should encourage the initiation 

of SGLT2 inhibitors in patients with CKD down to an eGFR of 20 mL/min/1·73m2 with 

continued use below this level. Furthermore, several hundred participants in the CKD trials 

had an eGFR below this level both at randomisation (Table 1) or during follow-up, so there 

is indirect evidence to support nephrologists considering initiation of SGLT2 inhibitors in 

selected patients with an eGFR below 20 mL/min/1·73m2.

This meta-analysis has a number of strengths: it addresses the lack of standardisation of 

kidney disease progression outcomes in previous meta-analyses and takes into account 

all of the available large-scale randomised evidence from ~90,000 people recruited into 

the 13 relevant large placebo-controlled SGLT2 inhibitor clinical trials. The inclusion 

of new EMPA-KIDNEY and DELIVER data has more than doubled the number of 

outcomes previously available for kidney disease progression in patients without diabetes. 

(1) Nevertheless, some limitations remain. First, we found limited numbers of cardiovascular 

deaths and heart failure hospitalisations in patients with CKD without diabetes: 103 deaths 

from cardiovascular disease or hospitalisation for heart failure, and 51 cardiovascular deaths. 

Secondly, adjudication of AKI was not performed in the majority of trials. Thirdly individual 

participant-level data from all the trials are not yet available, precluding detailed analyses 

of the rate of change of eGFR (an accepted surrogate of kidney disease progression). 

(58) Such analyses may provide sufficient power to assess effects of SGLT2 inhibitors 

in those with slowly progressive CKD where there are more limited data (e.g. patients 

with CKD with no albuminuria). Fourthly, the efficacy and safety of SGLT2 inhibitors in 

people with established kidney failure (i.e. requiring dialysis or kidney transplant) remains 

to be evaluated, (59) and there are insufficient data to assess the effects on kidney and 

cardiovascular clinical outcomes for patients with other kidney diagnoses excluded from 

the CKD trials (e.g. polycystic kidney disease) and for patients with type 1 diabetes (see 

Web Methods for inTandem3 data). (23, 60) Lastly, our absolute effect estimates are specific 

to the recruited trial populations. RRs are more generalisable, and so, in routine clinical 

practice, absolute effects of SGLT2 inhibitors could be estimated for an individual by 

calculating their absolute risk for an event using an established risk score and then applying 

the RRs for the relevant outcome from the present meta-analysis.

In conclusion, our meta-analysis of all the large placebo-controlled SGLT2 inhibitor trials 

has shown that SGLT2 inhibitors safely reduce risk of kidney disease progression, AKI, 

cardiovascular death and hospitalisation for heart failure in patients with CKD or heart 

failure, irrespective of diabetes status. On a relative scale, these benefits are similar in 

patients with and without diabetes and appeared to be evident across the wide range of 

kidney function studied. Combining the two large trials in CKD populations to recruit 

patients with non-diabetic causes of kidney disease (EMPA-KIDNEY and DAPA-CKD), we 

also found relative benefits on kidney disease progression appeared similar across the range 

of primary kidney diagnoses studied. Large trials support a central role for SGLT2 inhibitors 
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as disease-modifying therapy for treatment of CKD, irrespective of diabetes status, primary 

kidney diagnosis, or level of kidney function.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research in Context

Evidence before this study

Our previous meta-analysis reported in 2021 included 11 large placebo-controlled trials 

conducted in a range of different at-risk populations, and demonstrated that overall, 

sodium glucose co-transporter-2 (SGLT2) inhibitors reduced risk of kidney disease 

progression and the composite of cardiovascular death or hospitalisation for heart 

failure, both by about one-quarter. Relative risks were remarkably consistent across these 

different types of patient groups. However, data were much more limited in patients 

without diabetes who were eligible for inclusion in only one of the reported trials in 

patients with chronic kidney disease (CKD), and three trials in patients with heart failure. 

Estimates of the effects of SGLT2 inhibitors on kidney disease progression in patients 

without diabetes were based on only ~100 events from the CKD trial and ~100 events 

from the heart failure trials. This limits the quality of evidence on which to make clinical 

practice recommendations. The impact of diabetes on the effects of SGLT2 inhibitors on 

AKI, mortality and safety outcomes was also not explored.

Added value of this study

The majority of people with CKD do not have diabetes, so more information about 

SGLT2 inhibitors in this patient group has particular public health importance. Since 

2021, two placebo-controlled SGLT2 inhibitor trials (EMPA-KIDNEY & DELIVER) 

have studied a large number of people without diabetes. EMPA-KIDNEY recruited 6609 

patients with CKD including 3569 patients without diabetes, while DELIVER recruited 

6263 patients with heart failure with mildly reduced or preserved (>40%) ejection 

fraction including 3457 patients without diabetes. Incorporating data from these trials 

and standardising outcome definitions, this updated meta-analysis definitively shows that 

in patients with CKD or heart failure (where CKD was common), SGLT2 inhibitors 

safely reduced the relative risks of kidney disease progression by about 40% and AKI by 

nearly a quarter, irrespective of diabetes status. Benefits on kidney disease progression 

also appeared similar across the full range of studied kidney function, and appeared 

unmodified by primary kidney diagnosis.

Implications of all the available evidence

This meta-analysis provides high-quality evidence to support guideline recommendations 

for use of SGLT2 inhibitors as a foundational therapy to reduce risks of kidney disease 

progression and AKI not only in at-risk patients with type 2 diabetes, but also in patients 

who have CKD or heart failure (irrespective of diabetes status, primary kidney diagnosis, 

or level of kidney function).
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Figure 1. Effect of SGLT2 inhibitors on KIDNEY DISEASE outcomes, by diabetes status
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Figure 2. Effect of SGLT2 inhibitors on KIDNEY DISEASE PROGRESSION, by presumed 
primary kidney disease (CKD trials only)
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Figure 3. Effect of SGLT2 inhibitors on HEART FAILURE and MORTALITY outcomes, by 
diabetes status
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Figure 4. Effect of SGLT2 inhibitors on KETOACIDOSIS and LOWER LIMB AMPUTATION, 
by diabetes status
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Figure 5. Absolute benefits and harms of SGLT2 inhibitors per 1000 patient years of treatment, 
by diabetes status and patient group
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Table 1
Summary of included trials

Patient group Trial 
acronym(drug & daily 
dose)

Size

Median 
follow-
up, 
years

Proportion 
with 
diabetes n 
(%)

Proportion 
with heart 
failure n 
(%)

Mean 
(SD) 
eGFR, 
mL/mi
n/
1.73m2

Median 
(IQR) 
urinary 
ACR, 
mg/g

Key eligibility criteria

Type 2 diabetes at high ASCVD risk

DECLARE-TIMI 58 
(dapagliflozin 10mg) 17160 4.2 17160 

(100) 1724 (10) 85 (16) 13.1 
(6.0-43.6)

• Type 2 diabetes

• Age 40y + history 
of coronary, cerebral 
or peripheral vascular 
disease OR age 
≥55y in men/≥60y in 
women with at least 1 
CV risk factor

• Creatinine clearance 
≥60 mL/min

CANVAS Program 
(canagliflozin 
100-300mg)

10142 2.4 10142 
(100) 1461 (14) 77 (21) 12.3 

(6.7-42.1)

• Type 2 diabetes

• History of coronary, 
cerebral or peripheral 
vascular disease OR 
age >50y with at least 
2 CV risk factors

• eGFR ≥30

VERTIS CV 
(ertugliflozin 5 or 15 
mg)

8246 3.0 8246 (100) 1958 (24) 76 (21) 19.0 
(6.0-68.0)

• Type 2 diabetes

• History of coronary, 
cerebral or peripheral 
vascular disease

• eGFR ≥30

EMPA-REG 
OUTCOME 
(empagliflozin 10mg or 
25mg)

7020 3.1 7020 (100) 706 (10) 74 (21) 17.7 
(7.1-72.5)

• Type 2 diabetes

• History of coronary, 
cerebral or peripheral 
vascular disease

• eGFR ≥30

Heart failure

DAPA-HF 
(dapagliflozin 10mg) 4744 1.5 2139 (45)

* 4744 (100) 66 (19) NA

• Symptomatic chronic 
HF (class II-IV) 
with LVEF ≤40%
(i.e. reduced ejection 
fraction) o NT-
proBNP ≥600 pg/mL 
o eGFR ≥30 o 
Appropriate doses of 
medical therapy & use 
of medical devices

EMPEROR-REDUCED 
(empagliflozin 10mg) 3730 1.3 1856 (50) 3730 (100) 62 (22) 22.1 

(8.0-81.3)

• Class II-IV chronic 
HF with LVEF ≤40%
(i.e. reduced ejection 
fraction)
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Patient group Trial 
acronym(drug & daily 
dose)

Size

Median 
follow-
up, 
years

Proportion 
with 
diabetes n 
(%)

Proportion 
with heart 
failure n 
(%)

Mean 
(SD) 
eGFR, 
mL/mi
n/
1.73m2

Median 
(IQR) 
urinary 
ACR, 
mg/g

Key eligibility criteria

• NT-proBNP above 
a certain threshold 
(stratified by LVEF)

• Appropriate doses of 
medical therapy and 
use of medical devices

EMPEROR-
PRESERVED 
(empagliflozin 10mg)

5988 2.2 2938 (49) 5988 (100) 61 (20) 21.0 
(8.0-71.6)

• Symptomatic chronic 
HF (class II-IV) with 
LVEF >40%

• Echocardiographic 
evidence of structural 
heart disease or 
hospitalisation for 
heart failure in the last 
year

• NT-proBNP >300 
pg/mL (or >900 
pg/mL if in AF)

• eGFR ≥20

• No recent coronary 
event

DELIVER 
(dapagliflozin 10mg) 6263 2.3 3150 (50)

† 6263 (100) 61 (19) NA

• Symptomatic HF 
(class II-IV) with 
LVEF >40% 
(ambulatory or 
hospitalised)

• Echocardiographic 
evidence of structural 
heart disease

• NT-proBNP ?300 
pg/mL (or ≥600 
pg/mL if in AF)

SOLOIST-WHF 
(sotagliflozin 
200-400mg)

1222 0.8 1222 (100) 1222 (100)
51 

(17)
$ NA

• Hospitalised for HF 
requiring intravenous 
therapy (i.e. a HF 
population with a 
wide range of LVEFs)

• Type 2 diabetes

• eGFR ≥30

• No recent coronary 
event

Chronic kidney disease

CREDENCE 
(canagliflozin 100mg) 4401 2.6 4401 (100) 652 (15) 56 (18) 927 

(463-1833)

• Type 2 diabetes

• eGFR 30-90

• uACR 300-5000 mg/g

• Stable maximally 
tolerated RAS 
blockade
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Patient group Trial 
acronym(drug & daily 
dose)

Size

Median 
follow-
up, 
years

Proportion 
with 
diabetes n 
(%)

Proportion 
with heart 
failure n 
(%)

Mean 
(SD) 
eGFR, 
mL/mi
n/
1.73m2

Median 
(IQR) 
urinary 
ACR, 
mg/g

Key eligibility criteria

• Excluded suspected 
non-diabetic kidney 
disease

SCORED (sotagliflozin 
200-400mg) 10584 1.3 10584 

(100) 3283 (31)
44 

(11)
$

74 
(17-481)

• Type 2 diabetes

• eGFR 25-60

• At least 1 CV risk 
factor

DAPA-CKD 
(dapagliflozin 10mg) 4304 2.4 2906 (68) 468 (11) 43 (12) 949 

(477-1885)

• eGFR 25-75

• uACR 200-5000 mg/g

• Stable maximally 
tolerated RAS 
blockade, unless 
documented 
intolerance

• Excluded polycystic 
kidney disease, 
lupus nephritis, 
or anti-neutrophil 
cytoplasmic antibody-
associated vasculitis.

EMPA-
KIDNEY(empagliflozin 
10mg)

6609 2.0 3040 (46) 
† 658 (10) 37.3 

(14)
329 
(49-1069)

• eGFR 20-45 or 
eGFR 45-90 with 
uACR ≥200 mg/g at 

screening
‡

• Clinically appropriate 
RAS blockade, unless 
not indicated or not 
tolerated

• Excluded polycystic 
kidney disease

‡
254 participants with an eGFR<20mL/min/1·73m2 at randomisation and 68 with type 1 diabetes.

*
Includes patients with HbA1c ≥6.5% at enrolment.

†
Includes patients with HbA1c ≥6.5% at baseline or history and/or prevalent use of a glucose-lowering agent.

$
The mean and SD were estimated from reported median and IQR.

AF = atrial fibrillation; ASCVD = atherosclerotic cardiovascular disease; CV = cardiovascular; eGFR = estimated glomerular filtration rate 

(mL/min/1.73m2); HF = heart failure; LVEF = left ventricular ejection fraction; NT-proBNP = N-terminal prohormone brain natriuretic peptide; 
RAS = renin angiotensin system; uACR = urinary albumin:creatinine ratio.
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