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The human microbiome influences the efficacy and safety of a wide variety of commonly 

prescribed drugs. Designing precision medicine approaches that incorporate microbial metabolism 

would require strain-and molecule-resolved, scalable computational modelling. Here, we extend 

our previous resource of genome-scale reconstructions of human gut microbes with a greatly 

expanded version. AGORA2 accounts for 7,302 strains, includes microbial drug degradation and 

biotransformation, and was extensively curated based on comparative genomics and literature 

searches. It performs very well against three independently assembled experimental data with an 

accuracy of 0.72 to 0.84, and predicts known microbial drug transformations with an accuracy of 

0.81. We demonstrate that AGORA2 enables personalised, strain-resolved modelling by predicting 

the drug conversion potential of the gut microbiomes from 616 colorectal cancer patients and 

controls, which greatly varied between individuals and correlated with age, sex, BMI, and disease 

stages. AGORA2 serves as a knowledge base for the human microbiome and paves the way to 

personalised, predictive analysis of host-microbiome metabolic interactions.

Introduction

Trillions of microbes inhabit the human gastrointestinal tract, with a high interindividual 

variation depending on factors such as sex, age, ethnicity, lifestyle, and health status1. The 

gut microbiota synthesises bioactive metabolites, such as short-chain fatty acids, hormones, 

and neurotransmitters2, and participates in the metabolism of commonly prescribed 

drugs3, resulting in drug inactivation, activation, detoxification, or re-toxification4. Human 

gut microbes have been shown to metabolise 176 of 271 tested drugs5, with activity 

varying between individuals6. Consequently, precision medicine interventions that take 

diet, genetics, and the microbiome into account have been proposed7. Predicting such 

personalised treatments would require detailed knowledge of the distribution of drug 

transformation reactions across human microbial taxa as well as the stoichiometry of such 

transformations.

A mechanistic systems biology approach that includes a detailed stoichiometric 

representation of metabolism is constraint-based reconstruction and analysis (COBRA)8. 

COBRA relies on genome-scale reconstructions of the target organism that are often 

manually curated based on the available literature8. These reconstructions can be 

converted into predictive computational models through the application of condition-specific 

constraints9, including (meta-) omics and nutritional data, and linked together to interrogate 

strain-resolved, personalised microbiome models10, 11. Hence, the COBRA approach is 

well-suited for the exploration of metabolic human-microbiome co-metabolism12, 13. To 

facilitate the genome-scale reconstruction of the thousands of known species inhabiting 

humans14, semi-automated reconstruction tools, such as CarveMe15, MetaGEM16, 

MIGRENE17, and gapseq18, have been published. Despite their many advantages, these 

tools provide limited support for curation against manually refined genome annotations 

and experimental data from peer-reviewed literature. Both are crucial for the inclusion 

of not yet routinely annotated (e.g., drug metabolism) and/or species-specific pathways9. 

To overcome these limitations, we have developed a semi-automated curation pipeline 

guided by manually assembled comparative genomic analyses and experimental data19, 
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which previously enabled the generation of AGORA, a resource of 773 genome-scale 

reconstructions of human gut microbe strains, representing 605 species and 14 phyla20.

Here, we present an expansion in scope and coverage of AGORA, called AGORA2, 

consisting of microbial reconstructions for 7,302 strains, 1,738 species, and 25 phyla. 

AGORA2 summarises the knowledge and experimental data obtained through manual 

comparative genomics analyses and literature and textbook reviews, and demonstrates high 

accuracy against three independently collected experimental datasets. AGORA2 has been 

expanded by manually formulated molecule- and strain-resolved drug biotransformation and 

degradation reactions covering over 5,000 strains, 98 drugs, and 15 enzymes, some of which 

were validated against independent experimental data. The AGORA2 reconstructions are 

fully compatible with the generic21 and the organ-resolved, sex-specific, whole-body human 

metabolic reconstructions22. We demonstrate the use of AGORA2 for the prediction of 

personalised gut microbial drug metabolism for a cohort of 616 individuals. Taken together, 

the AGORA2 reconstructions can be used independently or together for investigating 

microbial metabolism and host-microbiota co-metabolism in silico.

Results

Data-driven reconstruction of diverse human microbes

To build the reconstructions of the 7,302 gut microbial strains in the AGORA2 

compendium (Table S1), we substantially revised and expanded (Methods) a previously 

developed20 data-driven reconstruction refinement pipeline, deemed DEMETER19. Overall, 

the DEMETER workflow consists of data collection, data integration, draft reconstruction 

generation, translation of reactions and metabolites into the Virtual Metabolic Human 

(VMH)23 name space, and simultaneous iterative refinement, gap-filling and debugging19. 

Reconstruction refinement follows standard operating procedures for generating high-quality 

reconstructions9 and is continuously verified through a test suite19 (Table S2, Supplemental 

Note 2).

After expanding the taxonomic coverage (Figure 1a-b, Table S1, Supplemental Note 

1) and retrieving the corresponding genome sequences, we generated automated draft 

reconstructions through the online platform KBase24, which were subsequently refined 

and expanded through the DEMETER pipeline19 (Methods). As a lack of accurate 

genome annotations is a source of uncertainty in the predictive potential of genome-

scale reconstructions25, we manually validated and improved the annotations of 446 

gene functions across 35 metabolic subsystems for 5,438/7,302 (74%) genomes using 

PubSEED26 (Table S3a-d). To further ensure accurate representation of species-specific 

metabolic capabilities, we performed an extensive, manual literature search spanning 732 

peer-reviewed papers and two microbial reference textbooks yielding information for 

6,971/7,302 strains (95%) (Methods). For the remaining 331 strains, either no experimental 

data was available or all biochemical tests reported in the literature were negative. The 

performed extensive refinement driven by the collected data resulted in average in the 

addition and removal of 685.72 (standard deviation (±): 620.83) and 147.79 (±93.18) 

reactions, respectively, per reconstruction (Figure S1). The biomass reactions provided in the 

draft reconstructions were curated, and reactions were placed in a periplasm compartment 
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where appropriate (Supplemental Note 3). Moreover, we retrieved the metabolic structures 

for 1,838/3,613 (51%) metabolites and provide atom-atom mapping for 5,583 of the 

overall 8,637 (65%) enzymatic and transport reactions captured across AGORA2 (Methods). 

Owing to these extensive curation efforts, the metabolic models derived from the refined 

reconstructions showed a clear improvement in their predictive potential over models 

derived from the KBase draft reconstructions (Figure 1c, d, Supplemental Note 2). As an 

additional assessment of reconstruction quality, we generated an unbiased quality control 

report for all reconstructions (Methods) resulting in an average score of 73%.

We then clustered the content of the AGORA2 reconstructions by taxonomic distribution. 

Overall, AGORA2 reflects the diversity of the captured strains as they clustered by 

class and family according to their reaction coverage (Figures 2a-b, S3a, Supplemental 

Note 4). Several genera in the Bacilli and Gammaproteobacteria classes formed 

subgroups illustrating important metabolic differences between them (Figures 2c-d, S2a-b, 

Supplemental Note 4, Kruskal-Wallis test: p=0.0001). Cross-phylum metabolic differences 

also translated to differences in reconstruction sizes and predicted growth rates (Figure 2e-h) 

and in their potential to consume and secrete metabolites (Figure S3a-b). Taken together, the 

models derived from AGORA2 capture taxon-specific metabolic traits of the reconstructed 

microbes.

AGORA2 is predictive against three independent datasets

While automated draft reconstructions can be rapidly generated, they still require subsequent 

curation efforts to be predictive27. Several (semi-)automated reconstruction tools bridge 

the gap between automated draft and fully manually curated reconstructions including 

CarveMe15, gapseq18, and MIGRENE17. To further access the quality of AGORA2 

and the DEMETER pipeline, we compared AGORA2’s predictive potential and model 

properties with other resources of microbial genome-scale reconstructions. For this purpose, 

we retrieved 8,075 reconstructions built through gapseq18, 1,333 reconstructions built 

through MIGRENE, deemed MAGMA17, as well as 72 manually curated genome-scale 

reconstructions deposited in the BiGG database28. Additionally, we built CarveMe15 

reconstructions for 7,279 AGORA2 strains and gapseq18 reconstructions for a subset of 

1,767 AGORA2 strains (Methods).

For an unbiased assessment of reconstruction quality, we first determined the fraction of 

flux consistent reactions29 in each resource. Only the manually curated reconstructions from 

BiGG and reconstructions built through CarveMe had a higher fraction of flux consistent 

reactions than AGORA2 (Figure 3a-b, p<1e-30, Wilcoxon rank-sum test). Note that our 

reconstructions represent knowledge bases, thus, if genetic or biochemical evidence exists 

for a gene or reaction, it will be included in the reconstruction. In contrast, CarveMe by 

design removes all flux inconsistent reactions from a metabolic reconstruction15. Compared 

with the KBase draft reconstructions, AGORA2 had a significantly higher percentage of 

flux consistent reactions despite being larger in metabolic content, as well as a significantly 

higher flux consistency than gapseq and MAGMA (Figure 3a,c, p<1e-30, Wilcoxon rank-

sum test). It was also observed that all resources except AGORA2 and gapseq produced very 

high amounts of ATP (up to 1000 mmol/gdry weight/hr) on the complex medium for at least 
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a subset of models (Figure 3b,c). Hence, in these models, the ATP production flux was only 

limited by the upper bounds on reactions, which generally indicates the existence of futile 

cycles9.

The most crucial aspect of a genome-scale reconstruction is its accuracy in capturing 

known biochemical or physiological traits of the target organism9, i.e., its potential to make 

biologically plausible predictions. Hence, we set out to determine the predictive potential 

of AGORA2. For an unbiased assessment, we retrieved organism-specific experimental data 

from three separate sources (Methods). First, we retrieved species-level positive and negative 

metabolite uptake and secretion data for 455 species (5,319 strains) in AGORA2 from the 

NJC19 resource30. Note that a precursor of NJC19, NJS1631, containing only positive data, 

had been used to refine AGORA2. Next, we mapped species-level positive metabolite uptake 

data, retrieved from Madin et al32, for 185 species (328 strains) in AGORA2 (“Madin” data). 

Finally, we retrieved strain-resolved positive and negative metabolite uptake and secretion 

data for 676 AGORA2 strains as well as positive and negative enzyme activity data for 

881 AGORA2 strains from the BacDive database33. Neither the Madin dataset nor BacDive 

had been used during the refinement of AGORA2. For metabolite uptake and secretion, the 

AGORA2 reconstructions captured the known capabilities of the target organisms very well 

(overall accuracy against NJC19, BacDive, and Madin of 0.82, 0.81, and 0.84, respectively, 

Figure 3e, Table S4d). For enzyme activity, a slightly lower accuracy of 0.72 was achieved 

(Figure 3e, Table S4d). AGORA2 had a lower specificity than the other resources on NJC19. 

However, the majority of observed false positives in AGORA2 concerned glutamate uptake 

in Escherichia coli (Table S4c), which was a negative finding in the NJC19 dataset based on 

a report for a single E. coli strain.

We then compared the predictive potential of AGORA2 with the other four resources where 

possible. Of the 7,302 reconstructed AGORA2 strains, 7,279 had been reconstructed through 

CarveMe, 451 overlapped with reconstructions built through gapseq, and 60 overlapped with 

reconstructed strains available at the BiGG database (Table S4a). No strains overlapped with 

MAGMA as it consists of pan-species reconstructions built from metagenome-assembled 

genomes17 but 216 reconstructions could be mapped at the species level (Table S4a). For 

the four resources and for each dataset, we then computed the predictive potential for the 

organisms overlapping with AGORA2 (Figure 3d-f, Table S4b-d). While MAGMA and 

AGORA2 achieved significant prediction accuracies for secretion and uptake on the NJC19 

and the BacDive datasets, KBase failed to perform better than chance for metabolite uptake 

and secretion in NJC19, and CarveMe failed to predict significantly secretion in the NJC19 

dataset (Figure 3e, Table S4d). The gaqseq reconstructions built in the present study for the 

subset of AGORA2 strains performed comparably to the set of gapseq reconstructions that 

had been published by the authors (Table S4b).

To compare the performance of AGORA2 with KBase, CarveMe, gapseq, BiGG, and 

MAGMA directly, we calculated the accuracy per model separately for uptake and secretion. 

We then compared the accuracies on models in the overlap of AGORA2 and each resource 

via a non-parametric sign-rank test. AGORA2 was significantly better than all other methods 

on all three datasets, except for BiGG on the BacDive data, where the overlap in models 
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was too small to achieve sufficient statistical power, and gapseq on the BacDive enzyme data 

where it performed comparably to AGORA 2 (71% versus 72%, Figure 3e, f).

Taken together, the AGORA2 reconstructions capture the known traits of the respective 

organisms very well, surpassing other semi-automatedly generated reconstructions and being 

comparable to manually curated reconstructions. These results demonstrate the value of 

the extensive curation efforts refinement, guided by species-species experimental data, 

performed during the development of AGORA2 as outlined above. Accordingly, AGORA2 

performed particularly well for metabolite uptake and secretion data, which requires curation 

based on experimental data, compared with enzyme activity data, which can be curated 

based on genome annotations. Remaining false positive and false negative predictions (Table 

S4c) will be addressed in future efforts following the iterative curation philosophy9. Flux 

inconsistent reactions, indicating they contain dead-end metabolites29, may serve as the 

starting point for gap-filling efforts thereby enabling biological discovery34.

Microbial drug metabolism guided by genome and bibliome

Microbes can directly or indirectly influence drug activity and toxicity through degradation 

(e.g., hydrolysis) and biotransformation (e.g., reduction)3, 4 is only captured to a limited 

extent by genome annotation pipelines and no systematic comparative genomic analysis 

of drug-metabolising enzymes has previously been performed. Hence, microbial drug 

transformations are not yet captured by any existing genome-scale reconstruction resources. 

To fill this gap, we performed an extensive, manual comparative genomic analysis for 25 

drug genes, encoding for 15 enzymes shown to directly or indirectly affect drug metabolism 

(Table S5a), their subcellular locations, and 12 genes encoding for drug transporters (Table 

S3b). All 5,438 analysed strains carried at least one drug-metabolising enzyme (Table S3c). 

As these enzymes are also involved in central metabolism, e.g., nucleoside metabolism, this 

high coverage was expected. We then carried out a thorough literature and database review 

of metabolite structures, formulas, and charges for 98 frequently prescribed drugs belonging 

to ten drug groups and 32 subgroups (Table 5b). We formulated 1,440 drug-related 

reactions containing 363 metabolites (Table S6a-b) and added, on average, 188 drug-related 

reactions and 111 metabolites to the reconstructions depending on the genomic evidence. 

We validated, with an accuracy of 0.81 (sensitivity: 0.87, specificity: 0.74, Fisher’s exact 

test: p=2.01e-23, mixed effect logistic regression accounting for stochastic dependencies 

from predictions stemming from the same model: p=1.209e-07), the drug-metabolising 

predictions against independent published experimental data for 253 drug-microbe pairs 

(Table S7, Figure 4a). The 18 false positive predictions may indicate non-functional genes 

or regulatory mechanisms, whereas the 31 false negative predictions could be due to 

incompleteness of genomes or non-orthologous displacement in complete genomes, or a 

currently unaccounted for homolog encoding the reaction.

Taxonomic distribution of drug-metabolising capabilities

We next analysed the taxonomic distribution of the annotated drug and transport genes 

(Figure 4b-d, Table S3c). At least one strain in each of the 14 analysed phyla encoded for 

genes involved in drug metabolism (Figure 4f). The most widespread drug-metabolising 

enzymes were cytidine deaminase and nitroreductase, which were found in 12 and 13 
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phyla, respectively (Figure S7a-b). Another central metabolic enzyme, the pyrimidine-

nucleoside phosphorylase, was also widely distributed, but the monophyletic branch specific 

for the metabolism of brivudine and sorivudine35 was only found in the Bacteroidetes 

phylum (Figures 4c-d, S7c). Many drugs are detoxified by the liver through the addition 

of glucuronic acid, a modification that is reversed by microbial β-glucuronidase4. This 

enzyme was in >99% of analysed Escherichia coli strains and was also widely distributed 

across Bacteroidetes and Firmicutes strains (Figures 4c-d, S7d), consistent with previous 

analyses36. E. coli was the species most enriched in drug metabolism with >99% of 

all analysed strains carrying seven to ten drug enzymes (Table S3c). Taken together, 

drug-metabolising enzymes, and transporters, are widely distributed but important phyla-

specific and strain specific differences exist. To elucidate the potential benefits that these 

drug-metabolising capabilities could confer to the microbes, we computed the strain-specific 

energy, carbon, and nitrogen yields of drug degradation. This analysis revealed that many 

strains spread across phyla were capable of using drugs as a source of energy, carbon, and/or 

nitrogen (Figure S4, Table S8).

Personalised modelling of drug-metabolising capacities

As human microbes do not exist in isolation, we addressed the important question on how 

the total drug-metabolising capacities may differ between individual gut microbiomes. A 

previously developed community modelling framework10 allows for the scalable, tractable 

computation of community-wide metabolic capabilities as well as organism-resolved 

contributions to faecal metabolite levels37. We used a metagenomic data set from a 

Japanese cohort of 365 colorectal cancer (CRC) patients and 251 healthy controls38 that 

had previously allowed us to interrogate the metabolic capabilities of each gut microbiome 

and validate the fluxes against metabolomic data37. A total of 97% of the named species 

could be mapped onto the AGORA2 (compared to 72% for AGORA). For each individual’s 

gut microbiome, we built and interrogated a community model (Methods), resulting in the 

prediction of total drug-metabolising potential (Figure 5a, Table S9). For some enzymes, 

e.g., dihydropyrimidine dehydrogenase and dopamine dehydroxylase, the drug conversion 

potential only showed limited correlation with the total abundance of the corresponding 

drug-metabolising reactions indicating flux-limiting metabolic bottlenecks (Figure 5b). 

Analysing such bottlenecks would require the simulation of enzymatic functions in their 

metabolic context. Shadow price analysis (Methods) revealed that, in two-step reactions, 

such as levodopa degradation to m-tyramine, the drug conversion potential for the second 

step was limited by the species abundance carrying out the first step (Supplemental Note 5, 

Figure S6, Table S10). Levodopa degradation is known to be a two-step pathway carried out 

by different species39 (Figure S6).

While most drugs could be qualitatively metabolised in silico by at least 95% of the 

microbiomes, only 53% of the microbiomes presented the capacity to metabolise digoxin, 

and levodopa could be metabolised by 86% of the investigated microbiomes into dopamine 

and by 46% into m-tyramine (Figure 5a). Both digoxin transformation and the second step 

of levodopa degradation strictly depended on the presence of Eggerthella lenta (Figure 

S8), and are known to reduce bioavailability of the drugs4, 39. Moreover, while all but 

three microbiomes could activate the anti-inflammatory bowel disease prodrug Balsalazide 
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through the azoreductase activity, the highest secretion flux of the active form of Balsalazide 

(5-aminosalicylic acid) achieved by any microbiome was 339.81 mmol/day/person, while 

the average was 25.47 +/ 40.84 mmol/day/person (Figure 5a). This variation may be of high 

clinical relevance, as it indicates that not all microbiomes can equally activate Balsalazide. 

As a sensitivity analysis, we recomputed drug-metabolising capacities using an average 

European diet instead of the Japanese diet and found that the drug-metabolising capacities 

were virtually unaltered for all drugs and, hence, highly robust towards diet constraints 

(Figure S7).

Microbiome-level fluxes are sensitive to clinical parameters

Next, we investigated whether drug-metabolising capacities were associated with CRC. For 

neither of the drugs, including cancer drugs, neither qualitative nor quantitative differences 

in drug-metabolising capacities were found after correction for multiple testing, despite the 

reported enrichment in 29 species in CRC metagenomes40. On a nominal level (p<0.05), 

nitrosochloramphenicol was increased in cancer cases (Figure 6a). Nonetheless, drastic 

individual differences in drug-metabolising potential, regardless of disease status, due to 

distinct microbiota composition existed (Figure 5a).

Lastly, we investigated the statistical association pattern of age, sex, and body mass index 

(BMI) to the drug-metabolising capacities of the microbiome (Figure 6b, Figure S9). 

Five predicted secretion potentials of drug metabolites were clearly associated with age 

(Figure 6b), although the effect sizes were small to medium (explained variances <8%). For 

example, the conversion of Sorivudine into a toxic byproduct showed a nonlinear association 

with age, where secretion capacities declined from 60 years on (Figure 6b, R2 = 0.047 

p=7.17e-06). Women had significantly higher taurocholate metabolising capability, while 

slightly, but significantly lower conversion potential of the chemotherapy drug Gemcitabine 

(Figure S9a). In conclusion, our analysis enabled the investigation into clinical parameters 

that were associated with drug-metabolising capacities of the gut microbiome.

Community models predict species-metabolite associations

As a last step of validation, we tested whether AGORA2-based community modelling is 

capable of predicting the sign of statistical associations between microbial species presence 

and faecal metabolite concentrations in the CRC sample, following procedures established 

before41. We calculated the faecal net secretion rate for 52 AGORA metabolites (Methods), 

for which faecal metabolomics data from the same Japanese cohort was available38. As these 

metabolomics data were not used in constructing the AGORA2-based community models, 

this procedure represents an independent validation.

After correction for multiple testing, AGORA2-based community modelling was predictive 

for the sign of significant species-metabolite associations in 24 of 52 metabolites (Figure 

6c, Table S11) with p<0.05 and 19 with false discovery rate (FDR)<0.05. Particularly 

well covered were amino acids, known fermentation products (e.g., L-lactate, butyrate) 

as well as amines (Table S11). Notably, for certain metabolites, e.g., methionine (Figure 

6c), in vivo association statistics were consistently inverse to the corresponding in silico 
association statistics. These latter results may correspond to net uptake of the metabolites 
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by the microbial community. The non-significant sign prediction, as exemplarily depicted 

in Figure 6c for gamma-aminobutyrate, can have multiple reasons, ranging from host 

factors dominating the variation in faecal concentration to incomplete community models or 

missing confounders in the statistical models, leading to false positive in vivo associations. 

In conclusion, AGORA2-based community models could predict the direction of species 

metabolite associations for a broad range of metabolites, highlighting their general 

predictive nature.

Discussion

Here, we introduced AGORA2, a resource of 7,302 genome-scale reconstructions for 

human-associated microbes with unprecedented coverage, scope, and curation effort. 

AGORA2 follows the quality standards developed by the systems biology research 

community9, 42, accurately captures biochemical and physiological traits of the target 

organisms, surpassing other reconstruction resources, and includes manually refined, 

strain-resolved drug-metabolising capabilities. It enables personalised modelling of human 

microbial metabolism through a dedicated computational pipeline10, which had recently 

been improved upon in terms of computational efficiency and implemented features43. 

Hence, personalised microbiome modelling using AGORA2 can be performed in a 

reasonable timeframe on a standard personal computer (Methods).

Computational modelling of microbial consortia is increasingly recognised as a 

complementary method to in vitro and in vivo experiments and can generate experimentally 

testable hypotheses13, 44. Our knowledge about gut microbes remains limited and thus, 

any in silico reconstruction will be inherently incomplete and require regular updates45. 

For instance, a recent study has found that 176 of 271 tested drugs could be metabolised 

by human bacteria, and for a subset of these drugs, transformations could be linked 

to specific gene functions5. Through future comparative genomics and metabolite and 

reaction formulation efforts, AGORA2 may be expanded by these drug transformations 

to further broaden its coverage of prescription drug metabolism. As AGORA2 uses the 

same metabolite and reaction nomenclature23 as the human metabolic reconstruction21 and 

the whole-body metabolic reconstructions22, it could be used to predict host-microbiome 

co-metabolism, up to their potential contribution to human organ-level metabolism22.

To date, AGORA has enabled nearly 50 studies that modelled microbe-microbe, host-

microbe, and microbiome interactions46, and, together with available software tools10, 47, 

contributed substantially to recent advances in size and scope of constraint-based modelling 

of multispecies interactions46. However, AGORA was to an extent hampered by its limited 

taxonomic coverage, which mainly included the westernised gut microbiome20. In contrast, 

AGORA2 also captures microbes commonly found in skin, oral, and vaginal microbiomes, 

includes many uncharacterised taxa as well as those from non-Westernised microbiomes, 

and has a high overlap with species found in several resources of isolates and metagenome-

assembled genomes of the human microbiome (Supplemental Note 1). Together, this 

extension increases the prediction fidelity of microbiome-level models included for non-gut 

and non-Westernised microbiomes.
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We reported associations between CRC patient-specific microbial drug conversion 

capabilities and clinical parameters, such as age and BMI (Figure 6). The example of 

Balsalazide, an anti-inflammatory drug utilised in treating inflammatory bowel disease 

(IBD), showcases how AGORA2 could be used to inform clinical research, and potentially 

facilitate personalisation of treatment. Balsalazide has high numbers need to treat (NNT) 

metrics for inducing remission (NNT:10) and maintenance (NNT:6) in ulcerative colitits48, 

indicating that most patients do not profit from the drug. Consistently, the Balsalazide 

activation potential varied strongly in the investigated CRC cohort microbiomes (Figure 

5a) indicating that not all individuals would profit equally from Balsalazide treatment. 

Consequently, we propose that AGORA2 in conjunction with metagenomics could predict 

the stratification of inflammatory bowel disease patients into Balsalazide responders and 

non-responders, which could then be validated in follow-up clinical trials. The finding that 

drug-metabolising capabilities were associated with age-groups, BMI, and sex (Figures 6b, 

S9) demonstrates that AGORA2 in conjunction with community modelling can be utilised 

in large epidemiological cohort studies to link predicted metabolic fluxes with clinical 

parameters, and thereby opening new research possibilities to understand the role of the 

microbiome in modifying health risk and contributing to adverse health outcomes. Finally, 

AGORA2-based community models were able to predict the direction of species-metabolite 

associations for a range of metabolites (Figure 6c), demonstrating utility in delivering valid 

in silico markers of the microbiome’s metabolic traits.

Taken together, we present a resource of genome-scale reconstructions, AGORA2, which 

accurately captures organism-specific capabilities and can be used to build predictive 

personalised microbiome models. AGORA2 and all tools and scripts used in this study 

are freely available to the research community. We expect that like its predecessor, 

AGORA2 will be of great interest to the microbiome and constraint-based modelling 

communities with an even broader range of potential applications46. As a unique feature, 

AGORA2 captures strain-resolved microbial drug metabolism. Predicting drug response to 

realistic drug concentrations will require hybrid modelling approaches, e.g., integrating 

constrained-based modelling with physiological-based pharmacokinetic modelling49, 50. 

Using a constrained-based model of organ-resolved whole-body metabolism integrated with 

models of the gut microbiome22, and using such hybrid modelling approaches, dietary 

supplements, probiotics, or microbiome-targeted interventions, which have been shown to 

attenuate side effects of drugs4, could be predicted and validated49. Hence, AGORA2 paves 

the way for an integrative, multi-scale modelling approach that may enable in silico clinical 

trials49, 51 and contribute to precision medicine.

Material and methods

Selection of newly reconstructed organisms and retrieval of whole-genome sequences

First, we retrieved 4,185 genomes of human gut-associated strains that were available 

on PubSEED53 (Supplemental Note 6). To expand the species coverage, we performed 

an extensive literature search of species isolated from or detected in the human 

microbiome with available whole-genome sequences (Table S1). This search led to the 

addition of further 1,324 strains, which included 127 genomes of mouse-associated 
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strains. The corresponding whole-genome sequences were retrieved in FASTA format 

from the National Center for Biotechnology Information (NCBI) FTP site (ftp://

ftp.ncbi.nlm.nih.gov/). Moreover, we included 26 genomes of Eggerthella lenta strains54 

available at https://www.ncbi.nlm.nih.gov/bioproject/PRJNA412637. Finally, we retrieved 

761 human microbial genomes from the Human Gastrointestinal Bacteria Culture Collection 

(HBC)55 in FASTQ format from https://www.ebi.ac.uk/ena/data/view/PRJEB23845 and 

https://www.ebi.ac.uk/ena/data/view/PRJEB10915. Together with AGORA1.03, which was 

obtained from the VMH23, these combined efforts resulted in 7,302 strains and 1,738 

species included in AGORA2.

Manual refinement of metabolic pathways and gene annotations through comparative 
genomics

Of the 7,302 analysed strains, 5,438 bacterial strains and three archaeal strains were present 

in the PubSEED resource53, 56 (Supplemental Note 6) and could be re-annotated for their 

metabolic functions through comparative genomics. A total of 34 metabolic subsystems that 

had been reconstructed previously for a smaller subset of gut microbial strains20, 57–60, as 

well as a newly created drug metabolism subsystem, were considered for the analysis (Table 

S3a for a comprehensive list of subsystems). All subsystems are available at the PubSEED 

website.

Curation of subsystems—For annotation of the genes in each subsystem, the PubSEED 

platform was used53. Functional roles for each subsystem were annotated based on the (1) 

prescribed functional role for the protein, (2) sequence similarities of the protein to proteins 

with previously confirmed functional role, and (3) genomic context (Supplemental Note 7).

Metabolic pathways considerations for comparative genomics analysis—
Absence of gene(s) for one or more enzymes in a pathway may result in blocked reactions 

in a metabolic reconstruction. To avoid this, we estimated the completeness of metabolic 

pathways during the genome annotation. For each potentially synthesised metabolite, all the 

biosynthetic pathways were collected in agreement with the KEGG PATHWAY resource61 

and genes of the subsystem were attributed to corresponding steps of the metabolic 

pathways. Absence of the consequent reactions was determined as a gap. Only pathways 

with no more than two gaps with gap length of no more than one step (Supplemental Note 8) 

were further gap-filled and used for generation of reactions.

Sequence-based gap-filling—For the gapped pathways, the bidirectional best-hit 

(BBH) method62 was used: (1) The gene corresponding to the gap and present in the genome 

for the related organisms (belonging to the same species, genus, or family) was used as a 

query for a BLAST search in the genome with the gap. (2) Possible BBHs were defined 

as homologs for that alignment with the query protein having an e-value ≤ e-50 and protein 

identity ≥ 50%. (3) For each possible BBH, the reverse search was done for the genome 

that was a source of the query protein. (4) If the query protein and its best homolog in the 

analysed genome formed BBH pair, the gap was filled. (5) A similar genomic context for the 

query protein and its ortholog was considered as an additional confirmation for orthology of 

the identified BBH pair.
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Annotation of the drug metabolic genes—To annotate drug-metabolising genes, we 

used the following pipeline. (1) Identify genes known to encode for drug-metabolising 

enzymes in a range of microbial organisms, from the scientific literature (Table S5a). (2) 

Using the amino acid sequences of these known drug-metabolising genes as queries, we 

performed a BLAST search for every analysed genome. (3) The resulting best BLAST 

hit was then used as a query for the BLAST search in the genome having known drug-

metabolising gene to confirm that the known protein sequence and its best BLAST hit 

form a pair of best bidirectional hits (BBHs). (4) All BBHs were used for the construction 

of a rooted maximal-likelihood tree. (5) All previously known proteins were mapped onto 

the tree, and all monophyletic branches containing known drug-metabolising enzymes were 

determined (Figure S10). (6) All annotated proteins in these branches were considered as 

orthologs of the known drug-metabolising proteins. All the proteins not being in branches 

with known drug-metabolising proteins were considered as proteins with other functions 

and were excluded from further analysis. Subsequently, a tree was constructed again for 

orthologs of the known drug-metabolising proteins. (7) For L-tyrosine decarboxylase (TdcA, 

EC 4.1.1.25) and cytidine deaminase (cCda, EC 3.5.4.5), we found that genomic context is 

conserved between species and also analysed the genomic context. If the genomic context 

of a candidate gene was similar to that of a known drug-metabolising gene, the candidate 

was considered as an ortholog of the known protein. Otherwise, it was considered to as a 

false-positive prediction and excluded from further analysis (Supplemental Note 9, Figure 

S10). As for (6), the tree was constructed again for only the orthologs of the known 

proteins. (8) For each tree, including only the orthologs of the known genes, we defined 

the monophyletic branches containing proteins derived from only one species. For each of 

such species-specific branch, we predicted subcellular localisation (Supplemental Note 10), 

using the CELLO v.2.5 system (cello.life.nctu.edu.tw). (9) For cytoplasmic enzymes, drug 

transporters were predicted based on genomic context (Supplemental Note 11, Table S3b).

Tools—The PubSEED platform53, 56 was used to annotate the subsystems. To search for 

BBHs for previously known proteins, a BLAST algorithm63 implemented in the PubSEED 

platform was used. Additionally, the PubSEED platform was used for analysis of the 

genomic context. To analyse the protein domain structure, we searched the Conserved 

Domains Database (CDD)64 using the following parameters: an e-value ≤0.01 and a 

maximum number of hits equal to 500. For the prediction of protein subcellular localisation, 

the CELLO65 web tool was used. Alignments were performed using MUSCLE v.3.8.3166. 

For every multiple alignment, position quality scores were evaluated using Clustal X67, 68. 

Thereafter, all positions with a score of zero were removed from the alignment and the 

modified alignment was used for construction of the phylogenetic trees. Phylogenetic 

trees were constructed using the maximum-likelihood method with the default parameters 

implemented in PhyML-3.069. The obtained trees were midpoint-rooted and visualised using 

the interactive viewer Dendroscope, version 3.2.10, build 1970.

Literature and database searches

Biochemical and physiological characterisation papers were retrieved by entering the names 

of AGORA2 species into PubMed (https://www.ncbi.nlm.nih.gov/pubmed/). Information 

on 132 carbon sources, 30 fermentation pathways, 64 growth factors, consumption of 73 
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metabolites, and secretion of 51 metabolites were subsequently manually extracted on the 

species and/or genus level from 732 peer-reviewed papers and >8,000 pages of microbial 

reference textbooks71. Moreover, the traits of each reconstructed strain including taxonomy, 

morphology, metabolism, and genome size were retrieved through database searches. 

The taxonomic classification of the strains was retrieved from NCBI Taxonomy (https://

www.ncbi.nlm.nih.gov/taxonomy/). Information on morphology, habitat, body site, gram 

status, oxygen status, metabolism, motility, and genome size were manually retrieved from 

the Integrated Microbial Genomes and Microbiomes72 database (https://img.jgi.doe.gov/) 

(Table S1). All experimental data that was used to refine AGORA2 is available at https://

github.com/opencobra/COBRA.papers/tree/master/2021_demeter/input.

Generation of draft reconstructions

Draft reconstructions were generated through the KBase24 narrative interface. Genomes 

present in KBase were directly imported into the narrative. Otherwise, genomes in 

FASTA format were uploaded into the Staging Area and subsequently, imported 

into the narrative through the “Batch Import Assembly From Staging Area” (https://

narrative.kbase.us/#catalog/apps/kb_uploadmethods/batch_import_assembly_from_staging) 

app. Genomes in FASTQ format were directly imported into the narrative through 

the “Import Paired-End Reads From Web” (https://narrative.kbase.us/#catalog/apps/

kb_uploadmethods/load_paired_end_reads_from_URL) app after retrieving the links to 

the corresponding files from https://www.ebi.ac.uk/ena/data/view/PRJEB23845 and https://

www.ebi.ac.uk/ena/data/view/PRJEB10915. The imported assemblies were annotated using 

RAST subsystems73 through the “Annotate Multiple Assemblies” (https://narrative.kbase.us/

#appcatalog/app/RAST_SDK/annotate_contigsets) app. Draft metabolic reconstructions 

were generated through the “Create Multiple Metabolic Models” (https://narrative.kbase.us/

#appcatalog/app/fba_tools/build_multiple_metabolic_models) app and exported in SBML 

format through the “Bulk Download Modelling Objects” (https://narrative.kbase.us/

#appcatalog/app/fba_tools/bulk_download_modeling_objects) app.

Semi-automated, data-driven refinement pipeline

We developed a semi-automated refinement pipeline, DEMETER (Data-drivEn METabolic 

nEtwork Refinement)19, which had been previously used to build AGORA20. Briefly, 

DEMETER was developed by testing gap-filling steps in few reconstructions and 

propagating identified solutions to many reconstructions. Curation against experimental 

data is performed in DEMETER by gap-filling the appropriate reconstructions with a 

complete pathway for each experimentally demonstrated function. Biomass production 

under aerobic and anaerobic conditions and on defined media as well as biosynthesis of 

cell wall components are also enabled through gap-filling solutions that had been previously 

determined in few reconstructions. Similarly, futile cycles are solved by identifying and 

correcting the affected reactions in few reconstructions and propagating these changes 

during the development of DEMETER. More details on DEMETER are provided at Ref19. 

A detailed tutorial is available as part of the COBRA Toolbox47.

For the generation of AGORA2, we revised DEMETER substantially. Specifically, 

we (i) translated ~1,000 additional reactions and ~800 metabolites from KBase to 
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VMH23 nomenclature; (ii) introduced additional gap-filling reactions, where needed, 

to enable biomass production under anoxic conditions on a complex medium with 

thermodynamically consistent reaction directionalities; (iii) removed futile cycles resulting 

in thermodynamically implausible ATP production by making the responsible reactions 

irreversible; (iv) ensured through gap-filling and/or deletion of appropriate reactions that 

all reconstructions captured the collected experimental data; and (v) adjusted biomass 

objective functions to account for class-specific cell membrane and cell wall structures 

as well as introducing a periplasm compartment (Supplemental Note 3). As described 

previously20, all refinement and debugging solutions were manually determined for a 

subset of the reconstructions and subsequently propagated to many reconstructions, as 

appropriate. All newly included metabolites and reactions were formulated based on 

literature and/or database23, 28, 74 searches, while ensuring mass and charge balance through 

the reconstruction tool rBioNet75. Reactions identified through comparative genomics (Table 

S3b-c) were added to up to 5,438 reconstructions. Non-gene associated reactions, for which 

the respective gene could not be found through comparative genomics, were removed from 

the draft reconstructions if doing so did not abolish biomass production.

Curation efforts were verified via a test suite19. Specifically, it systematically accessed 

whether each reconstruction (i) grew anaerobically on complex medium, (ii) had correct 

reconstruction structure, i.e., mass and charge balance, and correct syntax for gene-protein-

reaction associations, (iii) was thermodynamically feasible, e.g., produced realistic amounts 

of ATP, and (iv) captured known metabolic traits of the organism according to the collected 

experimental and comparative genomic data. Table S2 summarises all features that are tested 

by the test suite.

For consistency, the existing 818 AGORA1.03 reconstructions (version 25.02.2019, 

available at https://www.vmh.life/files/reconstructions/AGORA/1.03/AGORA-1.03.zip) also 

underwent refinement through DEMETER. The AGORA1.03 reconstruction of 

Staphylococcus intermedius ATCC 27335 was removed since it was a duplicate of the newly 

reconstructed strain Streptococcus intermedius ATCC 27335. The names of eight AGORA 

1.03 reconstructions were changed to correct strain determination and/or spelling (Table S1).

DEMETER has been implemented in the COBRA Toolbox47 and was run in MATLAB 

(Mathworks, Inc.) version R2020b.

Generation of quality control reports

The quality control reports and associated score we determined for each AGORA2 

reconstruction using the MetaboReport tool in the COBRA Toolbox47. The quality checks 

included are consistent with the Memote42 checks, as were the calculation of the scores. All 

7,302 reports can be accessed via https://metaboreport.live.

Formulation of the drug reactions

A literature search for microbial enzymes known to transform, degrade, activate, inactive, 

or indirectly influence commonly prescribed drugs was performed yielding 15 enzymes 

in total (Figure 3a, Table S5), which are encoded by 29 genes (Table S3b). To enable 

comparative genomic analyses, only drug transformations that could be linked to specific 
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protein-encoding genes were considered. As described above, enzyme-encoding genes 

were analysed in their genomic context as outlined in76 using PubSEED subsystems26, 53. 

Additional information on the presence of the analysed genes were retrieved from39, 77, 78.

Literature and database searches were performed for the metabolic fate of commonly 

prescribed human-targeted drugs. The structures of 287 drug metabolites and drug 

degradation products were retrieved from 73 peer-reviewed papers, HMDB79, DrugBank79, 

and Transformer database80. Reactions were formulated based on the collected 

experimentally determined drug structures, drug downstream product metabolite structures, 

and reaction mechanisms. Both, cytosolic and extracellular, enzymatic reactions were 

formulated depending on the identified subcellular protein locations. Since at least six drugs 

undergoing glucuronidation in the human body have been shown to be substrates for the 

microbial ß-glucuronidase81, 82 (Table S6), it was assumed that all retrieved glucuronidated 

drug metabolites (118 in total) could serve as substrates. Additionally, ß-glucuronidase 

reactions were formulated for 33 glucuronidated drug metabolites from a previously 

reconstructed module of human drug metabolism83 and three glucuronidated hormones from 

Recon3D21. New metabolites and reactions were assigned VMH IDs following standards in 

nomenclature used for COBRA reconstructions9, and formulated while ensuring mass and 

charge balance through the reconstruction tool rBioNet75. In total, for 98 drugs (Figure 3b), 

353 unique metabolites, 381 enzymatic reactions, 373 exchange reactions, and 710 transport 

reactions (Table S6a-b) were formulated.

Atom-atom mapping

The COBRA Toolbox47 function ‘generateChemicalDatabase’ was used to generate atom-

atom mappings. The process to obtain the atom-atom mappings for the AGORA2 

reconstructions can be summarised as follows: 1) 1,894/3,533 metabolic structures from 

the AGORA2 reconstructions were collected from the SMILES and InChIs associated with 

their metabolites and different chemical databases, such as VMH23, KEGG74, HMDB79, 

PubChem84, and ChEBI85 databases. The metabolic structures were standardised based 

on the InChI algorithm86 and can be found in the VMH database23; 2) the standardised 

metabolites and the reaction stoichiometry in the AGORA2 reconstructions were used 

to generate 5,583/7,300 MDL RXN files; 3) 5,583/7,300 AGORA2 reactions were atom 

mapped using the Reaction Decoder Tool algorithm87 for active transport reactions and 

a custom algorithm88 for passive transport reactions and coupled transport reactions. Atom-

atom mappings can be found in the VMH database23 and are freely available at https://

github.com/opencobra/ctf.

Simulations

All simulations were performed in MATLAB (Mathworks, Inc.) version R2020b with IBM 

CPLEX (IBM) as the linear and quadratic programming solver. Computations were carried 

out on a tower with a 2.80 GHz processor and 64 GB RAM with 12 cores dedicated 

to parallelisation. The simulations were carried out using functions implemented in the 

COBRA Toolbox47. Flux balance analysis (FBA)34 was used to simulate metabolic fluxes. 

All additional scripts for data generation, data analysis, and data visualisation are available 

at https://github.com/ThieleLab/CodeBase.
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Retrieval of reconstruction resources

Manually and semi-automatically reconstructions compared with AGORA2 were 

retrieved as follows: 72 fully manually curated reconstructions were downloaded 

from the BiGG database28 (http://bigg.ucsd.edu/). Reconstructions generated through 

gapseq18 (8,075 total) were downloaded from ftp://ftp.rz.uni-kiel.de/pub/medsystbio/

models/EnzymaticDataTestModels.zip and exported in SBML format through the 

sybilSBML package in R using a custom script. MAGMA17 reconstructions (1,333 total) 

were downloaded from https://www.microbiomeatlas.org/data/MSP_GEM_models.zip. To 

enable comparability with AGORA2, exchange reactions in all retrieved reconstructions 

were translated to VMH23 nomenclature through custom MATLAB scripts. Moreover, an 

ATP demand reaction (VMH reaction ID: DM_atp_c_) was added if not already present and 

otherwise translated to VMH nomenclature.

Generation of reconstructions through CarveMe

Protein fasta files corresponding to 7,279 AGORA2 strains were downloaded from either 

NCBI (https://www.ncbi.nlm.nih.gov/assembly) or ENA (https://www.ebi.ac.uk/ena) and 

subsequently used to run CarveMe. The remaining 23 AGORA2 strains were excluded 

as a corresponding protein FASTA file was not available. Reconstructions for 7,279 strains 

were generated with CarveMe15 version 1.5.1 on Python 3.7.13 (retrieved from https://

www.python.org/downloads/release/python-3713) and relying on DIAMOND89 version 

0.9.14.

Generation of reconstructions through gapseq

Genome FASTA files retrieved as described above were used as the input for gapseq18. A 

total of 1,767 models were generated with gapseq 1.2, which was run in R90 version 4.1.2 on 

a Ubuntu 22.04 machine. The R interface of GLPK (package Rglpk) was used as the linear 

programming solver.

Flux and stoichiometrically consistent reactions

The subset of flux and stoichiometrically consistent reactions, as defined in29, was 

retrieved through the ‘findFluxConsistentSubset’ and ‘findStoichConsistentSubset’ functions 

implemented in the COBRA Toolbox47. The fraction of stoichiometrically and flux 

consistent reactions, excluding exchange and demand reactions, was subsequently 

determined for each AGORA2 reconstruction and corresponding KBase draft reconstruction 

as well as for 5,587 reconstructions generated through CarveMe15, 8,075 reconstructions 

generated through gapseq18, 1,333 MAGMA17 reconstructions, and 73 curated 

reconstructions from the BiGG database28. Briefly, the subset of stoichiometrically 

consistent reactions in a reconstruction includes all reactions that are mass and charge 

conserved, excluding exchange, demand, and sink reactions, which are by definition 

mass and charge imbalanced29. The subset of flux consistent reactions consists of all 

reactions that are stoichiometrically consistent and can carry flux under the defined set 

of constraints29.
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Validation against three independent experimental datasets

For an independent assessment of predictive potential of genome-scale reconstructions, 

independent (i.e., not used for the reconstruction process) experimental data on metabolite 

uptake and secretion was retrieved from three sources30, 32, 33 and mapped onto the VMH23 

nomenclature through custom MATLAB scripts. The experimental data included species-

level positive and negative metabolite uptake and secretion data for 457 species (5,341 

strains) and 269 metabolites in AGORA2 from the NJC19 resource30, and species-level 

positive metabolite uptake data from32 for 184 species (328 strains) and 85 metabolites in 

AGORA2. Moreover, strain-resolved positive and negative metabolite uptake and secretion 

data for 676 AGORA2 strains and 220 metabolites, and positive and negative enzyme 

activity data for 881 AGORA2 strains and 31 enzymes were retrieved from the BacDive 

database33. The enzyme data was mapped to the respective reactions in each of the 

compared reconstruction resources’ namespaces. Positive data indicated that the metabolite 

uptake or secretion capability or enzyme activity had been demonstrated in a microbe while 

negative data indicated that the microbe has been shown to not possess the capability. For 

each retrieved positive or negative data point, the capability of the respective model to take 

up or produce the corresponding metabolite was calculated using FBA on unlimited medium 

by either minimising or maximising the corresponding exchange reaction, respectively. For 

enzyme data, it was tested whether at least one reaction mapped to the respective enzyme 

was present in the model and could carry nonzero flux. If the data point was positive and the 

corresponding model could also take up or secrete the metabolite or produce flux through 

the corresponding enzymatic reactions(s), this resulted in a true positive prediction, while 

a false negative prediction occurred when the microbe was known to have this capability, 

but the corresponding model did not capture the trait. If the data point was negative and the 

corresponding model also could not take up or secrete the metabolite or did not produce flux 

through any reaction(s) mapped to the enzyme, this resulted in a true negative prediction, 

otherwise the prediction was a false positive.

Prediction accuracy were calculated for the three experimental datasets. For an assessment 

of the predictive potential of AGORA2 compared with other reconstruction resources, 

the analysis was repeated for the strains in KBase draft reconstructions, CarveMe 

reconstructions, and BiGG, gapseq, and MAGMA reconstructions that overlapped with the 

AGORA2 organisms with available data. To this end, the predictive value of all resources 

was tested via mixed effect logistic regressions with the in silico prediction as predictor 

and the in vivo behaviour (binary) as response variable, while introducing the model 

as random effect variable accounting for the stochastic dependencies of predictions for 

different metabolites stemming from the same model. Moreover, the accuracy per model 

was calculated for all resources, and then compared with the AGORA2 accuracies via non-

parametric sign rank tests. The list of all strains in the compared reconstruction resources 

that were tested against the three datasets is shown in Table S4a. All scripts are available at 

https://github.com/ThieleLab/CodeBase.

Validation of drug-metabolising capacities against independent experimental data

A literature search was performed for in vitro experiments demonstrating the capabilities 

of human microbial strains to metabolise reconstructed drugs through the 15 annotated 
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enzymes, resulting in 253 drug-microbe pairs (Table S7). As this data contained both 

positive and negative data, true positive, true negative, false positive, and false negative 

predictions could occur as described above. If no studies on the specific reconstructed 

drugs were found for the enzyme, studies on general activity of the enzyme were retrieved. 

If possible, the tested microbes were matched to AGORA2 models on the strain level, 

otherwise pan-species models were used. Subsequently, the capabilities to metabolise the 

drugs through the respective enzymes for the 164 AGORA2 models with available data 

(Table S7) were tested by computing whether the corresponding reaction could carry flux. 

Accuracy, sensitivity, and specificity of predictions were calculated after determining the 

number of true positive, true negative, false positive, and false negative predictions. P-values 

were calculated by Fisher’'s exact test and, for sensitivity analysis, by mixed effect logistic 

regression including the model as random effect variable, accounting for the stochastic 

dependency of predictions stemming from the same model.

Drug yields

To determine each strains’ capability to metabolise drugs, all AGORA2 were constrained 

with a simulated Western diet20 and the flux through the exchange reactions corresponding 

to each drug was minimised using FBA, corresponding to maximal uptake rate of the 

drug. For all AGORA2 organisms capable to take up at least one drug, the yield of ATP, 

carbon, and ammonia from 1 mmol of the drug gdry weight/hr was evaluated as follows. Each 

reconstruction was constrained to only allow the uptake of water, phosphate, and oxygen 

(VMH IDs: h2o, pi, o2). Demand reactions for ammonia as well as CO2 and pyruvate (as 

proxies for carbon sources) (VMH IDs: nh4, co2, pyr) were added, while a demand reaction 

for ATP (VMH ID: atp) already existed in each reconstruction. Next, the uptake of each drug 

metabolite (15 in total, one representative for each enzyme) was allowed one by one at an 

uptake rate of 1 mmo1/gdry weight/hr. For each drug metabolite, the yields of ATP, ammonia, 

CO2, and pyruvate from each drug metabolite were computed using flux balance analysis 

(FBA) by maximising the flux through the respective demand reactions. As control, yields 

were also computed for 1 mmo1/gdry weight/hr of glucose and without any metabolites added.

Simulation of drug metabolism by individual gut microbiomes

Previously, metagenomic sequencing from faecal samples of a cohort of 616 Japanese 

colorectal cancer patients and healthy controls had been performed38. Species-level 

abundances for this cohort, which has been determined with MetaPhIAn291, were retrieved 

from https://www.nature.com/articles/s41591-019-0458-7#MOESM3. Unclassified taxa on 

the species level, eukaryotes, and viruses were excluded. Of the remaining 517 species, 

501 (97%) could be mapped onto the 1,738 AGORA2 species. Pan-species models for 

AGORA2 were created through the ‘createPanModels’ function. From the pan-species 

models, personalised microbiome models for each of the 616 samples were built through 

a computationally efficient pipeline43 with the species-level abundances as input data and 

parameterised as described elsewhere10, 60. For each individual, we integrated all microbial 

models having a non-zero abundance in the sample into one personalised microbiome 

model. To contextualise the models with appropriate diet constraints, a simulated Average 

Japanese Diet described previously41 (Table S12) was used. To predict the drug conversion 

potential of each microbiome, the faecal secretion reactions for 13 drug metabolism end 
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products were optimised one by one using flux balance analysis34, while providing the 

respective precursor drug as well as oxygen at a de facto unlimited uptake rate of 1000 

mmo1/gdry weight/hr.

Shadow price analysis

To determine species in microbiome models that were of importance for the microbiome’s 

combined potential to metabolise a drug, a shadow price analysis was performed as 

described previously60. Briefly, shadow prices are a feature of every flux balance analysis 

solution (i.e., the shadow price is the dual to the primal linear programming problem) that 

reflect the contribution of each metabolite in the model to the flux through the objective 

function8. A non-zero shadow price for a metabolite indicates that this metabolite has 

importance for the total flux capacity through the optimised objective function, i.e., in our 

case, the secretion of a drug metabolic product. A shadow price of zero indicates that 

increasing the availability of this metabolite would not change the flux through the objective 

function. To determine the species that were bottlenecks for the conversion potential of the 

13 drugs in each microbiome model, nonzero shadow prices for species biomass metabolites 

(‘species_biomass[c]’), which reflect the contribution of the species to the community 

biomass reaction, were retrieved.

Statistical analysis

We analysed statistically the net production capacity of 13 drug metabolites (Figure 6a) 

among 252 healthy individuals and 364 CRC patients. For each drug metabolite, we 

calculated the mean flux and the share of microbiomes with a flux greater zero. Drug 

metabolites, which had in over 50% of the cases a zero flux, were dichotomised (can 

be produced vs. cannot be produced) and subsequently, analysed via logistic regressions. 

Drug metabolites with over 50% non-zero entries were analysed via linear regressions 

using heteroscedastic robust standard errors. First, we investigated potential effects of basic 

covariates (age, sex, and BMI) via generalised linear regressions (logistic or linear) with 

the net production capacity being the response variable (dichotomised or metric). Age and 

BMI were introduced into the models as restricted cubic splines92 using four knots (the 

5%-percentile, the 33%-percentile, the 66%-percentile, and the 95%-percentile) resulting in 

three spline variables, each to test on potential non-linear relationships. Significance was 

then determined by testing the three spline variables belonging to age (or BMI, respectively) 

simultaneously on zero via the Wald test92. While for age substantial non-linearities were 

found, no indication for non-linear BMI effects could be identified. The final models 

included, therefore, only the linear BMI term. Second, we tested for potential associations 

of net production capacities with case control status. This test was done via generalised 

linear regressions (logistic or linear) with the net production capacity being the response 

variable (dichotomised or metric), while adjusting for age (restricted cubic splines), sex 

(male/female), and BMI (linear). We corrected for multiple testing using the false discovery 

rate, adjusting significance values for 13 tests per analyses stream. A test was considered 

nominal significant with p<0.05 and FDR-corrected significant if FDR<0.05. For sensitivity 

analysis, we recomputed the drug-metabolising capabilities using an average European diet 

instead of a Japanese diet. Then, we calculated Pearson correlations for each drug metabolite 

between the secretion potentials under Japanese and an average European diet. All statistical 
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analyses were performed with STATA 17/MP. All scripts are available at https://github.com/

ThieleLab/CodeBase.

Sign prediction of faecal metabolite-species associations using AGORA2-based 
community models

We utilised the publicly available metabolome dataset (n=347) from Ref.38. To test 

whether AGORA2-based community modelling is capable of predicting the sign of 

statistical associations between species presence and faecal metabolite concentrations in 

the CRC sample, we calculated maximal net secretion for 52 metabolites with faecal 

metabolome data with more than 50% of the samples having concentrations above limit 

of detection. Metabolite net secretion was computed using the mgPipe module in the 

Microbiome Modelling Toolbox10, 43 while relying on computationally efficient flux 

variability analysis93. Then, we calculated for each species present in at least 10% of 

the microbiomes and at max 90% of the microbiomes the effect of species (binary 

predictor: species present vs species not present) on each faecal metabolite concentration in 

multivariable regressions adjusting for age, sex, BMI, and study group. We then filtered for 

all species metabolite associations with p<0.05. Next, we calculated the effect of the species 

presence on the community net secretion of the corresponding metabolite in analogous 

regressions. Finally, we calculated for each metabolite the agreement in signs between the in 
vivo association statistics and the in silico association statistics. Significance was determined 

by Fisher’s exact test and FDR correction was applied accounting for 52 tests. Note that the 

p-values should be treated with care since the signs of the various association statistics may 

cluster due to the multivariate nature of both the metabolome and the microbiome data.

Data visualisation

The phylogenetic tree of AGORA2 organisms was constructed in PhyloT (https://

phylot.biobyte.de/) and visualised in iTOL (https://itol.embl.de/)94. Violin plots were 

generated in BoxPlotR (http://shiny.chemgrid.org/boxplotr/). Clustering of taxa by reaction 

presence through t-distributed stochastic neighbour embedding (t-SNE)52 was performed 

using the t-SNE implementation in MATLAB with Euclidean distance, barneshut set as 

the algorithm, and perplexity set to 30. Taxa with fewer representatives than 0.5% of 

all clustered strains were excluded from the t-SNE plots. Significance of differences in 

coordinates across taxonomic units were determined by Kruskal-Wallis tests. Circle plots 

were generated using the online implementation of Circos95. Figures 6 and S9 were 

generated with the graphics functions of STATA 16/MP. All other data was visualised in 

MATLAB and R90.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Features of AGORA2.
a) Taxonomic coverage and sources of reconstructed strains. b) Taxonomic distribution of 

the included 7,302 strains. c) Features of the AGORA2 reconstructions and KBase draft 

reconstructions. c = cytosol, e = extracellular space, p= periplasm. Growth rates on Western 

diet (WD) and unlimited medium (UM) (Methods) are given in 1/hr. ATP production 

potential on WD is given in mmol/gdry weight/hr. Shown are averages across all models 

+/- standard deviations. d) Number of reconstructions with available positive findings from 

comparative genomics and literature, and percentage of curated and draft reconstructions 

agreeing with the findings for the respective organism. N/A = not applicable as the pathway 

was absent in draft reconstructions.
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Figure 2. Taxonomically related strains are similar in their AGORA2 reconstruction content.
a-d) Clustering through t-distributed stochastic neighbour embedding (t-SNE)52 of reaction 

presence across all pathways per reconstruction. Coordinates were statistically different 

across taxonomic units (Kruskal-Wallis test, p=0.0001 in all cases). a) Members of the 

largest classes. b) Members of the largest families. c) Members of the Bacilli class by genus. 

d) Members of the Gammaproteobacteria class by genus. e-h) Features of all AGORA2 

reconstructions across phyla: e) Number of reactions. f) Number of metabolites. g) Number 

of genes, and h) growth rate in 1/hr on aerobic Western Diet.
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Figure 3. Comparison of AGORA2 refined reconstructions, draft reconstructions, and three 
other reconstructions resources.
Compared were the 7,302 AGORA2 and KBase draft reconstructions, 72 manually curated 

reconstructions from the BiGG database28, 5,587 reconstructions built through CarveMe15, 

8,075 reconstructions built through gapseq18, and 1,333 MAGMA reconstructions17. a) 

Fraction of reactions that are stoichiometrically and flux consistent as defined in29 for each 

model derived from the five compared resources. Exchange and demand reactions, which are 

stoichiometrically inconsistent by definition, were excluded. b) Aerobic and anaerobic ATP 

production on complex medium (mmol/gdry weight/hr) by each model derived from the five 
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compared resources. c) Overview of reconstruction properties for the compared resources. 

d) Overview on number of models and number of predictions tested in validating AGORA2, 

KBase, BiGG, CarveMe, gapseq, and MAGMA against three independent experimental 

datasets30, 32, 33. e) Bar plots with 95%-confidence intervals of overall accuracies of 

the five resources in predicting uptake and secretion in the three experimental datasets. 

Significance of prediction accuracy was determined by mixed effect logistic regressions 

using the metabolic model as random effect variable to account for the statistical dependence 

of predictions stemming from the same model. NA indicates a missing p-value due to empty 

categories (e.g., no true negatives detected). f) Comparison of accuracies per model of the 

various resources on the three experimental datasets. P-values were derived by sign rank 

tests.
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Figure 4. Overview of reconstructed drugs and annotated drug enzymes present in AGORA2.
a) Overlap between independent, experimentally demonstrated activity of drug-metabolising 

enzymes and predictions by models derived from the AGORA2 reconstructions for 253 

drug-microbe pairs (Table S7). b) Distribution of the number of strains carrying each drug 

enzyme over the 14 analysed phyla. c) Fraction of strains carrying each gene encoding 

drug enzymes or transport proteins in the four main phyla in the human microbiome. d) 

Distribution of the number of drug genes per strain for the four main phyla. For the list of 

abbreviations, see Table S3b.

Heinken et al. Page 30

Nat Biotechnol. Author manuscript; available in PMC 2023 September 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 5. Drug conversion capacity of 616 microbiomes.
a) Drug conversion potential in the microbiomes of 616 Japanese colorectal cancer patients 

and controls on the Average Japanese diet. The violin plots show the distribution of 

drug metabolite flux in mmol/person/day. b) Drug conversion potential (mmol/person/

day) plotted against the total relative abundance of the reaction producing the shown 

drug metabolite in the 616 microbiomes. See Table S5a for a description of each drug-

metabolising enzyme.
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Figure 6. Descriptive statistics for the modelled drug metabolites and faecal species-metabolite 
associations.
a) Overview on descriptive statistics for the modelled drug metabolites. b) Scatter plots (red: 

controls; blue cancer) of various drug metabolites in dependence on age with non-linear 

regression lines for cases and controls. Regression lines were estimated with restricted cubic 

splines. All regression models had p<0.0001 (FDR<0.05) and regression coefficients were 

virtually the same for cases and controls. c) Faecal species metabolite sign prediction for 

L-lactic acid, L-methionine, and gamma-aminobutyrate. Upper panel represents scatter plots 

of in silico change in microbial community net secretion flux derived from community 
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modelling against the change in measured faecal concentration in dependence on microbial 

species presence. Each dot represents one microbial species having an effect on metabolite 

concentration with at least p<0.05. Lower panel depicts the confusion matrix of sign 

prediction through in silico modelling. P-values derived from Fisher’s exact test should 

be treated with care due to species-species and metabolite-metabolite interdependencies.
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