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Abstract

The rooting zone water storage capacity – the amount of water accessible to plants – controls the 

sensitivity of land-atmosphere exchange of water and carbon during dry periods. How the rooting 

zone water storage capacity varies spatially is largely unknown and not directly observable. Here 

we estimate rooting zone water storage capacity globally from the relationship between remotely-

sensed vegetation activity, measured by combining evapotranspiration, sun-induced fluorescence, 

and radiation estimates, and the cumulative water deficit calculated from daily time series of 

precipitation and evapotranspiration. Our findings indicate plant-available water stores that exceed 

the storage capacity of 2 m deep soils across 37% of the Earth’s vegetated surface. We find that 
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biome-level variations of rooting zone water storage capacities correlate with observed rooting 

zone depth distributions and reflect the influence of hydroclimate, as measured by the magnitude 

of annual cumulative water deficit extremes. Smaller-scale variations are linked to topography and 

land use. Our findings document large spatial variations in the effective root zone water storage 

capacity and illustrate a tight link between the climatology of water deficits, rooting depth of 

vegetation and its sensitivity to water stress.

Introduction

To sustain activity during dry periods and resist impacts of droughts, plants rely on water 

stored below the surface. The larger the rooting zone water storage capacity (S0), the longer 

plants can withstand soil moisture limitation1. S0 is therefore a key factor determining 

drought impacts, land-atmosphere exchanges, and runoff regimes, particularly in climates 

with a seasonal asynchrony in radiation and precipitation (P)2–4. In models, S0 is commonly 

conceived as a function of the soil texture and the plants’ rooting depth (zr), limited to 

the depth of the soil3, 5. Recent research has revealed a substantial component of S0 and 

contributions to evapotranspiration (ET) by water stored beneath the soil, in weathered 

and fractured bedrock and groundwater6–11. Plant access to such deep moisture plays an 

important role in controlling near-surface climate12–14, runoff regimes4, global patterns of 

vegetation cover15, and mitigating impacts of droughts16.

However, S0 is impossible to observe directly across large scales and its spatial 

variations are poorly understood17. Global compilations of local plant rooting depth (zr) 

measurements18, 19 yield information related to S0, but have resolved this observational 

challenge only partly because of their limited size, and large documented variations in 

zr across multiple scales7, 18, 18–21. Empirical approaches for estimating the global zr 

distribution made use of relationships between in-situ observations and climatic factors22. 

Modelling approaches for predicting zr have conceived their spatial variations as the result 

of optimal adaptation to the prevailing hydro-climate23–25, or as being adapted to just buffer 

water demand to sustain ET during dry periods2, 26. Such mass-balance approaches make 

use of the maximum cumulative water deficit (CWD) during dry periods as an indication of 

the effective S0. An additional hypothesis posits that it would not be beneficial for plants to 

root even deeper and thus size their S0 even larger26. However, a link between the magnitude 

of CWD extremes, the sensitivity of vegetation activity to an increasing CWD, and local 

zr observations remains to be shown, and the prevalence of plant access to water stored at 

depth (here taken as >2 m) across the globe remains to be quantified.

Despite its crucial role in controlling water and carbon fluxes and the scarcity of 

observations, virtually all models simulating water and carbon exchange between the land 

surface and the atmosphere rely on a specification of S0 either directly as the depth of a 

“water bucket”, or indirectly through prescribed rooting depths zr and soil texture across 

the profile. Typically, water stored at depth and along the entire Critical Zone (including 

weathered bedrock) is not fully represented in models8, 9, and the evident plasticity of 

zr and variations S0 within plant types and along climatic and topographic gradients are 

Stocker et al. Page 2

Nat Geosci. Author manuscript; available in PMC 2023 August 09.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



often ignored. Implications of this simplification may be substantial for the simulation of 

land-atmosphere coupling and drought impacts8, 12, 13.

Here, we present a method for diagnosing S0 from the relationship between vegetation 

activity and CWD. By fusing multiple time series of Earth observation data streams with 

global coverage, we estimate the global distribution of S0 at a resolution of 0.05° (∼5 km). 

Using a mass-balance approach2, 26 and field observations of zr from a globally distributed 

dataset, we then show that the sensitivity of vegetation to water stress across the globe is 

strongly related to the magnitude of CWD extremes and reflects the rooting depth of plants.

Estimating S0 from Earth observations

We started by estimating S0 as the CWD at which vegetation “activity” ceases. Our 

approach accounts for the constraint of the rooting zone water availability on ET and 

photosynthesis and relates S0 to the sensitivity of vegetation activity to water stress. The 

parallel information of ET, P, and the modelled snow mass balance enables a quantification 

of CWD over time. Vegetation activity was estimated from two alternative observations: 

from the evaporative fraction (EF, defined as ET divided by net radiation), and from sun-

induced fluorescence (SIF, normalised by incident shortwave radiation, see also Methods).

Fig. 1 reveals large global variations in S0. Estimates based on EF and SIF correlate 

closely and agree in magnitude (R2 = 0.78, Supplementary Fig. S1). The lowest sensitivity 

of vegetation activity to an increasing CWD, and thus the largest apparent S0, is found 

in regions with a strong seasonality in radiation and water availability and substantial 

vegetation cover - particularly in monsoonal climates. In contrast, the lowest S0 values 

appear not only in regions where seasonal water deficits are limited due to short inter-storm 

duration (e.g., western Amazon and Congo basin) and/or low levels of potential ET (e.g., 

high latitudes), but also in deserts and arid grasslands. This likely reflects the limited water 

storage accumulating during rain events from which vegetation can draw during dry periods. 

In these regions, a rapid decline of ET and SIF with an increasing CWD is related to 

vegetation cover dynamics, governed by greening after rain pulses and browning during dry 

periods27.

Clear patterns emerge also at smaller scales (Fig. 2, Extended Data Fig. 1-3). SdSIF and 

SdEF consistently (see Supplementary Fig. S1) reveal how the sensitivity of photosynthesis 

and transpiration to drought stress varies across different topographical settings, indicating 

generally larger S0 in mountain regions (’M’ in Fig. 2) and along rivers (’R’) and deltas 

(’D’). We note however, that ET estimates from the product used here (ALEXI28, 29) may 

be biased high over mountainous terrain where low incident net radiation and surface 

temperatures are caused not by high evaporative fractions but rather by topography effects 

and local shading. The maps of SdSIF and SdEF also bear strong imprints of human land use. 

Major irrigated cropland areas are congruent with some of the highest apparent S0 values. In 

these areas, our analysis yields particularly high CWD values and a low sensitivity of SIF 

and EF to CWD - without using information about the location and magnitude of irrigation. 

Other major irrigated areas appear as blank cells in Fig. 2 because the algorithm used to 

calculate CWD (see Methods) fails due to a long-term imbalance between P and ET and a 
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“runaway CWD”. This indicates a sustained over-use of water resources, caused by lateral 

water redistribution at scales beyond ∼5 km via streamflow diversion or groundwater flow 

and extraction (or bias in P and ET estimates).

Regressing vegetation activity against CWD also identifies locations where a decoupling of 

the two variables appears, i.e., where the sensitivity of EF or SIF significantly decreases 

beyond a certain CWD threshold (“Flattening” in Fig. 2, see Methods). Such areas are 

particularly common in the vicinity of mountain regions, in areas with irrigated croplands, 

and in savannahs (Supplementary Fig. S2). Related mechanisms may be at play. A flattening 

of the EF (SIF) vs. CWD relationship is likely due to different portions of the vegetation 

having access to distinct water resources and respective storage capacities. In areas with 

large topographic gradients, this may be due to within-gridcell heterogeneity in plant access 

to the saturated zone. Although relevant for land-atmosphere coupling12, land surface 

models typically do not account for such effects. This has potential implications for 

simulations of ET during prolonged dry periods in these regions. In savannahs, a shift in 

ET contributions from grasses and trees and a related shift in transpiration occurs as grasses, 

which are often more shallow-rooted than trees30, senesce. In irrigated cropland areas, the 

flattening likely reflects land use heterogeneity within ∼5 km grid cells and the persistent 

water access on irrigated fields while EF and SIF are reduced more rapidly in surrounding 

vegetation.

What controls spatial variations in S0 and zr and the sensitivity of vegetation activity to 

water stress? Following ref.2, we hypothesized that annual CWD maxima reflect the total 

amount of plant-accessible water. That is, zr and S0 are sized to just maintain transpiration 

and photosynthesis under extreme water deficits, commonly experienced over the course of 

a plant’s lifetime (recurring with a return period of T years). Hence, a correlation between 

the magnitude of CWD extremes and the sensitivity of vegetation activity to an increasing 

CWD should emerge. For estimating CWD extremes, we started by using T = 80 years and 

assessed other choices as described in Supplementary Text S1, and see Extended Data Fig. 

4.

Fig. 3a shows the global distribution of SCWDX80 and reveals patterns across multiple 

scales - in close agreement with SdSIF and SdEF (R2 = 0.76 and R2 = 0.83, respectively, 

Supplementary Fig. S3). This indicates that the sensitivity of vegetation activity to an 

increasing CWD (measured by SdSIF and SdEF) is strongly controlled by hydroclimate (as 

measured by SCWDX80). The agreement between S0 estimates based on water mass balance 

approaches2, 26 and vegetation activity suggests that plants tend to size their roots no deeper, 

and S0 no larger, than what is suggested by observed CWD extremes. Magnitudes of 

SCWDX80 inferred for 55% (37%) of the Earth’s vegetated regions indicate plant access to 

water stored beyond 1 (2) m soil, assuming texture-dependent water holding capacity31–33 

(Extended Data Figs. 5, 6).

Fine granularity and large spatial heterogeneity of SCWDX80 at regional scales reveal the 

importance of land use and the local topographical setting for determining plant-available 

water storage capacities (Extended Data Figs. 7, 8). Complex patterns emerge. Mountainous 

areas feature higher SCWDX80 than their surrounding lowlands. In other regions, lowlands 
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feature some of the highest recorded SCWDX80. In these regions, irrigated agriculture is 

wide-spread (Fig. 2 and Extended Data Fig. 1). Variations are likely to extend to even 

smaller scales along the hillslope topography7 and within individual forest stands34. These 

scales lie beyond the resolution of the satellite remote sensing data used here to calculate 

CWD.

Evaluation with rooting depth observations

S0 provides an estimate of the effective total plant-available water, independent of 

assumptions about physical constraint (limited soil depth, shallow bedrock, or groundwater), 

and independent of uncertain soil texture and water holding capacity (WHC). Due to the 

absence of direct observational constraints on S0, we converted S0 to a corresponding 

apparent plant rooting depth (zr), enabling an evaluation of S0 estimates against fully 

independent observations. We focused on comparing biome-level distributions of inferred 

apparent rooting depth (zCWDX80) with a dataset30 containing 5524 individual field 

observations of plant rooting depth from 1705 globally distributed sites (Supplementary Fig. 

S4). We thus tested the link between hydroclimate and belowground vegetation structure 

across large climatic gradients.

Predicted and observed biome-level maximum rooting depth (90% quantiles) are correlated 

(Pearson’s r = 0.68, Fig. 4c), while the lower (10%) quantiles appear to be overestimated 

by zCWDX80 (Fig. 4b). Using a subset of the data where information about the water table 

depth (WTD) is provided (489 entries from 359 sites), we limited values of zCWDX80 to 

the value of the observed local WTD (53% of all observations). This yields a strongly 

improved correlation of observed and estimated the biome-level 10% rooting depth quantiles 

(Pearson’s r = 0.91, Fig. 4d) compared to estimates that are not capped at the observed 

WTD (Fig. 4b). This suggests that inferred zr overestimates values where roots access the 

groundwater and indicates that groundwater access is relevant across more than half of the 

globally distributed sites in our dataset. While acting as a constraint on the rooting depth7, 

plant access to groundwater or a perched water table implies sustained transpiration during 

dry periods, correspondingly large CWDs and, by implication of the model design, large 

SCWDX80 and (apparent) zCWDX80.

Influence of biotic and abiotic factors

Using first-principles modelling and integrating multiple data streams, we diagnosed a 

hydrologically effective ecosystem-level S0 from the sensitivity of vegetation activity to 

CWD. We found that large-scale variations in S0 are driven by the hydroclimate and that 

global patterns of seasonal water deficits are reflected in the rooting depth of plants. More 

fine-grained variations in S0 within regions and biomes are linked to land use and irrigation 

of agricultural land (Fig. 2), and to topography (Extended Data Fig. 7, 8), and to the water 

table depth, as indicated by the comparison to plant-level rooting depth observations. The 

method applied here makes use of the sensitivity of remotely sensed ET to an increasing 

CWD and thus provides estimates of S0 even if belowground water stores are never fully 

depleted during the observational period. Additional analyses, where S0 was diagnosed from 
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a simple water balance model with prescribed S0, confirmed the reliability of the method 

across a broad range of hydroclimates (Supplementary Text S2 and Supplementary Fig. S5).

S0 reflects a combination of biotic and abiotic factors. Biotic factors that determine the 

total plant-available water are, i.a., the rooting depth of the vegetation and plant hydraulic 

properties. Abiotic factors include the hydroclimate and physical constraints to the rooting 

depth, related to the texture and depth of the soil and the weathered bedrock7. Similarly, 

human management activities such as irrigation and tile drainage can impact ET, and thus S0 

in agricultural systems. Physical constraints to roots are largely unknown across large scales. 

Our estimation of S0 makes no assumptions about such constraints. Instead, the magnitude 

of the water storage capacity is inferred from mass balance considerations. The CWD we 

derive from the balances of ET and P imply that the corresponding amount of water is 

supplied by local storage or supplied from lateral subsurface water convergence - likely a 

smaller contributor at the ∼5 km spatial resolution of the data analysed here35.

Diagnosed values of S0 implicitly include water intercepted by leaf and branch surfaces, 

internal plant water storage, and moisture stored in the topsoil and supplied to soil 

evaporation. These components are generally smaller in magnitude compared to moisture 

storage supplied to transpiration36, and their contribution to ET declines rapidly as CWD 

increases. Hence, spatial variations in S0 primarily reflect variations mediated by moisture 

stored across the root zone.

Particularly in regions with pronounced dry seasons, our estimates of S0 greatly exceed 

typical values of the total soil water holding capacity when considering the top 1 or 2 meters 

of the soil column and texture information from global databases (31, Extended Data Fig. 

5). The discrepancy in magnitude and spatial patterns of total 1 (2) m soil water holding 

capacity and S0 diagnosed here hints at a critical role of plant access to deep water and 

the need to extend the focus beyond moisture in the top 1-2 m of soil for understanding 

and simulating land-atmosphere exchange10, 11. Indications of widespread plant-access to 

deep water stores are consistent with observations of bedrock-penetrating roots7, 37 and with 

evidence for dry-season moisture withdrawal from the weathered bedrock9, 11. We note that 

using the global map of SCWDX80 (zCWDX80) for directly parameterizing S0 (zr) in models 

may be misleading in areas with particularly small maximum CWDs and consequently 

small SCWDX80. Scaling relationships of above and belowground plant architecture30 and 

additional effects of how zr determines access to belowground resources and function (e.g., 

nutrients, mechanical stability) should be considered.

Underlying the estimates of SCWDX80 is the assumption that plant rooting strategies are 

reflected by CWD extremes with a return period T = 80 years. SdSIF and SdEF provide an 

independent constraint to test this assumption. Extended Data Fig. 4 suggests that T is not 

a global constant. A tendency towards higher T emerges with an increasing gridcell average 

forest cover fraction.

Our analysis identified mountain regions as being characterised by particularly high S0, in 

spite of shallow soil and regolith depths38. This could be due to hillslope-scale variations 

in groundwater depth, enabling sustained transpiration during prolonged rain-free periods. 
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Lateral subsurface flow at scales beyond the resolution of the data used here (∼5 km) may 

additionally supply water for ET and thus contribute to large inferred S0 in valley bottoms 

of large drainage basins. Local convergence (divergence) acts to supply (remove) subsurface 

moisture and sustain (reduce) ET, leading to larger (smaller) CWD values. Without relying 

on a priori assumptions regarding S0 or functional dependencies of water stress effect on ET, 

thermal infrared (TIR)-based remote sensing data (as is used here) offers an opportunity to 

detect such effects8. Our analysis yielded strong contrasts in diagnosed S0 along topographic 

gradients (Extended Data Fig. 7, 8). However, further research should assess the accuracy 

of spatial variations in annual mean ET and potential effects of terrain, where land surface 

temperature signals on shaded slopes may be mis-interpreted by the ALEXI algorithm as 

signatures of higher ET.

Our global S0 estimates are a “snapshot” in time. Regional to continental-scale variations 

in average tree ages may be associated with changes in rooting depth and S0. Furthermore, 

environmental change may trigger changes in vegetation composition and structure39, with 

consequences for S0. Similarly, deforestation implies changes in rooting depth18, S0, and the 

surface energy balance14. Such temporal changes are not considered here due to the limited 

length of available time series of satellite observations (16 years). It remains to be seen 

whether plasticity in zr is sufficiently rapid to keep pace with a changing climate with strong 

and wide-spread increases in rainfall variability40, and to what degree rising CO2 alters plant 

water use and their carbon economy and thereby the costs and benefits of deep roots.

Taken together, constraints available from local zr observations and from global remote 

sensing of vegetation activity reveal consistent patterns across multiple spatial scales and 

suggest widespread plant access to deep water storage, including the weathered bedrock and 

groundwater, or to other ancillary sources of water, such as irrigation. Our study revealed a 

tight link of the climatology of water deficits and vegetation sensitivity to drought stress. We 

demonstrated how land-atmosphere interactions and the Critical Zone water storage capacity 

are linked with the rooting depth of vegetation and how belowground vegetation structure is 

influenced by the hydroclimate and topography across the globe.

Methods

Estimating ET

Unbiased estimates of ET during rain-free periods are essential for determining CWD and 

estimating S0 and implied zr. We tested different remote sensing-based ET products and 

found that the ALEXI-TIR product, which is based on thermal infrared remote sensing28, 29, 

exhibits no systematic bias during progressing droughts (Supplementary Text S3 and 

Supplementary Fig. S6) - in contrast to other ET estimates assessed here. The stability in ET 

estimates from ALEXI-TIR during drought are enabled by its effective use of information 

about the surface energy partitioning, allowing inference of ET rates without reliance on a 
priori specified and inherently uncertain surface conductances44 or shapes of empirical water 

stress functions45, and without assumptions of rooting depth or effective S0. ALEXI-TIR 

is thus well-suited for estimating actual ET behaviour during drought without introducing 

circularity in inferring S0.
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Cumulative water deficit estimation

The cumulative water deficit (CWD) is determined here from the cumulative difference of 

actual ET and the liquid water infiltration to the soil (Pin). ET is based on thermal infrared 

remote sensing, provided by the global ALEXI data product at daily and 0.05° resolution, 

covering years 2003-2018. Values in energy units of the latent heat flux are converted to 

mass units accounting for the temperature and air pressure dependence of the latent heat 

of vaporization following ref.46. Pin is based on daily reanalysis data of P in the form of 

rain and snow from WATCH-WFDEI47. A simple snow accumulation and melt model48 is 

applied to account for the effect of snowpack as a temporary water storage that supplies 

Pin during spring and early summer. Snow melt is assumed to occur above 1°C and with a 

rate of 1 mm d−1 (°C)−1. The CWD is derived by applying a running sum of (ET - Pin), 

initiating on the first day when (ET - Pin) is positive (net water loss from the soil), and 

terminating the summation after rain has reduced the running sum to zero (Supplementary 

Fig. S7). This yields a continuous CWD time series of daily values. In general, P > ET 

for annual totals. This implies that the CWD summation is initiated at zero each year. In 

very rare cases, the CWD accumulates over more than one year, and data were discarded 

if the accumulation extends over five years (“runaway CWD”). All P and snowmelt (Pin) is 

assumed to contribute to reducing the CWD. This implicitly assumes that no runoff occurs 

while the CWD is above zero. The period between the start and end of accumulation is 

referred to as a CWD event. Within each event, co-varying data, used for analysis, are 

removed after rain has reduced the CWD to below 90% of its maximum value within the 

same event. This concerns the analysis of SIF and EF (see below) and avoids effects of 

relieved water stress by re-wetting topsoil layers before the CWD is fully compensated. 

The algorithm to determine daily CWD values and events is implemented by the R package 

cwd49.

Diagnosing S0 from vegetation activity

By employing first principles for the constraint of the rooting zone water availability on 

vegetation activity1, we developed a method to derive how the sensitivity of these fluxes to 

water stress relates to S0 and how this sensitivity can be used to reveal effects of access to 

extensive deep water stores. Two methodologically independent sources of information on 

vegetation activity were used: the evaporative fraction (EF, defined as ET divided by net 

radiation), and sun-induced fluorescence (SIF, normalised by incident shortwave radiation). 

SIF is a proxy for ecosystem photosynthesis50 and is taken here from a spatially downscaled 

data product51 based on GOME-2 data52, 53. Since net radiation and shortwave radiation are 

first-order controls on ET and SIF, respectively, and to avoid effects by seasonally varying 

radiation inputs, we used EF instead of ET, and considered the ecosystem-level fluorescence 

yield, quantified as SIF divided by shortwave radiation (henceforth referred to as ‘SIF’) for 

all analyses. The resulting estimates for S0 are referred to as SdEF and SdSIF, respectively.

The principles for relating vegetation activity to the rooting zone water availability 

were considered as follows. As the ecosystem-level CWD increases, both gross primary 

production (GPP, ecosystem-level photosynthesis) and ET are limited by the availability of 

water to plants. Below, we refer to GPP and ET as a generic “vegetation activity” variable 

X(t). This principle can be formulated, in its simplest form, as a model of X(t) being a linear 

Stocker et al. Page 8

Nat Geosci. Author manuscript; available in PMC 2023 August 09.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



function of the remaining water stored along the rooting zone S(t), expressed as a fraction of 

the total rooting zone water storage capacity S0:

X(t) = X0 ⋅ S(t)/S0 (1)

Following Eq. 1, S0 can be interpreted as the total rooting zone water storage capacity, 

or the depth of a “water bucket” that supplies moisture for ET. Following ref.1 and with 

X(t) representing ET, the temporal dynamics during rain-free periods (where runoff can be 

neglected) are described by the differential equation

dS /dt = − X(t) dS /dt = − X0 ⋅ S(t)/S0 (2)

and solved by an exponential function with a characteristic decay time scale λ:

X(t) = X0 ⋅ exp − t − t0 /λ (3)

λ is related to S0 as S0 = λ X0, where X0 is the initial ET at S(t0) = S0. In other words, 

the apparent observed exponential ET decay time scale λ, together with X0, reflects the total 

rooting zone water storage capacity S0.

Fitting exponentials from observational data is subject to assumptions regarding stomatal 

responses to declines in S(t) and is relatively sensitive to data scatter. Hence, resulting 

estimates of S0 may not be robust. With CWD(t) = S0 − S(t) and Eq. 1, the relationship of 

X(t) and CWD(t) can be expressed as a linear function

X(t) = X0 − X0/S0 ⋅ CWD(t) (4)

and observational data for X(t) can be used to fit a linear regression model. Its intercept a 
and slope b can then be used as an alternative, and potentially more robust estimate for S0:

S0 = − a/b (5)

This has the further advantage that estimates for S0 can be derived using any observable 

quantity of vegetation activity X(t) (not just ET as in ref.1) under the assumption that 

activity attains zero at the point when the CWD reaches the total rooting zone water storage 

capacity; i.e., X(t*) = 0 for CWD(t*) = S0.

Here, we use a spatially downscaled product of sun-induced fluorescence (SIF51), 

normalised by incident shortwave radiation (WATCH-WFDEI data47), and the evaporative 

fraction (EF), defined as the ratio of ET (ALEXI-ET data29) over net radiation (GLASS 

data54), as two alternative, normalised proxies for water-constrained vegetation activity, 

termed X′. Normalisation by net radiation and incident shortwave radiation respectively 

removes effects by seasonally varying energy available for vegetation activity. X′
0 is thus 

assumed to be stationary over time and the relationship of X′(t) and CWD(t) is interpreted 

here as a reflection of effects by belowground water availability and used to derive SdSIF and 

SdEF. All data used for X′
0 are provided at 0.05° and daily resolution.
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SdSIF and SdEF were then derived based on the relationship of EF and normalised SIF versus 

CWD, guided by Eq. 5. The relationship was analysed for each pixel with pooled data 

belonging to the single largest CWD event of each year, and using the 90% quantile of 

EF and normalised SIF within 50 evenly spaced bins along the CWD axis. Binning and 

considering percentiles were chosen to reduce effects of vegetation activity reduction due 

to factors other than water stress (CWD). We then tested for each pixel whether the data 

support the model of a single linear decline of SIF (EF) with increasing CWD (Eq. 5), or, 

alternatively, a segmented regression model with one or two change points, using the R 

package segmented55. The model with the lowest Bayesian Information Criterion (BIC) was 

chosen and SdSIF and SdEF were quantified only for pixels where no significant change point 

was detected and where the regression of EF (SIF) vs. CWD had a significantly negative 

slope. “Flattening” EF (SIF) vs. CWD relationships were identified where a significant 

change point was detected and where the slope of the second regression segment was 

significantly less negative (p = 0.05 of t-test) compared to the slope of the first segment. 

Examples, visualising the diagnosing of S0 from EF, are given in Supplementary Fig. S8. 

We performed additional tests of the method’s reliability in estimating S0 by deriving SdEF 

from simulations of the ecosystem water balance and ET, where S0 was prescribed, using 

the SPLASH model46. This demonstrates that the method applied for SdSIF and SdEF yields 

accurate estimates of S0 across all climatic conditions and independent of the size of S0 

(Supplementary Text S2 and Supplementary Fig. S5).

Diagnosing S0 from cumulative water deficits

Following ref.2, the rooting zone water storage capacity S0 is estimated based on CWD 

extremes occurring with a return period of T years. Magnitudes of extremes with a given 

return period T (SCWDXT) are estimated by fitting an extreme value distribution (Gumbel) 

to the annual maximum CWD values for each pixel separately, using the extRemes R 

package56. Values SCWDXT. SCWDXT are translated into an effective depth zCWDXT using 

estimates of the plant-available soil water holding capacity, based on soil texture data from 

a gridded version of the Harmonized World Soil Database31, 32 and pedo-transfer functions 

derived by ref.33. Associations of SCWDXT and topography were analysed considering the 

Compound Topography Index57 and elevation from ETOPO158. The Compound Topography 

Index is a measure for subsurface flow convergence and the water table depth based on the 

topographical setting59.

Estimating return periods

Diagnosed values of SdSIF and SdEF provide a constraint on the return period T. To yield 

stable estimates of T and avoid effects of the strong non-linearity of the function to derive T 
from the fitted extreme value distributions and magnitudes estimated by SdSIF and SdEF, we 

pooled estimates SdSIF (SdEF) and SCWDXT values within 1° pixels (≤400 values). A range of 

discrete values T was screened (10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 

350, 400, 450, 500 years) and the best estimate T was chosen based on comparison to SdSIF 

(TSIF) and to SdEF (TEF), i.e., where the absolute value of the median of the logarithm of 

the bias was minimal. Relationships of best matching T with topography (measured by the 

Compound Topography Index57) and with the forest cover fraction (MODIS MOD44B60) 

were analysed.
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Rooting depth estimation and observations

We converted root zone water storage capacity estimates, SCWDX80, to a corresponding 

apparent rooting depth (zCWDX80) using a global soil texture map31, 32. The conversion of 

SCWDX80 into a corresponding depth zCWDX80 accounts for topsoil and subsoil texture and 

water holding capacity (WHC) along the rooting profile (see Methods, Fig. 3b), and - in 

view of lacking information with global coverage about the WHC of the weathered bedrock 

- assuming uniform subsoil texture extending below 30 cm depth. The comparison of 

biome-level quantities (instead of a direct point-by-point comparison) avoids the inevitable 

scale mismatch between in situ plant-level observations and global remote sensing data.

The observational rooting depth data set (N = 5524) was compiled by30 by combining 

and complementing published datasets from refs.22 and7. The data include observations 

of the maximum rooting depth of plants taken from 361 published studies plus additional 

environmental and climate data. zr was taken as the plant’s maximum rooting depth. Data 

were aggregated by sites (N = 1705) based on longitude and latitude information. Sites were 

classified into biomes using maps of terrestrial ecoregions43. Quantiles (10%, 90%) were 

determined for each biome. For a subset of the data (359 sites) where parallel measurements 

of the water table depth (WTD) was available, we conducted the same analysis, but took the 

minimum of WTD and zr.

Extended Data
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Rooting zone water storage capacity (mm) estimated from the sensitivity of the evaporative 

fraction (SdEF, top panel a) and sun-induced fluorescence (SdSIF, bottom panel b) to the 

cumulative water deficit (CWD). The red box in (a) shows the outline of the magnified map 

provided in Fig. 2. Data shown is aggregated to 0.1° resolution. Blank cells (white) mark 

areas where all underlying cells at the original 0.05° resolution did not exhibit a significant 

and single, linearly declining relationship with increasing CWD.
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Figure 2. 
Rooting zone water storage capacity in Central Asia, estimated from the evaporative fraction 

(SdEF). Blue areas (“flattening”) show grid cells where a significant reduction in the slope 

in EF vs. CWD was identified beyond a certain threshold. SdEF values are not calculated 

for gridcells classified as “Flattening”. Red lines show outlines of major irrigated areas, i.e. 

where the irrigated land area fraction is above 30%41. Information about irrigated areas was 

used only for mapping here, but is not used for other parts of the analysis. Blank grid cells 

(white) indicate areas with a sustained imbalance of ET being greater than P. Green letters 

indicate locations of mountains (’M’), rivers (’R’), and delta (’D’), referred to in the main 

text. Additional regional maps are provided by Extended Data Figs. 1-3.
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Figure 3. 
Spatial variations of (a) the rooting zone water storage capacity, estimated by SCWDX80 

(mm), and (b) the apparent plant rooting depth zCWDX80 (m). Values are remapped to a 

0.1° resolution. Blank grid cells (grey) are either permanent inland water bodies and ocean, 

or locations with long-term accumulation of water deficits. Values are removed in gridcells 

where more than 99% is non-vegetation surface based on MODIS Landcover42.
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Figure 4. Modelled and observed rooting depth by biomes.
(a) Kernel density estimates of observed and predicted (zCWDX80) rooting depth by biomes, 

based on data aggregated by sites, shown by vertical colored tick marks. 10% and 90% 

quantiles of observed vs. predicted (zCWDX80) rooting depth by biome of all data (b,c), and 

of a subset of the data where the water table depth (WTD) was measured along with rooting 

depth (d,e). Classification of sites into biomes was done based on43. Dotted lines in b-e 

represent the 1:1 line. In subtitles of panels (b-e), r is the Pearson’s correlation coefficient, 

and p is the test statistic based on Pearson’s product moment correlation coefficient.
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