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Abstract

Sensory cortices can be affected by stimuli of multiple modalities and are thus increasingly 

thought to be multisensory. For instance, primary visual cortex (V1) is influenced not only by 

images but also by sounds. Here we show that the activity evoked by sounds in V1, measured 

with Neuropixels probes, is stereotyped across neurons and even across mice. It is independent 

of projections from auditory cortex and resembles activity evoked in the hippocampal formation, 

which receives little direct auditory input. Its low-dimensional nature starkly contrasts the high 

dimensional code that V1 uses to represent images. Furthermore, this sound-evoked activity can be 

precisely predicted by small body movements that are elicited by each sound and are stereotyped 

across trials and mice. Thus, neural activity that is apparently multisensory may simply arise from 

low-dimensional signals associated with internal state and behavior.

Introduction

Many studies suggest that all cortical sensory areas, including primary ones, are 

multisensory1. For instance, mouse primary visual cortex (V1) is influenced by sounds. 

Sounds may provide V1 with global inhibition2, modify the neurons’ tuning3,4, boost 

detection of visual events5, or even provide tone-specific information, reinforced by 

prolonged exposure6 or training7. This sound-evoked activity is thought to originate from 

direct projections from the auditory cortex2,3,5,7: it may be suppressed by inhibition of the 

auditory cortex2,5, and it may be mimicked by stimulation of auditory fibers2,3.
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Here, we consider a possible alternative explanation for these multisensory signals, based on 

low-dimensional changes in internal state and behavior8,9. Behavioral and state signals have 

profound effects on sensory areas. For instance, the activity of V1 neurons carries strong 

signals related to running10,11, pupil dilation11,12, whisking13, and other movements14. 

These behavioral and state signals are low-dimensional and largely orthogonal13 to the 

high-dimensional code that V1 uses to represent images15.

We hypothesized, therefore, that the activity evoked by sounds in V1 reflects sound-elicited 

changes in internal state and behavior. This seems possible, because sounds can change 

internal state and evoke uninstructed body movements16–20. This hypothesis predicts that 

sound-evoked activity in V1 should have the typical attributes of behavioral signals: low 

dimension13 and a broad footprint14,21,22 that extends beyond the cortex13. Moreover, 

sound-evoked activity should be independent of direct inputs from auditory cortex and 

should be predictable from the behavioral effects of sounds.

To test these predictions, we recorded the responses of hundreds of neurons in mouse V1 to 

audiovisual stimuli, while filming the mouse to assess the movements elicited by the sounds. 

As predicted by our hypothesis, the activity evoked by sounds in V1 had a low dimension: 

it was largely one-dimensional. Moreover, it was essentially identical to activity evoked in 

another brain region, the hippocampal formation. Furthermore, it was independent of direct 

projections from auditory cortex, and it tightly correlated with the uninstructed movements 

evoked by the sounds. These movements were small but specific to each of the sounds and 

stereotyped across trials and across mice. Thus, much of the multisensory activity that has 

been observed in visual cortex may have a simpler, behavioral origin.

Results

To explore the influence of sounds on V1 activity, we implanted Neuropixels 1.0 and 

2.0 probes23,24 in 8 mice, and recorded during head fixation while playing naturalistic 

audiovisual stimuli. We selected 11 naturalistic movie clips25, each made of a video (gray-

scaled) and a sound (loudness 50-80 dB SPL, Supplementary Fig. 1), together with a blank 

movie (gray screen, no sound). On each trial, we presented a combination of the sound from 

one clip and the video from another (144 combinations repeated 4 times, in random order). 

Most neurons were recorded from layers 4-6.

Sounds evoke stereotyped responses in visual cortex

We then identified the visual and auditory components of each neuron’s sensory response. A 

typical V1 neuron responded differently to different combinations of videos and sounds (Fig. 

1a). To characterize these responses, we used a marginalization procedure similar to factorial 

ANOVA. To measure the neuron’s video-related responses (Fig. 1b) we computed its mean 

response to each video, averaged across all concurrent sounds. Similarly, to characterize 

the neuron’s sound-related responses (Fig. 1c) we computed the mean response to each 

sound, averaged across all concurrent videos. These measures were then ‘marginalized’ by 

subtracting the grand average over all videos and sounds (Fig. 1d).
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Sounds evoked activity in a large fraction of V1 neurons, and this activity was reliably 

different across sounds. Some sounds barely evoked any activity, while others evoked 

stereotyped responses, at different points in time (Fig. 1e). From the marginalized single-

trial population responses, we could significantly decode not only the identity of each video 

(with 95 ± 1% accuracy, s.e., p = 0.0039, right-tailed Wilcoxon sign rank test, n = 8 

mice) but also the identity of each sound (with 18 ± 2% accuracy, p = 0.0039, right-tailed 

Wilcoxon sign rank test, n = 8 mice, Fig. 1f).

The activity evoked by sounds was so stereotyped across responsive neurons that it was 

essentially one-dimensional. We analyzed the marginalized population responses with cross-

validated Principal Component Analysis15 (cvPCA), and found that the time course of the 

first dimension (“auditory PC1”) for each sound was similar to the responses evoked in 

individual neurons and different across sounds (Fig. 1g). This first dimension explained 

most (55%) of the cross-validated sound-related variance (1.9% of the total variance) 

with subsequent dimensions explaining much smaller fractions (Fig. 1h). Furthermore, 

neurons showed distributed yet overall positive weights on this first PC, indicating a largely 

excitatory effect of sound (Fig. 1h, inset). Thus, in the rest of the paper we will illustrate 

sound-evoked activity by using the time course of this single “auditory PC1”. Higher-order 

components 2, 3 and 4 also encoded auditory stimuli significantly, but explained much less 

variance (Fig. 1h, Extended Data Fig. 1c,d).

Similar results held across mice: the activity evoked by sounds in V1 was largely one-

dimensional (auditory PC1 explained 53 ± 3% of the sound-related variance, s.e., n = 

8 mice), and the first principal component across mice had similar time courses and 

similar dependence on sound identity (Fig. 1j,k). Indeed, the correlation of auditory PC1 

timecourses evoked in different mice was 0.34, close to the test-retest correlation of 0.44 

measured within individual mice (Extended Data Fig. 1c,e). Again, in all mice, the neuron’s 

weights for the auditory PC1 were widely distributed, with a positive bias (p = 0.0078, 

two-tailed Wilcoxon sign rank test on the mean, n = 8 mice, Fig. 1k). Higher-order PCs were 

harder to compare across mice (Extended Data Fig. 1c,e). Thus, sounds evoke essentially 

one-dimensional population activity, which follows a similar time course even across brains.

In contrast, the activity evoked by videos in V1 neurons was markedly larger and higher-

dimensional. The first visual PC explained a much higher fraction of total variance than the 

first auditory PC (17 ± 1% vs 1.5% ± 0.3, s.e., n = 8 mice; Fig. 1i,l). Furthermore, higher 

visual PCs explained substantial amounts of variance, as previously reported15, unlike higher 

auditory PCs.

Sounds evoke stereotyped responses in hippocampal formation

We next investigated whether these auditory-evoked signals were specific to visual cortex. 

Thanks to the length of Neuropixels probes, while recording from V1 we simultaneously 

recorded from the hippocampal formation (dorsal and pro-subiculum, dentate gyrus, 

and CA3, Fig. 2). These regions receive little input from auditory cortex and auditory 

thalamus26.

Bimbard et al. Page 3

Nat Neurosci. Author manuscript; available in PMC 2023 February 09.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Sounds evoked strong activity in the hippocampal formation, and this activity was largely 

similar across cells and different across sounds (Fig. 2a). As in visual cortex, the activity 

in single trials could be used to decode sound identity (29 ± 2% and to a lesser extent 

video identity 19 ± 2%, p = 0.031 for both, two-tailed Wilcoxon sign rank test, n = 5 

mice; Fig. 2b). Projection of the sound-related activity along the auditory PC1 showed 

different time courses across sounds (Fig. 2c,e), and this first PC explained most of the 

sound-related variance (65 ± 13% Fig. 2d,f). Similarly, the representation of videos was also 

low-dimensional (Extended Data Fig. 2b).

The activity evoked by sounds in the hippocampal formation was remarkably similar to the 

activity evoked in visual cortex. Indeed, the time courses of the auditory PC1 in the two 

regions, averaged over mice, were hardly distinguishable (compare Fig. 2e to Fig. 2g, and 

see Extended Data Fig. 1a,f), with a correlation of r = 0.82 (Fig. 2h). Because they explain 

much less variance, higher-order PCs were more variable across regions (Extended Data Fig. 

1f). The time course of the visual PC1 also shared similarities with the visual PC1 found in 

visual cortex, but higher-order PCs did not (Extended Data Fig. 1b,f).

Sound responses are not due to inputs from auditory cortex

We next returned to the activity evoked by sounds in visual cortex and asked if this activity 

is due to projections from auditory cortex, as has been proposed2,3,5,7. We performed 

transectomies2 to cut the fibers between auditory and visual areas in one hemisphere and 

recorded bilaterally while presenting our audiovisual stimuli (Fig. 3a). The cut ran along 

the whole boundary between auditory and visual areas and was deep enough to reach into 

the white matter (Extended Data Fig. 3a-c). We carefully quantified the precise location and 

extent of the cut in 3D, based on the histology (Fig. 3b, Extended Data Fig. 3d). To estimate 

the fraction of fibers from auditory to visual areas that were cut, we extracted the relevant 

trajectories of fibers from the Allen Mouse Brain Connectivity Atlas26, and intersected it 

with the location of our cut. We thus estimated that the cut decreased the total input from 

the two auditory cortices to the visual areas ipsilateral to the cut by an average factor of >3.6 

compared to the contralateral side (4.8, 2.5 and 3.6 in the 3 mice, Fig. 3c, Extended Data 

Fig. 3e-g). Thus, if auditory evoked activity in visual cortex originates from auditory cortex, 

it should be drastically reduced on the cut side.

The activity evoked by sounds in visual cortex was similar on the cut and the uncut side. 

Indeed, the time course of the activity projected along auditory PC1 on the side of the 

cut (Fig. 3d,e) was essentially identical to the time course of auditory PC1 in the opposite 

hemisphere (r = 0.9, Fig. 3f,g) and barely distinguishable from the one measured in the 

control mice (cut: r = 0.62 / uncut: r = 0.56, Fig. 3h,i). Their relative timing was also 

identical, with a cross-correlation (measured at 1 ms resolution) that peaked at 0 delay. 

The distribution of the variance explained by the first auditory PCs and the distribution 

of neuronal weights on the auditory PC1 were similar in the two sides (Fig. 3e vs. g). 

The total variance of the activity related to sounds on the cut side was on average equal 

to the sound-related variance on the uncut side (Fig. 3j, see Extended Data Fig. 2c for 

all eigenspectra) and was significantly larger than expected from the few auditory fibers 

that were spared by the transectomies (p = 0.031, two-tailed paired sign rank test, n = 6 
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experiments across 3 mice). Furthermore, decoding accuracy was similar across sides for 

both sounds (cut: 27 ± 3% / uncut: 24 ± 2%, p = 0.016 for both, right-tailed Wilcoxon 

sign rank test; comparison: p = 0.44, two-sided paired Wilcoxon sign rank test) and videos 

(cut: 90 ± 4%/ uncut: 85 ± 6%, p = 0.016 for both, right-tailed Wilcoxon sign rank test; 

comparison: p = 0.31, two-sided paired Wilcoxon sign rank test; Fig. 3k).

These results indicate that the activity evoked by sounds in visual cortex in our experiments 

cannot be explained by direct inputs from auditory cortex.

Sounds evoke stereotyped uninstructed behaviors

Sounds evoked uninstructed body movements that were small but stereotyped across trials 

and across mice, and different across sounds. To measure body movements, we used a 

wide-angle camera that imaged the head, front paws, and back of the mice (Fig. 4a). Sounds 

evoked a variety of uninstructed movements, ranging from rapid startle-like responses <50 

ms after sound onset to more complex, gradual movements (Fig. 4b, see Extended Data 

Fig. 4 for all sounds). These movements were remarkably similar across trials and mice. 

The main and most common type of sound-evoked movements were subtle whisker twitches 

(Suppl. Video 1), which we quantified by plotting the first principal component of facial 

motion energy13 (Fig. 4b). These movements were influenced by sound loudness, and to 

some extent by frequency, but not by spatial location (Supplementary Fig. 2). Moreover, 

sounds evoked stereotyped changes in arousal, as observed by the time courses of pupil size, 

which were highly consistent across trials and mice (Extended Data Fig. 5).

Because sound-evoked movements were different across sounds and similar across trials, 

we could use them to decode sound identity with 16 ± 2% accuracy (s.e., p = 0.0078, 

right-tailed Wilcoxon sign rank test, n = 8 mice, Fig. 4e). This accuracy was not statistically 

different from the 18 ± 2% accuracy of sound decoding from neural activity in visual 

cortex (p = 0.15, two-sided paired Wilcoxon sign rank test), suggesting a similar level of 

single-trial reliability in behavior and in neural activity.

Behavior predicts sound-evoked responses in visual cortex

The body movements evoked by sounds had a remarkably similar time course to the activity 

evoked by sounds in area V1 (Fig. 4b,c). The two were highly correlated across time and 

sounds (r = 0.75, Fig. 4d, see Extended Data Fig. 4 for all sound-related timecourses). 

Furthermore, the accuracy of decoding sound identity from V1 activity and from behavior 

was highly correlated across mice (r = 0.73, p = 0.041, F-statistic vs. constant model, n = 8 

mice, Fig. 4f), suggesting that sound-specific neural activity was higher in mice that moved 

more consistently in response to sounds. As it happens, the cohort of transectomy mice 

showed higher sound decoding accuracy from their behavior compared to the main cohort. 

Consistent with our hypothesis, these same mice showed higher sound decoding accuracy 

from their V1 activity, regardless of hemisphere. Finally, the neural activity along auditory 

PC1 correlated with movements even during spontaneous behavior, when no stimulus was 

presented (Pearson correlation 0.29 ± 0.03, s.e., Fig. 4g,h). Movement preceded neural 

activity by a few tens of milliseconds (28 ± 7ms, s.e., p = 0.031, two-sided Wilcoxon sign 
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rank test, n = 8 mice, Fig. 4h, see Extended Data Fig. 6 for the hippocampal formation and 

for both sides of the visual cortex in transectomy experiments).

Another similarity between the neural activity evoked by sounds and by movement could 

be seen in their subspaces13, which substantially overlapped with each other. To define 

the behavioral subspace, we applied reduced-rank regression to predict neural activity from 

movements during the spontaneous period (in the absence of stimuli). This behavioral 

subspace largely overlapped with the auditory subspace: the first 4 components of the 

movement-related subspace explained 75 ± 3% (s.e., p < 0.05 for all mice separately, 

randomization test) of the sound-related variance, much more than the video-related 

variance13 (35 ± 4%, comparison: p = 0.0078, two-sided paired Wilcoxon sign rank test, 

Fig. 4I,j). We observed a similar overlap in the hippocampal formation, and on both sides of 

visual cortex in the transectomy experiments (Extended Data Fig. 6).

We then asked to what extent body movements could predict sound-evoked neural activity in 

V1. We fitted three models to the sound-related single-trial responses (projected onto the full 

auditory subspace) and used the models to predict trial-averages of these sound responses 

on a different test set (Fig. 4k, Supplementary Fig. 3). The first was a purely auditory 
model where the time course of neural activity depends only on sound identity. This model 

is equivalent to a test-retest prediction, so it is expected to perform well regardless of the 

origin of sound-evoked activity; it would fit perfectly with an infinite number of trials. The 

second was a purely behavioral model where neural activity is predicted by pupil area, eye 

position/motion, and facial movements. This model would perform well only if behavioral 

variables observed in individual trials do predict the trial-averaged sound-evoked responses. 

The third was a full model where activity is due to the sum of both factors, auditory and 

behavioral.

This analysis revealed that the sounds themselves were unnecessary to predict sound-evoked 

activity in visual cortex: the body movements elicited by sounds were sufficient. As 

expected, the auditory model was able to capture much of this activity. However, it 

performed worse than the full model and the behavioral models (p = 0.0078, two-sided 

paired Wilcoxon sign rank test, Fig. 4l,m). These models captured not only the average 

responses to the sounds (see Extended Data Fig. 1a for time courses across all sounds), 

but also the fine differences in neural activity between the train and test set, which the 

auditory model cannot predict (because the two sets share the same sounds). Remarkably, 

the behavioral model performed just as well as the full model (p = 0.25, two-sided 

paired Wilcoxon sign rank test, Fig. 4n), indicating that the extra predictors – the sounds 

themselves – were unnecessary to predict sound-evoked activity. Further analysis indicated 

that the main behavioral correlates of sound-evoked activity in V1 were movements of the 

body and of the whiskers, rather than the eyes (Extended Data Fig. 7).

By contrast, and indeed as expected for a brain region that encodes images, a purely visual 

model explained a large fraction of the activity evoked in V1 by videos while the behavioral 

model did not (Extended Data Fig. 8a-c, j-o, Extended Data Fig. 1g). Behavior explained 

a much smaller fraction, mainly along visual PC1, which does not dominate the visual 

responses the way auditory PC1 dominates the auditory responses. In the hippocampal 
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formation, finally, the behavioral model explained both the sound- and video-evoked 

activity, suggesting that any visual or auditory activity observed there is largely related 

to movements (Extended Data Fig. 8d-i, Extended Data Fig. 1g).

Further confirming the role of body movements, we found that trial-by-trial variations in 

sound-evoked V1 activity were well-predicted by trial-by-trial variations in body movement 

(Extended Data Fig. 9). The movements elicited by each sound were stereotyped but not 

identical across trials. The behavioral model and the full model captured these trial-by-trial 

variations, which could not be captured by the auditory model because (by definition) the 

sounds did not vary across trials. The trial-by-trial variations of the visual cortex’s auditory 

PC1 showed a correlation of 0.39 with its cross-validated prediction from movements (p 

= 0.0078, two-sided Wilcoxon sign rank test). In other words, the V1 activity evoked by 

sounds in individual trials followed a similar time course as the body movements observed 

in those trials.

Moreover, the behavioral model confirmed the intuition obtained from the correlations (Fig. 

4h): movements preceded the activity evoked by sounds in visual cortex. The kernel of 

a behavioral model fit to predict auditory PC1 during spontaneous activity showed that 

movement could best predict neural activity occurring 25-50 ms later (Extended Data Fig. 

10). This suggests that the activity evoked by sounds in visual cortex is driven by changes in 

internal and behavioral state.

Discussion

These results confirm that sounds evoke activity in visual cortex2–7, but provide an 

alternative interpretation for this activity based on the widespread neural correlates of 

internal state and body movement10,12–14,27. We found that different sounds evoke different 

uninstructed body movements such as whisking, which reflect rapid changes in internal 

state. Crucially, we discovered that these movements are sufficient to explain the activity 

evoked by sounds in visual cortex in our experiments. These results suggest that, at least in 

our experiments, the sound-evoked activity had a behavioral origin.

Confirming this interpretation, we found that sound-evoked activity in visual cortex was 

independent of projections from auditory cortex. This result contrasts those of studies that 

ascribed the activity evoked by sounds in V1 to a direct input from auditory cortex. These 

studies used multiple methods: silencing of auditory cortex2,5; stimulation of its projections 

to visual cortex2,3; or transectomy of these projections2. However, the first two methods 

would interfere with auditory processing, and thus could affect sound-evoked behavior. We 

thus opted for transectomy2, which is less likely to modify behavior, and we performed 

bilateral recordings to have an internal control – the uncut side – within the same mice and 

with the same behavior. In accordance with our interpretation, these manipulations did not 

reduce sound-evoked activity in V1.

This result contrasts with the original study that introduced the transectomy2, and the 

difference in results may be due to differences in methods. First, the previous study was 

conducted intracellularly and mostly in layers 2/3 (where sounds hyperpolarized cells, unlike 
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in other layers where sounds increased spiking), whereas we recorded extracellularly in all 

layers (and observed mainly increases in spiking). Second, the previous study performed 

recordings hours after the transectomy, whereas we performed them days later. Third, the 

previous study anesthetized the mice, whereas we did not, a difference that can profoundly 

affect V1 activity28.

Our results indicate that sound-evoked activity is widespread in visual cortex and even in 

the hippocampal formation, and in both regions, it is low-dimensional. These properties 

echo those of movement-related activity, which is distributed all over the brain13,14,22,27 

and low-dimensional13. We indeed found that movement-related neural activity even in 

the absence of sounds spanned essentially the same dimensions as sound-evoked activity. 

Moreover, the movements elicited by the sounds in each trial accurately predicted the 

subsequent sound-evoked activity. This is remarkable considering that all the movements we 

measured are in the face, and that our analyses are linear. It is possible that movements of 

other body parts, or more complex analyses, would provide even better predictions of the 

neural activity elicited by sounds.

Our findings do not exclude the possibility of genuine auditory signals inherited from 

auditory cortex. After all, projections from auditory to visual cortex do exist, and may 

perhaps carry auditory signals in other behavioral contexts, or in response to other types 

of stimuli. Moreover, some discrepancies between our results and the literature2–7 could 

be due to differences in recording techniques, and the associated sampling biases29. Our 

V1 recordings were biased towards layers 4-6. However, layer 2/3 also exhibits substantial 

movement related activity10–14 which has the potential to explain the activity evoked by 

sounds there. Finally, it is also possible that auditory projections are very sparse and affect 

only a minor fraction of V1 neurons, or that they affect neurons that don’t fire at high rates, 

and that we missed these neurons in our recordings.

Distinguishing putative auditory signals from the large contribution of internal state and 

behavior will require careful and systematic controls, which are rarely performed in 

passively listening mice. Some studies have controlled for eye movements5 or for overt 

behaviors such as licking7. However, previous studies may have overlooked the types of 

movement that we observed to correlate with neuronal activity, which were subtle twitches 

of the whiskers or the snout (see Supplementary Video 1). An exception is a study20 

that explored the contribution of whisking to sound-evoked activity V1 neurons in layer 

1. In agreement with our results, this study found that whisking explains a fraction of 

those neurons’ sound-evoked activity. However, it did not explain all the neural activity. 

This discrepancy could be due to differences in recording methods (2-photon imaging vs. 

electrophysiology), in cortical layers (layer 1 vs. 4-6) or in the analyses. For instance, the 

previous study relied on a hard threshold to call a response auditory vs. movement-related, 

whereas we estimated the fraction of sound-evoked activity explained by movement.

Our results do not imply that cortical activity is directly due to body movements; instead, 

cortical activity and body movements may both arise from changes in internal state. 

Consistent with this view, we found that sound-evoked activity in V1 is low-dimensional, 

and thus very different from the high-dimensional representation of visual stimuli13. This 
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interpretation would explain some of the sound-evoked activity in visual cortex under 

anesthesia2,3, where movements are not possible, but state changes are common and difficult 

to control and monitor30,31.

Finally, these observations suggest that changes in states or behavior may also explain other 

aspects of neural activity that have been previously interpreted as being multisensory9. 

Stereotyped body movements can be elicited not only by sounds16–19 but also by 

images32–36 and odors33,37. For instance, in our experiments the videos evoked visual 

responses in both V1 and in the hippocampal formation, and the latter could be largely 

explained by video-evoked body movements. Such movements may be even more likely 

in response to natural stimuli19 which are increasingly common in the field. Given the 

extensive correlates of body movement observed throughout the brain13,14,21,27,38 these 

observations reinforce the importance of monitoring behavioral state and body movement 

when interpreting sensory-evoked activity.

Methods

Experimental procedures at UCL were conducted according to the UK Animals Scientific 

Procedures Act (1986), approved by the Animal Welfare and Ethical Review Body 

(AWERB) at UCL and under personal and project licenses released by the Home Office 

following appropriate ethics review.

Surgery and recordings

Recordings were performed on 8 mice (6 male and 2 female), between 16 and 38 weeks of 

age. Mice were first implanted with a headplate designed for head-fixation under isoflurane 

anesthesia (1–3% in O2). After recovery, neural activity was recorded using Neuropixels 

1.0 (n = 5) and 2.0 (n = 3, among which 2 had 4 shanks) probes implanted in left primary 

visual cortex (2.5 mm lateral, 3.5 mm posterior from Bregma, one probe per animal) and 

in the underlying hippocampal formation. In 5 of the mice the probes were implanted 

permanently or with a recoverable implant as described in Refs. 24,39 and in the remaining 

3 they were implanted with a recoverable implant of a different design (Yoh Isogai and 

Daniel Regester, personal communication). Results were not affected by the implantation 

strategy. Electrophysiology data were acquired using SpikeGLX (https://billkarsh.github.io/

SpikeGLX/, versions 20190413, 20190919, and 20201012). Sessions were automatically 

spike-sorted using Kilosort2 (https://github.com/MouseLand/Kilosort/releases/tag/v2.040) 

and manually curated to select isolated single cells using Phy (https://github.com/cortex-lab/

phy). Because spike contamination is a key source of bias29, we took particular care in 

selecting cells with few or no violations in inter-spike interval (ISI), and we confirmed that 

a key measure used in our study, the reliability of auditory responses, did not correlate 

with the ISI violations score. In fact, it showed a slightly negative correlation, indicating 

that the best isolated neurons tended to have the highest reliability. Reliability for both 

auditory and visual responses also grew with firing rate, as may be expected. The final 

number of cells was 640 in primary visual cortex (8 mice, 69 / 53 / 54 / 44 / 31 / 33 / 144 / 

212 for each recording) and 233 in hippocampal formation (5 mice, 49 / 15/ 28 / 64 / 77 

for each recording, mainly from dorsal subiculum and prosubiculum). Probe location was 
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checked post-hoc by aligning it to the Allen Mouse Brain Atlas41 visually or through custom 

software (www.github.com/petersaj/AP_histology).

Before and in between experiments, mice were housed in IVC (individually ventilated 

cages), with a 9am-9pm light/dark cycle (no reverse/shifted light cycle). Temperature was 

maintained between 20-24 degree Celsius and humidity was maintained between 50-70%.

Transectomy experiments

In 3 additional mice (all male, of 10, 21 and 22 weeks of age) we performed transectomies 

to cut the fibers running from auditory to visual cortex and followed them with bilateral 

recordings in visual cortex. Mice expressed GCaMP6s in excitatory neurons (mouse 1 & 

3: Rorb.Camk2tTA.Ai96G6s_L_001; mouse 2: tet0-G6sx CaMK-tTA) so we could monitor 

the activity of the intact visual cortex through widefield imaging (data not shown). Prior to 

headplate implantation, we used a dental drill (13,000 rpm) to perform a narrow rectangular 

(0.3 mm wide) craniotomy along the antero-posterior axis (from 1.6 mm posterior to 4.3 

mm posterior) centered at 4.3 mm lateral to Bregma. To make the transectomy we then 

used an angled micro knife (angled 15°, 10315-12 from Fine Science Tools), mounted on a 

Leica digital stereotaxic manipulator with fine drive. Ensuring the skull was in a horizontal 

position (the difference between both DV coordinates did not exceed 0.1 mm), the knife was 

tilted 40° relative to the brain. The knife was inserted to a depth of 1.7 mm at the posterior 

end of the craniotomy, and slowly moved to the anterior end with the manipulator control. 

Any bleeding was stemmed by applying gelfoam soaked in cortex buffer. To protect the 

brain, we then applied a layer of Kwik-Sil (World Precision Instruments, Inc.) followed by 

a generous layer of optical adhesive (NOA 81, Norland Products Inc). Following this, we 

attached a headplate to the skull as described above and we covered any exposed parts of the 

skull with more optical adhesive.

After a rest period of 1 week for recovery, we imaged the visual cortex under a widefield 

scope to confirm that it was healthy and responding normally to visual stimuli. Bilateral 

craniotomies were performed between 7 to 14 days following the transectomy, and acute 

bilateral recordings were acquired using 4-shank Neuropixels 2.0 probes targeting visual 

cortex over multiple days (3, 1 and 2 consecutive days in the three mice). The total 

number of cells was 1059 (ipsi) and 914 (contra) (per recording, ipsi/contra: 164/185; 

216/106; 254/324; 58/59; 218/125; 149/115). We imaged the brains using serial section42 

two-photon43 tomography. Our microscope was controlled by ScanImage Basic (Vidrio 

Technologies, USA) using BakingTray (https://github.com/SainsburyWellcomeCentre/

BakingTray, https://doi.org/10.5281/zenodo.3631609). Images were assembled using 

StitchIt (https://github.com/SainsburyWellcomeCentre/StitchIt, https://zenodo.org/badge/

latestdoi/57851444). Probe location was checked using brainreg44–46, showing that most 

recordings were in area V1, and partially VISpm and VISl. The exact location of the probe 

in visual cortex did not affect the results so we pooled all areas together under the name of 

VIS.
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Stimuli

In each session, mice were presented with a sequence of audio, visual or audiovisual movies, 

using Rigbox (https://github.com/cortex-lab/Rigbox, version 2.3.1). The stimuli consisted 

of all combinations of auditory and visual streams extracted from a set of 11 naturalistic 

movies depicting the movement of animals such as cats, donkeys and seals, from the 

AudioSet database25. An additional visual stream consisted of a static full-field gray image 

and an additional auditory stream contained no sound. Movies lasted for 4 s, and were 

separated by an inter-trial interval of 2 s. The same randomized sequence of movies was 

repeated 4 times during each experiment, with the first and second repeat separated by a 5 

min interval.

The movies were gray scaled, spatially re-scaled to match the dimensions of a single 

screen of the display, and duplicated across the three screens. The visual stream was 

sampled at 30 frames per second. Visual stimuli were presented through three displays 

(Adafruit, LP097QX1) each with a resolution of 1024 by 768 pixels. The screens covered 

approximately 270 x 70 degrees of visual angle, with 0 degree being directly in front of the 

mouse. The screens had a refresh rate of 60 frames per second and were fitted with Fresnel 

lenses (Wuxi Bohai Optics, BHPA220-2-5) to ensure approximately equal luminance across 

viewing angles.

Sounds were presented through a pair of Logitech Z313 speakers placed below the screens. 

The auditory stream was sampled at 44.1 kHz with 2 channels and was scaled to a sound 

level of -20 decibels relative to full scale.

In situ sound intensity and spectral content was estimated using a calibrated microphone 

(GRAS 40BF 1/4” Ext. Polarized Free-field Microphone) positioned where the mice sit, 

and reference loudness was estimated using an acoustic calibrator (SV 30A, Supplementary 

Fig. 1). Mice were systematically habituated to the rig through 3 days of familiarizing 

with the rig’s environment and head-fixation sessions of progressive duration (from 10 min 

to an hour). They were not habituated to the specific stimuli before the experiment. Two 

exceptions were the transectomy experiments, where mice were presented with the same 

protocol across the consecutive days of recordings (so a recording on day 2 would mean 

the mouse had been through the protocol one already), and in specific control experiments 

not shown here (n = 2 mice). Presentation of the sounds over days (from 2 to 5 days) did 

not alter the observed behavioral and neural responses (n = 2 transectomy mice + 2 control 

mice).

Videography

Eye and body movements were monitored by illuminating the subject with infrared light 

(830 nm, Mightex SLS-0208-A). The right eye was monitored with a camera (The Imaging 

Source, DMK 23U618) fitted with zoom lens (Thorlabs MVL7000) and long-pass filter 

(Thorlabs FEL0750), recording at 100 Hz. Body movements (face, ears, front paws, and 

part of the back) were monitored with another camera (same model but with a different 

lens, Thorlabs MVL16M23) situated above the central screen, recording at 40 Hz for the 

experiments in V1 and HPF (Fig. 1 & Fig. 2) and 60Hz for the transectomy experiments 
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(Fig. 3). Video and stimulus time were aligned using the strobe pulses generated by 

the cameras, recorded alongside the output of a screen-monitoring photodiode and the 

input to the speakers, all sampled at 2,500 Hz. Video data was acquired on computer 

using mmmGUI (https://github.com/cortex-lab/mmmGUI). To compute the Singular Value 

Decompositions of the face movie and to fit pupil area and position, we used the facemap 
algorithm13 (www.github.com/MouseLand/facemap).

Behavior-only experiments

In order to test for the influence of basic acoustic properties on movements, we ran behavior-

only experiments (i.e., only with cameras filming the mice, and no electrophysiology, 

Supplementary Fig. 2) on 8 mice in which we played i) white noise of various intensities; ii) 

pure tones of various frequencies; iii) white noise coming from various locations. In contrast 

with the previous experiments, auditory stimuli were presented using an array of 7 speakers 

(102-1299-ND, Digikey), arranged below the screens at 30° azimuthal intervals from -60° 

to +60° (where -90°/+90° is directly to the left/right of the subject). Speakers were driven 

with an internal sound card (STRIX SOAR, ASUS) and custom 7-channel amplifier (http://

maxhunter.me/portfolio/7champ/). As in the previous experiments, in situ sound intensity 

and spectral content was estimated using a calibrated microphone (GRAS 40BF 1/4” Ext. 

Polarized Free-field Microphone) positioned where the mice sit, and reference loudness was 

estimated using an acoustic calibrator (SV 30A). Body movements were monitored with 

a Chameleon3 camera (CM3-U3-13Y3C-S-BD, Teledyne FLIR) recording at 60Hz. The 

movie was then processed with facemap.

The effect of each factor was then quantified using repeated-measures ANOVA with either 

the sound loudness, frequency, or location as a factor.

Data processing

MATLAB 2019b and 2022a were used for data analysis. For each experiment, the neural 

responses constitute a 5-dimensional array D of size Nt time bins x Nv videos x Na sounds x 

Nr repeats x Nc cells. The elements of this matrix are the responses Dtvarc measured at time 

t, in video v, sound a, repeat r, and cell c. D contains the binned firing rates (30 ms bin size) 

around the stimulus onset (from 1 s before onset to 3.8 s after onset), smoothed with a causal 

half gaussian filter (standard deviation of 43 ms), and z-scored for each neuron.

Pupil area and eye position were baseline-corrected to remove the slow fluctuations and 

focus on the fast, stimulus-evoked and trial-based fluctuations: the mean value of the pupil 

area or eye position over the second preceding stimulus onset was subtracted from each 

trial. Signed eye motion (horizontal and vertical) was computed as the difference of the eye 

position between time bins. The unsigned motion was obtained as the absolute value of the 

signed motion. The global eye motion was estimated as the absolute value of the movement 

in any direction (L2 norm). Eye variables values during identified blinks were interpolated 

based on their values before and after the identified blink. Body motion variables were 

defined as the first 128 body motion PCs. Both eye-related and body-related variables were 

then binned similarly to the neural data. We note that the timing precision for the face 

motion is limited by both the camera acquisition frame rate (40 fps, not aligned to stimulus 
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onset), and the binning used here (30 ms bins, aligned on stimulus onset). Thus, real timings 

can differ by up to 25 ms.

All analyses that needed cross-validation (test-retest component covariance, decoding, 

prediction) were performed using a training set consisting of half of the trials (odd trials) and 

a test set based on the other half (even trials). Models were computed on the train set and 

tested on the test set. Then test and train sets were swapped, and quantities of interest were 

averaged over the two folds.

To estimate the correlation of the sound-evoked time courses across mice, the variable 

of interest was split between training and test set, averaged over all trials (e.g., for 

sound-related activity, over videos and repeats), and the Pearson correlation coefficient 

was computed between the training set activity for each mouse and the test set activity 

of all mice (thus giving a cross-validated estimate of the auto- and the cross-correlation). 

Averages were obtained by Fisher’s Z-transforming each coefficient, averaging, and back-

transforming this average.

Marginalization

To isolate the contribution of videos or sounds in the neural activity we used a 

marginalization procedure similar to the one used in factorial ANOVA. By Dtvarc we denote 

the firing rate of cell c to repeat r of the combination of auditory stimulus a and visual 

stimulus v, at time t after stimulus onset. The marginalization procedure decomposes Dtvarc 

into components that are equal across stimuli, related to videos only, related to sounds only, 

related to audiovisual interactions, and noise:

Dtvarc = Mtc + V tvc + Atac + Itvac + ϵtvarc

The first term is the mean of the population activity across videos, sounds, and repeats:

Mtc = Dt⋯c = 1
NvNaNr

∑v∑a∑rDtvarc .

where dots in the second term indicate averages over the missing subscripts, and Nv, Na, Nr 

denote the total number of visual stimuli, auditory stimuli, and repeats.

The second term, the video-related component, is the average of the population responses 

over sounds and repeats, relative to this mean response:

V tvc = Dtv..c − Mtc

Similarly, the sound-related component is the average over videos and repeats, relative to the 

mean response:

Atac = Dt ⋅ a ⋅ c − Mtc
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The audiovisual interaction component is the variation in population responses that is 

specific to each pair of sound and video:

Itvac = Dtva ⋅ c − Mtc − V tvc − Atac

Finally, the noise component is the variation across trials:

ϵtvarc = Dtvarc  − Dtva ⋅ c

In matrix notation, we will call A, V, and I the arrays with elements Atac, Vtvc, and Itvac and 

size Nt × Na × Nc, Nt × Nv × Nc and Nt × Nv × Na × Nc.

Dimensionality reduction

The arrays of sound-related activity A, of video-related activity V, and of audiovisual 

interactions I, describe the activity of many neurons. To summarize this activity, we 

used cross-validated Principal Component Analysis15 (cvPCA). In this approach, principal 

component projections are found from one half of the data, and an unbiased estimate of the 

reliable signal variance is found by computing their covariance with the same projections on 

a second half of the data.

We illustrate this procedure on the sound-related activity. In what follows, all arrays, array 

elements, and averages (e.g. A, Atac, At.c) refer to training-set data (odd-numbered repeats), 

unless explicitly indicated with the subscript test (e.g. Atest, Atac;test, At.c;test).

We first isolate the sound-related activity A as described above from training set data (odd-

numbered trials). We reshape this array to have two dimensions NtNa × Nc; and perform 

PCA:

T = AW

where T (NtNa × Np) is a set of time courses of the top Np principal components of A, and 

W is the PCA weight matrix (Nc × Np).

For cvPCA analysis, we took Np = Nc to estimate the amount of reliable stimulus-triggered 

variance in each dimension (Fig. 2f,i; Supp. Fig. 2). We computed the projections of the 

mean response over a test set of even-numbered trials, using the same weight matrix: Ttest = 

AtestW and evaluated their covariance with the training-set projections:

V k = 1
NtNa − 1 ∑

j = 1

NtNa
Tjk − T . k Tjk; test − T . k; test

This method provides an unbiased estimate of the stimulus-related variance of each 

component15. Analogous methods were used to obtain the signal variance for principal 

components of the visual response and interaction, by replacing A with V or I (Supp. Fig 2). 

The cvPCA variances were normalized either by the sum for all auditory dimensions (e.g., 
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Fig. 2h,j), or the sum for all dimensions from video-related, sound-related and interaction-

related decompositions (Extended Data Fig. 2).

To determine if a cvPCA dimension had variance significantly above 0, we used a shuffling 

method. The shuffling was done by changing the labels of both the videos and the sounds 

for each repeat. We performed this randomization 1,000 times and chose a component to 

be significant if its test-retest covariance value was above the 99th percentile of the shuffled 

distribution. We defined the dimensionality as the number of significant components. For 

the video-related activity, we found an average of 79 significant components (± 23, s.e., n 

= 8 mice). As expected, this number grew with the number of recorded neurons15 (data not 

shown). For the sound-related activity, instead, we found only 4 significant components on 

average (± 1, s.e., n = 8 mice). For the interactions between videos and sounds, finally, we 

found zero significant components (0 ± 0, s.e., n = 8 mice) indicating that the population 

responses did not reflect significant interactions between videos and sounds.

For visualization of PC time courses (Fig. 1, Fig. 2 & Fig. 3, Extended Data Fig. 4), we 

computed the weight matrices W from the training set but we used the projection of the full 

dataset to compute the time courses of the first component. In Extended Data Fig. 1, instead, 

we computed W on the full dataset but we projected only the test set, to show the model’s 

cross-validated prediction.

Decoding

Single-trial decoding for video- or sound-identity was performed using a template-matching 

decoder applied to neural or behavioral data. In this description, we will focus on decoding 

sound identity from neural data. The data were again split into training and test sets 

consisting of odd and even trials. Both test and trained trials contained a balanced number of 

trials for each sound.

When decoding sound-related neural activity (Fig. 1, Fig. 2, and Fig. 3, Extended Data Fig. 

1), we took Np = 4, so the matrix T containing PC projections of the mean training-set 

sound-related activity had size NtNt × 4; using more components did not affect the results. 

To decode the auditory stimulus presented on a given test-set trial, we first removed the 

video-related component by subtracting the mean response to the video presented on that 

trial (averaged over all training-set trials) We then projected this using the training-set 

weight matrix W to obtain a Nt × 4 timecourse for the top auditory PCs, and found the 

best-matching auditory stimulus by comparing to the mean training-set timecourses for 

each auditory stimulus using Euclidean distance. A similar analysis was used to decode 

visual stimuli, using Np = 30 components in visual cortex and Np = 4 in the hippocampal 

formation.

To decode the sound identity from behavioral data, we used the z-scored eye variables (pupil 

area and eye motion in Extended Data Fig. 5), or the first 128 principal components of the 

motion energy of the face movie (Fig. 4) and performed the template-matching the same 

way as the with the neural data.
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The significance of the decoding accuracy (compared to chance) was computed by 

performing a right-sided Wilcoxon sign rank test to compare to chance level (1/12), treating 

each mouse as independent. The comparison between video identity and sound identity 

decoding accuracy was computed by performing a paired two-sided Wilcoxon sign rank test 

across mice.

Encoding

To predict neural activity from stimuli/behavioral variables (“encoding model”; Fig. 4, 

Supplementary Fig. 3), we again started by extracting audio- or video-related components 

and performing Principal Component Analysis, as described above, however this time the 

weight matrices were computed from the full dataset rather than only the training set. Again, 

we illustrate by describing how sound-related activity was predicted, for which we kept Np 

= 4 components; video-related activity was predicted similarly but with Np = 30 in visual 

cortex and Np = 4 in the hippocampal formation.

We predicted neural activity using linear regression. The target Y contained the 

marginalized, sound-related activity on each trial, projected onto the top 4 auditory 

components: specifically, we compute Dtvarc — Mtc — Vtvc, reshape to a matrix of size 

NtNvNaNr × Nc , and multiply by the matrix of PC weights W. We predicted Y by 

regression: Y ≈ XB, where X is a feature matrix and B are weights fit by cross-validated 

ridge regression.

The feature matrix depended on the model. To predict from sensory stimulus identity (see 

‘Auditory predictors’ in Supplementary Fig. 3), X had one column for each combination 

of auditory stimulus and peristimulus timepoint, making NaNt =1,524 columns, NtNvNaNr 

rows, and contained 1 during stimulus presentations in a column reflecting the stimulus 

identity and peristimulus time. With this feature matrix, the weights B represent the mean 

activity time course for each dimension and stimulus, and estimation is equivalent to 

averaging across the repeats of the train set. It is thus equivalent to a test-retest estimation 

and is not a model based on acoustic features of the sounds.

To predict from behavior, we used features for pupil area, pupil position (horizontal and 

vertical), eye motion (horizontal and vertical -- signed and unsigned), global eye motion 

(L2 norm of x and y motion, unsigned), blinks (thus 9 eye-related predictors) and the first 

128 face motion PCs, with lags from -100 ms to 200 ms (thus 12 lags per predictor, 1,644 

predictors total, see ‘Eye predictors’ and ‘Body motion predictors’ in Supplementary Fig. 3). 

As for the neural activity target matrix Y, all behavioral variables were first marginalized to 

extract the sound-related modulations. To predict from both stimulus identity and behavior, 

we concatenated the feature matrices, obtaining a matrix with 3,168 columns. The beginning 

and end of the time course for each trial were padded with NaNs (12 – the number of lags 

– at the beginning and end of each trial, to avoid cross-trial predictions by temporal filters. 

Thus, the feature matrix has (Nt + 24)NvNaNr rows. A model with the eye variables only, 

and a model with the face motion variables only was also constructed (Extended Data Fig. 

7). Note that in the case of mice for which the eye wasn’t recorded (2 out of the 8 mice, 

and all transectomy experiments), the behavioral model contained only the body motion 

variables.
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We used ridge regression to predict the single trial version of Y from X on the training set. 

The best lambda parameter was selected using a 3-fold cross-validation within the training 

set.

To measure the accuracy of predicting trial-averaged sound-related activity (Fig. 4), we 

averaged the NtNvNaNr × Np activity matrix Ytest over all test-set trials of a given auditory 

stimulus, to obtain a matrix of size NtNa × Nc, and did the same for the prediction matrix 

XtestB, and evaluated prediction quality by the elementwise Pearson correlation of these two 

matrices.

To evaluate predictions of trial-to-trial fluctuations (Extended Data Fig. 9b,c), we computed 

a “noise” matrix of size NtNvNaNr × Np by subtracting the mean response to each sound: 

Ytvarp; test — Yt.a.p; test, performed the same subtraction on the prediction matrix XtestB, and 

evaluated prediction quality by the elementwise Pearson correlation of these two matrices. 

Again, the average was obtained by Fisher’s Z-transforming each coefficient, averaging, and 

back-transforming this average.

To visualize the facial areas important to explain neural activity (Extended Data Fig. 7), we 

reconstructed the weights of the auditory PC1 prediction in pixel space. Let b0
body (1 × 128) 

be the weights predicting neural auditory PC1 at lag 0 from each of the 128 body motion 

PCs. Let ω (128 × total number of pixels in the video) be the weights of each of these 128 

face motion PCs in pixel space (as an output of the facemap algorithm). We obtained an 

image I of the pixel-to-neural weights by computing I = b0
bodyω.

Finally, to explore the timing relationship between movement and neural activity, we looked 

at the cross-correlogram of the motion PC1 and the auditory PC1 during the spontaneous (no 

stimulus) period (Fig. 4, Extended Data Fig. 6). The auditory PC1 was found by computing 

its weights without cross-validation. To maximize the temporal resolution, the regression 

analysis was performed on the spikes sampled at the rate of the camera acquisition (40 fps, 

thus 25ms precision). We then computed the lag associated in the cross-correlogram, which 

showed that movement preceded neural activity by 25-50ms. To avoid errors induced by 

“large” cross-correlograms due to autocorrelation of the two signals, we also performed a 

ridge regression of the auditory PC1 from the motion PCs during the spontaneous period and 

looked at the peak of the weights of motion PC1 to predict auditory PC1 (Extended Data 

Fig. 10).

Movement- and sound-related subspaces overlap

To quantify the overlap between the movement- and the sound-related subspaces of neural 

activity in V1, we computed how much of the sound-related variance the movement-related 

subspace could explain13. We first computed the movement-related subspace by computing 

a reduced-rank regression model to predict the neural activity matrix S (T × Nc, with T 
being the number of time points) from the motion components matrix M with lags (T × 

128*21=2,688 lags) during the spontaneous period (no stimulus), both binned at the face 

video frame rate (40 or 60Hz). This yields a weight matrix B (2,688 × Nc) so that: S 
≈ MB. The weight matrix B factorizes as a product of two matrices of sizes 2,688 × r 
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and r × Nc, with r being the rank of the reduced-rank regression. The second part of this 

factorization, the matrix of size r × Nc of which transpose we call C (Nc × r), forms an 

orthonormal basis of the movement-related subspace of dimensionality r. Here, we chose r 
= 40 to match the size of the sound related subspace, but the results were not affected by 

small changes in this value. Then, we projected the sound-related activity of the train set 

A and the test set Atest onto C and measured the covariance of these projections for each 

dimension of the movement-related subspace. This is similar to the cvPCA performed above 

to find the variance explained by auditory PCs, except the components are here the ones 

most-explained by behavior, and not by sound. The overlap between the movement-related 

and the sound-related subspaces was finally quantified as the ratio of the sound-related 

variance explained by the first 4 components of each subspace.

We note that the fact that the overlap between the sound-related subspace and the behavior-

related subspace is not 100% may come from the noise in estimating the behavior-related 

subspace, which relies on the spontaneous period only which was less than 25 min.

Transectomy quantification

To visualize and estimate the extent of the transectomy, we used the software brainreg44–46 

(https://github.com/brainglobe/brainreg) to register the brain to the Allen Mouse Brain 

Reference Atlas41, and manually trace the contours of the cut using brainreg-segment 
(https://github.com/brainglobe/brainreg-segment). The cut was identified visually by 

observing the massive neuronal loss (made obvious by a loss of fluorescence) and scars.

To estimate the extent of the fibers that were cut by the transectomy, we took advantage 

of the large-scale connectivity database of experiments performed by the Allen Brain 

Institute (Allen Mouse Brain Connectivity Atlas26, https://connectivity.brain-map.org/). 

Using custom Python scripts, we selected and downloaded the 53 experiments where 

injections were performed in the auditory cortex and projections were observed in visual 

cortex (we subselected areas V1, VISpm and VISl as targets, since these were where 

the recordings were performed). We used the fiber tractography data to get the fibers’ 

coordinates in the reference space of the Allen Mouse Brain Atlas, to which was also 

aligned the actual brain and the cut reconstruction. Using custom software, we selected only 

the fibers of which terminal were inside or within 50 μm of either ipsilateral or contralateral 

visual cortex. We identified the cut fibers as all fibers that were passing inside or within 

50 μm of the cut. Because auditory cortex on one side sends projections to both sides (yet 

much more to the ipsilateral side), cutting the fibers on one side could also affect responses 

on the other side. Moreover, residual sound-evoked activity on the side ipsilateral to the 

transectomy could possibly be explained by fibers coming from the contralateral auditory 

cortex. We thus quantified the auditory input to each visual cortex as the number of intact 

fibers coming from both auditory cortices, with one side being cut and the other being 

intact. We then made the hypothesis that the size of the responses, or more generally the 

variance explained by sounds in both populations, would linearly reflect these “auditory 

inputs”. We then compared the sound-related variance on the cut side to its prediction from 

the sound-related variance on the uncut side. This provided an internal control, with the 

same sounds and behavior. We took the sound-related variance as the cumulative sum of the 

Bimbard et al. Page 18

Nat Neurosci. Author manuscript; available in PMC 2023 February 09.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://github.com/brainglobe/brainreg
https://github.com/brainglobe/brainreg-segment
https://connectivity.brain-map.org/


variance explained by the first 4 auditory PCs, on both sides. We then used brainrender47 

(https://github.com/brainglobe/brainrender/releases/tag/v2.0.0.0) to visualize all results.

Extended Data

Extended Data Fig. 1. Coding of visual vs. auditory stimuli in visual cortex and hippocampal 
formation.
a. Time courses of the auditory PC1 averaged across mice (z-scored), measured in visual 

cortex (VIS, top) and hippocampal formation (HPF, bottom). Traces show the actual data 
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(purple) and the cross-validated prediction from the behavioral model (black). b. Same as a, 

but for visual PC1 (green). c. Reliability of each auditory (left) or visual (right) PC, in VIS 

(top, n = 8 mice) or HPF (bottom, n = 5 mice). The large dot shows the z-transformed mean; 

the bounds of each box show the 25th and 75th percentiles; the whiskers show the minimum 

and maximum values that are not outliers; small dots show outliers (computed using the 

interquartile range); individual dots are also shown. d. Decoding accuracy of sound identity 

from auditory PCs (left) or video identity from visual PCs (right) measured in VIS, taking 

the full subspace or the full subspace except PC1. Sound decoding was significantly worse 

without auditory PC1 (*: p = 0.0156, two-sided paired Wilcoxon sign rank, n = 8 mice). 

e. Same as c but showing the similarity across animals. Reliability of each PC is shown 

for reference (grey, replotted from c). f. Similarity of visual and auditory PCs between 

VIS and HPF. g. Same as e, for the predictability of each PC by the behavioral model, 

measured by the cross-validated correlation between data and model prediction. The model 

can sometimes predict the test set better than the train set because it can predict fluctuations 

specific to the test set.
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Extended Data Fig. 2. Dimensionality of auditory and visual responses in visual cortex and 
hippocampal formation.
a. Top: Total variance explained (normalized test-retest covariance) for visual PCs (left), 
auditory PCs (middle) and interactions PCs (right), for all 8 recordings in V1 (thin lines) 

and their average (filled dots). The total variance is measured from the normalized test-retest 

covariance, which can occasionally be negative (not visible in logarithmic scale). b. Same as 

a but with the 5 recordings from the HPF. c. Same as a but with the 12 recordings from the 

visual cortices ipsilateral (6, crosses) and contralateral (6, filled dots) to the cut (6 sessions 

across 3 mice).
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Extended Data Fig. 3. Transectomy cut most of the fibers from auditory to visual cortex.
a. Schematic of the transectomy experiments: the connections between auditory (AUD) and 

visual (VIS) cortex are cut on one side. Subsequently, recordings are performed in visual 

cortex, in both hemispheres. b. Picture from above of the mouse skull during surgery, with 

a craniotomy performed on the left side. c. Histology of the three mouse brains, showing 

the cut (inset), and the probe tracks (DiI and DiO staining, mainly visible in mice 1 and 3). 

d. 3D reconstructions of the cut, shown from a coronal view (left) or from above/sideways 

(right). e. Fiber tracks from the auditory cortex to the visual cortex in intact mice, from 

53 experiments performed in the Allen Mouse Brain Connectivity atlas26, see Methods). 

f. Estimated intact fibers after the cut, for the 3 mice. g. Estimate of the number of fibers 

before the cut (abscissa) and after the cut (ordinate) for each mouse, in ipsilateral (left) and 

contralateral visual cortex (right). The color of the dots indicates the auditory area from 

which the fibers originated (Allen Mouse Brain Connectivity Atlas). The black dot shows 

the average over all 53 experiments performed for the Atlas.
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Extended Data Fig. 4. Neural and behavioral responses differ across sounds but resemble each 
other.
Responses along neural auditory PC1 from V1 (purple), and motion energy (blue) for all 

sounds. Responses are averaged over trials, videos, and mice, and z-scored. The top trace 

(gray) shows the envelope of the corresponding sound. As in all main text figures, these 

responses are expressed relative to the grand average over sounds and videos; this explains 

the negative deflections seen in the responses to the blank stimulus.
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Extended Data Fig. 5. Sounds trigger changes in arousal and eye movements.
a. Left: Cross-correlogram of the motion energy and the neural activity on the auditory PC1 

during the spontaneous period, for individual mice (grey) and averaged across mice (black). 

A positive lag means that movement preceded neural activity. Right: Overlap between the 

neural subspace related to behavior and the subspace related to video (left) or to sound 

(right), for each mouse (open dots) and averaged across mice (filled dot). Dashed lines 

show the significance threshold (95th percentile of the overlap with random dimensions) 

for each mouse (two-sided paired Wilcoxon sign rank test, n = 5 mice). b. Same as a for 

the recordings in visual cortex after a transectomy (***: p = 0.00048, two-sided paired 

Wilcoxon sign rank test, n = 12 recordings across 3 mice; comparison cut vs. uncut side: 

two-sided paired Wilcoxon sign rank test, n = 6 sessions across 3 mice).
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Extended Data Fig. 6. Timing of movements and sound-related neural activity and overlap 
between neural subspaces related to behavior and sounds.
a. Left: Cross-correlogram of the motion energy and the neural activity on the auditory PC1 

during the spontaneous period, for individual mice (grey) and averaged across mice (black). 

A positive lag means that movement preceded neural activity. Right: Overlap between the 

neural subspace related to behavior and the subspace related to video (left) or to sound 

(right), for each mouse (open dots) and averaged across mice (filled dot). Dashed lines 

show the significance threshold (95th percentile of the overlap with random dimensions) 

for each mouse (two-sided paired Wilcoxon sign rank test, n = 5 mice). b. Same as a for 

the recordings in visual cortex after a transectomy (***: p = 0.00048, two-sided paired 

Wilcoxon sign rank test, n = 12 recordings across 3 mice; comparison cut vs. uncut side: 

two-sided paired Wilcoxon sign rank test, n = 6 sessions across 3 mice).
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Extended Data Fig. 7. Sound-evoked V1 responses are mainly explained by whisker movements.
a. Correlation of the actual data and their predictions for all mice, comparing a model 

containing both eye and body movements predictors (“Eye and body”) to a model containing 

only body movements predictors (“Body only”). The eye predictors only marginally increase 

the fit prediction accuracy (*: p = 0.039, two-sided paired Wilcoxon sign rank test, n = 6 

mice), suggesting that body movements are the best and main predictors. b. Example frame 

of the face, with the parts of the body that were visible. c. For each mouse, we analyzed 

the image of the mouse (left) and obtained the weights that best predicted the auditory 

PC1 (right). Most of the weights are related to the whiskers. The asymmetry of the weight 

distribution across the two sides of the face is likely due to differences in lighting.
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Extended Data Fig. 8. Movements predict activity evoked by sounds in visual cortex and HPF, 
and by videos in HPF.
a-c. Cross-validated correlation of the visual responses and their predictions for all mice, 

comparing 3 different models: one with videos only (“Visual”), one with eye and body 

movements only (“Behavioral”), and one with all predictors (“Full”) (**: p = 0.0078, n = 

8 mice). d-f. Same as a-c but for auditory responses for the HPF recordings (albeit the low 

number of animals did not allow for conclusions on significance). (n = 5 mice) g-i. Same 

as a-c but for visual responses for the HPF recordings. j-l. Same as a-c but for auditory 
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responses for the transectomy experiment recordings (**: p = 0.00049, n = 12 recordings 

across 3 mice). m-o. Same as a-c but for visual responses for the transectomy experiment 

recordings. All tests are two-sided paired Wilcoxon sign rank test.

Extended Data Fig. 9. Sound-evoked body movements and sound-evoked brain activity fluctuate 
together.
a. Single-trial, sound-related activity along auditory PC1 for one example mouse (purple). 

The prediction from the auditory model (grey) and the behavioral model (blue) are shown. 

b. Correlation between the single-trial noise in neural activity along auditory PC1 and the 
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single-trial noise in the prediction for the same example mouse. c. Correlation values for all 

mice (open dots) and their average (filled dot).

Extended Data Fig. 10. Body movements precede brain activity.
a. Weights of the regression model to predict neural auditory PC1 from motion PCs (z-

scored motion PC1 weights only are shown) for each individual mice (gray) and the average 

across mice (black). The model was computed on the spontaneous (no stimulus) period 

for the visual cortex experiments (Fig. 1). b. Distribution of the delay to the peak of the 

weights. A positive delay means that movement precedes and predicts neural activity by 

such a delay. c, d. Same as a, b, but for recordings in the HPF (Fig. 2). e,f. Same as a, b, but 

for recordings in visual cortex during the transectomy experiment (Fig. 3) (both sides).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Sounds evoke stereotyped responses in visual cortex.
a. Responses of an example neuron to combinations of sounds (columns) and videos (rows). 

Responses were averaged over 4 repeats. b. Video–related time courses (averaged over 

all sound conditions, minus the grand average) for the example neuron in a. c. Same, 

for the sound-related time courses. d. Grand average over all conditions for the neuron. 

Scale bars in b-d: 20 spikes/s. e. Sound-related time courses for all 212 neurons in one 

experiment, sorted using rastermap13. f. Decoding accuracy for video vs. sound (**: p = 

0.0039, right-tailed Wilcoxon sign rank test, n = 8 mice). Dashed lines show chance level 

(1/12). g. Time courses of the first principal component of the sound-related responses in 

e (‘auditory PC1’, arbitrary units). h. Fraction of total variance explained by auditory PCs, 
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for this example mouse; inset: distribution of the weights of auditory PC1 (arbitrary units), 

showing that weights were typically positive. i. Same, for visual PCs. j-l Same as g-i, for 

individual mice (thin curves) and averaged across mice (thick curves).
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Fig. 2. Sounds evoke stereotyped responses in hippocampal formation.
a. Sound-related time courses for all 28 neurons in hippocampal formation (HPF) in one 

experiment, sorted using rastermap13. b. Decoding accuracy for video vs. sound (*: p = 

0.031, two-sided Wilcoxon sign rank test, n = 5 mice). Dashed lines show chance level 

(1/12). c. Time courses of the first principal component of the sound-related responses in a 
(‘auditory PC1’, arbitrary units). d. Fraction of total variance explained by auditory PCs, for 

this example mouse; inset: distribution of the weights of auditory PC1 (arbitrary units). e,f. 
Same as c,d for individual mice (thin curves) and average of all mice (thick curves). g. Time 

courses of the auditory PC1 in visual cortex (from Fig. 1), for comparison. h. Comparison of 

the auditory PC1 from HPF (from e) and from V1 (from Fig. 1); arbitrary units.
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Fig. 3. Sound responses in visual cortex are not due to inputs from auditory cortex.
a. Coronal views of a transectomy cutting the connections between auditory (AUD) and 

visual (VIS) cortex in one hemisphere, showing histology (left) and reconstruction of the cut 

(right). After the cut, bilateral recordings are performed in visual cortex. b. 3D visualizations 

showing AUD to VIS fibers (red) in an intact brain (top) vs. after the cut (bottom) in an 

example mouse. c. Auditory input to the sides contralateral vs. ipsilateral to the cut for all 

3 mice (open dots) and their average (filled dot), normalized by the input expected in intact 

brains (turquoise dot). d. Time courses of the first principal component of the sound-related 

responses (‘auditory PC1’) on the side ipsilateral to the cut (average over all mice). Thin 

curves lines show individual mice. e. Fraction of total variance explained by auditory PCs 
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on the side ipsilateral to the cut; inset: distribution of the weights of auditory PC1 for all 

mice. f,g. Same as d,e for the side contralateral to the cut. h. Time courses of the auditory 

PC1 in visual cortex of intact, control mice (from Fig. 1) for comparison. i. Comparison 

of the auditory PC1 from the sides contralateral and ipsilateral to the cut (left, from d 
vs. f) and from V1 (right, taken from b vs. Fig. 1); all arbitrary units. j. Sound-related 

variance explained by the first 4 auditory PCs on the ipsi- vs. contra-lateral side, showing 

individual sessions (open dots), their average (black dot), and the average across control 

mice (turquoise dot) (two-sided paired Wilcoxon sign rank test, n = 6 sessions across 

3 mice). k. Decoding accuracy for videos (left) and sounds (middle and right, showing 

close-up) (two-sided paired Wilcoxon sign rank test, n = 6 sessions across 3 mice). Symbols 

as in j.
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Fig. 4. Sounds evoke stereotyped, uninstructed behaviors that predict sound responses in visual 
cortex.
a. Extraction of motion PCs from videos of the mouse face. b. Sounds evoked changes in 

the first motion PC, both in an example mouse (top) and all mice (bottom). Scale bar: 1 

s.d. c. Time courses of the auditory PC1 in visual cortex (from Fig. 1). d. Comparison of 

the time courses of motion (taken from b) and of the auditory PC1 from V1 (taken from 

Fig. 1); all arbitrary units. e. Decoding of sound identity from the first 128 motion PCs 

was significantly above chance level (dashed lines) (**: p = 0.0078, right-tailed Wilcoxon 
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sign rank test, n = 8 mice). f. Across mice, there was a strong correlation between the 

accuracy of sound decoding from facial motion and from V1 activity. The linear regression 

is performed on the control mice from Fig. 1 (black dots). Data from transectomy mice (gray 

markers) confirm the trend, both in the cut side (crosses) and on the uncut side (circles). 

g. Time course of facial motion (top) and of V1 activity along auditory PC1 (bottom) in 

the absence of any stimulus, for an example mouse. h. Cross-correlogram of these time 

courses, for individual mice (gray) and their average (black). The positive lag indicates that 

movement precedes neural activity. i. Video- and sound-related variance explained by neural 

activity along the visual (left), auditory (middle), or behavioral (right) subspaces (first 4 

PCs of each subspace), for one example mouse. The gray regions show 90% confidence 

intervals expected by chance (random components). j. Overlap between the auditory or the 

visual subspace and the behavioral subspace for each mouse (open dots) and all mice (filled 

dot) (**: p = 0.0078, two-sided paired Wilcoxon sign rank test, n = 8 mice). Dashed lines 

show the significance threshold (95th percentile of the overlap with random dimensions) 

for each mouse. k. Schematics of the 3 encoding models trained to predict the average 

sound-related activity in the auditory subspace. l-n. Cross-validated correlation of the actual 

sound responses and their predictions for all mice, comparing different models (Auditory, 

Behavioral, and Full; **: p = 0.0078, two-sided paired Wilcoxon sign rank test, n = 8 mice).
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