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Abstract

Background—Understanding and accurately predicting the environmental limits, population at 

risk and burden of podoconiosis are critical for delivering targeted and equitable prevention and 

treatment services, planning control and elimination programs and implementing tailored case 

finding and surveillance activities.

Methods—This is secondary analysis of a nationwide podoconiosis mapping survey in Kenya. 

We combined national representative prevalence survey data of podoconiosis with climate and 

environmental data, overlayed with population figures in a geostatistical modelling framework, 
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to predict the environmental suitability, population living in at-risk areas and number of cases of 

podoconiosis in Kenya.

Results—In 2020, the number of people living with podoconiosis in Kenya was estimated to 

be 9344 (95% uncertainty interval 4222 to 17 962). The distribution of podoconiosis varies by 

geography and three regions (Eastern, Nyanza and Western) represent > 90% of the absolute 

number of cases. High environmental suitability for podoconiosis was predicted in four regions of 

Kenya (Coastal, Eastern, Nyanza and Western). In total, 2.2 million people live in at-risk areas and 

4.2% of the total landmass of Kenya is environmentally predisposed for podoconiosis.

Conclusions—The burden of podoconiosis is relatively low in Kenya and is mostly restricted 

to certain small geographical areas. Our results will help guide targeted prevention and treatment 

approaches through local planning, spatial targeting and tailored surveillance activities.
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Introduction

The World Health Organization (WHO) defines podoconiosis as a non-infectious tropical 

disease characterised by steadily progressive lymphoedema, often misdiagnosed as 

lymphatic filariasis (LF).1 Podoconiosis is believed to result from inflammatory processes 

triggered by barefoot exposure to irritant particles found in specific soil types derived from 

volcanic rock at high altitude that has been weathered in particular ways. This limits its 

occurrence to regions where these parameters exist. However, exposure to the necessary 

environmental conditions is not sufficient. There is strong evidence for a genetic association 

with class II human leucocyte antigen (HLA) genes. Even then, podoconiosis only develops 

in vulnerable individuals due to socio-economic deprivation and poor access to foot hygiene 

and shoes.1–3 It is one of the leading causes of lymphoedema in Africa.4 The disease 

significantly reduces quality of life5 and productivity through decreased mobility and 

associated morbidity. People with podoconiosis suffer from mental distress and depression, 

driven by stigma and discrimination.6, 7

Podoconiosis is amenable to prevention through simple public health intervention3, 8 such 

as consistent use of footwear from an early age, regular foot hygiene and covering housing 

floors.9 For those with the disease, the WHO recommends hygiene-based lymphoedema 

management, which includes foot hygiene, foot care, wound care, compression, exercises 

and foot elevation, treatment of ‘acute attacks’ (painful episodes of an inflammatory 

condition known as acute dermatolymphangioadenitis) and use of shoes and socks to reduce 

further exposure to the irritant soil.8

Global figures indicate that 4 million people live with podoconiosis in 27 countries, mainly 

in the highland areas of tropical Africa, Latin America and South East Asia.10 Only three 

countries (Cameroon, Ethiopia and Rwanda) have mapped the distribution of podoconiosis 

through nationwide surveys, which have revealed a widespread distribution of podoconiosis 

and a subsequent higher burden of disease than initially expected.11–13 These studies have 
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also increased our knowledge of the environmental, climatic and soil composition–related 

factors associated with the occurrence of podoconiosis.

Accurate characterisation of the environmental conditions associated with the occurrence of 

podoconiosis (which we refer to as environmental limits) combined with an understanding 

of the population at risk and the burden of disease are critical for delivering targeted 

and equitable prevention and treatment services. This information also allows planning 

of control and elimination programs, tailored case finding and disease surveillance. 

Epidemiological data are typically obtained through conducting house-to-house case 

searches or large-scale surveys. Kenya has recently conducted a countrywide survey to 

determine the geographical distribution of podoconiosis and identify individual and village-

level risk factors associated with its occurrence.14 Although such data are important, they 

do not include environmental data that could provide high spatial resolution or reliable 

measures of uncertainty to support effective decision making and planning. Therefore, using 

national data and building on previous modelling work, we undertook a secondary analysis 

to predict the environmental limits and estimate the prevalence and number of cases of 

podoconiosis in Kenya. The current analysis results will contribute to national efforts to 

eliminate this public health issue by informing targeted and equitable access to prevention 

and care.

Methods

Podoconiosis prevalence data

In 2019, a nationwide population-based cross-sectional survey in 48 villages in 24 

subcounties across 15 counties covering the Western, Nyanza, Eastern, North Eastern, Rift 

Valley and Coast regions of Kenya was conducted. Two villages in each subcounty were 

included in the study and the target population was residents of the selected villages. In 

each selected village, 50 house-holds were selected using a systematic random sampling 

technique, the details of which are published elsewhere.14

Explanatory environmental variables

A collection of > 50 remotely sensed environmental datasets including climate, soil-related, 

topographic, vegetation density and urbanicity level data previously identified as potential 

risk factors for the occurrence of podoconiosis were assembled and used to ascertain the 

environmental limits of the disease in Kenya.15, 16 Using principal component analysis to 

reduce dimensionality and eliminate correlated variables, we selected environmental datasets 

that best characterise the environment at locations where podoconiosis cases had been 

diagnosed during the nationwide cross-sectional survey: mean temperature of the wettest 

quarter, precipitation of the coldest quarter, concentration of extractable iron content (mg/kg 

soil), percentage of orthent soils, distance to water bodies, flow accumulation and night-light 

(NL) emissivity are available in the appendix. Geographic coordinates of each surveyed 

villages were used to extract pixel values from gridded maps of the selected datasets.

Information on precipitation and temperature were extracted from a synoptic gridded map 

of annual precipitation calculated from monthly total precipitation gridded datasets obtained 
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from the WorldClim database (version 2.1).17 This database provides a set of global climate 

layers obtained by interpolation of precipitation data for the period 1970–2000 collected in 

weather stations distributed across the world.18, 19 We obtained a raster elevation dataset 

at 1 km from the Consortium for Spatial Information.2, 20 This elevation layer resulted 

from processing and resampling the gridded digital elevation models (DEMs) derived from 

the original 30-arcsecond DEM produced by the Shuttle Radar Topography Mission. Flow 

accumulation was derived from the elevation raster dataset. The flow accumulation surface 

represents each cell’s potential to accumulate water. This was generated via a flow direction 

raster that identifies the direction of flow as the steepest descent from each cell in the 

elevation dataset, calculated as change in elevation/distance*100. The flow accumulation 

raster was derived by summing the flow direction value weights of all cells predicted to flow 

into each cell. We also generated continuous surfaces of straight-line distance (Euclidean 

distance) in kilometres to the nearest water body based on updated maps of waterbodies and 

waterways from Kenya downloaded from the OpenStreetMap project21 through the platform 

Geofabrik.22

Soil data including the concentration of extractable iron (mg/kg of topsoil) and predicted 

distribution for the orthent soil class were obtained from the International Soil Reference 

and Information Centre World Soil Information project23, 24 and the OpenGeoHub project,25 

respectively. These projects provide gridded maps of soil composition at 250 m resolution 

worldwide. Orthent soils are a suborder of the entisol soil type characterized by their 

extreme shallowness, steepness and consequent high erosion hazard. They are poor soils and 

therefore not suitable for farming. In Africa, orthents occur in flat terrain because the parent 

rock contains no weatherable mineral except short-lived additions from rainfall.

Finally, we obtained a raster of stable NL emissivity in 2010 (the median year of detection 

of the included cases) from the National Oceanic and Atmospheric Administration.26 The 

Operational Linescan System instrument, on board a satellite of the Defence Meteorological 

Satellite Programme, measures visible and infrared radiation emitted at night, resulting in 

remote imagery of lights on the ground. This information has been correlated with gross 

domestic product in developed countries27, 28 and, although far from being precise, provides 

an indirect measure of poverty in developing countries.29 NL emissivity is provided as 

gridded maps of 1 km2 resolution, with values ranging from 0 (undetectable NL emissivity) 

to 60 (maximum NL emissivity).

Input grids were resampled to a common spatial resolution of 1 km2 using the nearest 

neighbour approach, clipped to match the geographic extent of the map of Kenya and 

eventually aligned to it. Raster manipulation and processing was undertaken using the raster 

package in R version 3.6.3 (R Foundation for Statistical Computing, Vienna, Austria) and 

final map layouts created with ArcGIS 10.7 software (ESRI, Redlands, CA, USA).

Environmental modelling using regression-based and machine learning algorithms

Villages surveyed in the nationwide mapping were reclassified as endemic (1) or non-

endemic (0) for podoconiosis based on records of confirmed podoconiosis cases. This 

reported occurrence of podoconiosis in the surveyed villages and the selected environmental 

factors described above were used to model the distribution of podoconiosis in relation 
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to the environmental variables using various algorithms that were developed previously 

to predict the distribution of species across geographical spaces (e.g. for animal or plant 

conservation studies). We used seven types of algorithms, of which three were linear 

regression based algorithms and four were machine learning algorithms, available within 

the BIOMOD (BIOdiversity MODelling) framework, an established analytical framework 

developed to model species distribution.30, 31 These algorithms were generalized linear 

models (GLMs), generalized additive models, generalized boosted regression trees models 

(BRTs), artificial neural networks, multiple adaptive regression splines, maximum entropy 

(MaxEnt) and random forest (RF). All the algorithms except the BRTs were run using the 

parameters set by default in the biomod2 R package.30 For the BRT algorithm, the learning 

rate (lr) and tree complexity (tc) were set, enabling the model to account for up to four 

potential interactions and slowing it down enough (lr=0.005) to get the model converged 

without overfitting the data. This tuning was undertaken using the gbm package in R version 

3.6.3. Different combinations (technically known as ensembles) of the algorithms were used 

to explore which model gave the best fit to the data.

All these models were intended to discriminate the suitability of the environment for the 

presence of podoconiosis (i.e. environmental suitability). For this, they needed to be trained 

with presence and absence records. In addition to the recorded presences and absences, 

we generated a set of pseudoabsence points representing areas presumably unsuitable 

for podoconiosis. The use of pseudoabsence points to represent areas presumed to be 

unsuitable for a species is a well-established approach in species distribution modelling.32, 33 

We implemented pseudoabsence selection using the ‘surface range envelope’ approach 

to define the area of assumed unsuitability. The envelope is estimated through a presence-

only suitability model34 that identifies the range of locations at which the values of the 

chosen environmental covariates are within a specified range (here between the 5th and 

95th percentiles) of the covariate values at the occurrence locations.30 Five sets of 500 

pseudoabsence samples were randomly extracted from outside this envelope. Every set of 

pseudoabsence was pulled together with the presence and absence records and used with 

each algorithm to construct a single model. Models (50 models per algorithm totalling 350 

ensembles) were calibrated using an 80% random sample of the initial data and evaluated 

against the remaining 20% of data using the area under the curve (AUC) of the receiver 

operating characteristics (ROC) curve, the true skill statistic (TSS)35 and the proportion 

correctly classified (PCC). The evaluation statistics (AUC and TSS) were used to select the 

models to be assembled based on the matching between predictions and observations. Here, 

models with an AUC <0.8 were disregarded when assembling the final model.

The final ensemble model was obtained by estimating the weighted mean of probabilities 

across the selected models per grid cell. This algorithm returned the predicted mean 

weighted by the selected evaluation method scores, in our case the AUC statistic score. 

The range of uncertainties was also calculated by estimating the uncertainty intervals around 

the mean of probabilities across the ensemble per grid cell. The resulting predictive map 

quantified the environmental suitability for podoconiosis. In order to convert this continuous 

metric into a binary map outlining the distribution limits, a threshold value of suitability was 

determined, above which occurrence of podoconiosis was assumed to be possible. The ROC 
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curve determined the threshold value that represents a better trade-off between sensitivity, 

specificity and PCC.

In addition, partial dependence functions were performed separately for BRT-based 

models to visualise dependencies between the probability of podoconiosis occurrence and 

covariates. The partial dependence function shows the marginal effect of each covariate on 

the response after averaging the effects of all other covariates.

Geostatistical modelling to estimate disease burden

Village-level prevalence data and resulting environmental suitability values were then 

used within a geostatistical framework. We developed a geostatistical model to predict 

podoconiosis prevalence in areas where the occurrence of podoconiosis was predicted, using 

the environmental modelling results, at the village level across Kenya. We let podoconiosis 

risk depend on the predicted environmental suitability value obtained in the previous 

step. We included spatial random effects to account for spatial variation in podoconiosis 

prevalence between villages that is not explained by the explanatory variable. We validated 

the model using a variogram-based procedure that tests the compatibility of the adopted 

spatial structure with the data. More details are provided in the appendix. The analysis was 

carried out using the PrevMap R package,36 which implements parameter estimation and 

spatial prediction of geostatistical models. This model was applied to produce continuous 

predictions of prevalence of podoconiosis among adults (≥ 15 y of age) at 1-km2 spatial 

resolution and probability maps of exceeding a 1% prevalence threshold, which was used to 

define podoconiosis endemicity. We checked the validity of the assumed covariance model 

for the spatial correlation using the Monte Carlo algorithm and empirical semi-variogram as 

described in the supplemental file. Additionally, maps of the number of standard errors from 

the posterior mean prevalence of podoconiosis and number of cases were generated for each 

1 km × 1 km grid location.

Gridded maps of both population density and age structure were obtained from the 

WorldPop project.37, 38 We used these gridded surfaces of population estimates to compute 

the potential affected adult population (≥ 15 y of age). An output raster dataset computing 

the estimated number of podoconiosis cases per grid cell was obtained by multiplying the 1-

km2 raster dataset of predictive prevalence with the corresponding adult population density 

surface. The same procedure was used to estimate the uncertainty range of the affected 

population using the gridded surfaces of the 95% uncertainty interval (UI) for predicted 

prevalence. These surfaces were then used to extract the aggregate number of people with 

podoconiosis and the uncertainty range by administrative area (subcounties and counties). In 

brief, the 95% UI was calculated based on the uncertainty in environmental suitability, by 

summarising the 50 predictions by mean and 95% credible intervals.

Results

Main outcomes of the survey

In 2019, a national survey was conducted in Kenya in 48 villages in 24 subcounties 

across 15 counties covering the Western, Nyanza, Eastern, North Eastern, Rift Valley and 
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Coast regions of Kenya. In each village, an average of 43 households (range 12–120) and 

129 participants (range 44–311) were surveyed. Overall, data were collected from 2024 

households and 6228 participants. Overall, 16/6228 (0.3% [95% confidence interval 0.1 to 

0.5]) of the participants were diagnosed with podoconiosis. Analysis by county indicated 

that podoconiosis cases were prevalent in six counties: Siaya, Meru, Busia, Makueni, 

Marsabit and Tana River. Accordingly, analysis of prevalence by subcounty revealed that 

podoconiosis cases were prevalent in eight subcounties. Of the 48 surveyed villages, 10 

reported at least one case of podoco- niosis (range one to four) (Figure 1).

Factors associated with podoconiosis occurrence

Figures in the appendix show the marginal effect of each covariate on the probability of 

podoconiosis occurrence, while the relative contribution of each predictor variable on the 

outcome (podoconiosis prevalence) is summarised in the supplementary file (Figure 4S). 

The covariate contribution was estimated separately for the BRT and RF models. Of the 

selected seven covariates, three variables (iron content, probability of having an orthent-type 

soil and mean temperature of the wettest quarter) appeared to be the major contributors to 

both the BRT and RF models. When the extractable iron content exceeded 100 mg/kg, the 

probability of podoconiosis occurrence increased. The probability of having an orthent-type 

soil was negatively associated with the probability of podoconiosis occurrence. There was 

a higher risk of podoconiosis occurrence when the mean temperature during the wettest 

quarter was 20°C–25°C. The presence of podoconiosis became increasing more likely the 

closer the land was to water, and it was particularly high in areas with steep slopes.

Environmental limits of podoconiosis in Kenya

In total, 4.2% of the landmass of Kenya was found to be environmentally suitable for 

the occurrence of podoconiosis. Most of the land mass suitable for the occurrence of 

podoconiosis was situated in the Coastal, Eastern and Nyanza regions (Table 1, Figure 

2). A total of 2.2 million people live in an environment suitable for the occurrence of 

podoconiosis, the majority of which were from the Coastal, Eastern, Nyanza and Western 

regions.

Validation statistics

Validation statistics indicated an excellent predictive performance of all the algorithms (see 

the Appendix). However, the BRT, MaxEnt and GLM performed better than the other 

models, with AUC scores of 0.83 (95% UI 0.75 to 0.94), 0.84 (95% UI 0.82 to 0.92) and 

0.82 (95% UI 0.71 to 0.96), respectively. An environmental suitability threshold of 0.602 

provided the best discrimination between presence and absence records, with a sensitivity 

of 100%, specificity of 98.53% and AUC score of 0.996. This threshold value was used 

to classify the environmental suitability map into a binary map of the environmental limits 

of occurrence, which is included in the Appendix. The variogram fitted on the residuals 

of the modelled prevalence leads us to conclude that the data were compatible with the 

assumptions of an exponential correlation function and that the underlying spatial structure 

was accounted for by the spatial fixed and random effects (see Appendix).

Deribe et al. Page 7

Trans R Soc Trop Med Hyg. Author manuscript; available in PMC 2023 February 02.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Predicted prevalence and estimation of podoconiosis burden

The prevalence of podoconiosis was predicted to be variable in four regions (Coastal, 

Eastern, Nyanza and Western) (Figure 3). In the remaining regions, the distribution of 

podoconiosis was predicted to be focal and of low prevalence. Podoconiosis cases were 

prevalent in pockets of villages in the western and central parts of Kenya. Nationally, we 

estimated 9344 people (95% UI 4222 to 17 962) to be living with podoconiosis in 2020 

in Kenya (Table 1). Three regions (Eastern, Nyanza and Western) contributed to >90% of 

the absolute number of cases. The greatest proportion (54%) of people with podoconiosis 

resided in the Western region, surrounding Lave Victoria in the Kisumu area. At least one 

case of podoconiosis was predicted in 33 of the 47 counties in Kenya. Eleven counties were 

predicted to have > 100 cases of podoconiosis, while only six had > 500 predicted cases 

(Figure 4 and Appendix). We also estimated the continuous probability of exceeding 1% 

podoconiosis prevalence (the threshold considered for intervention) across the endemic areas 

(Figure 5). Most areas showed a low probability of exceeding 1%, and only a few restricted 

areas of the Coastal and Western regions potentially exceeded that threshold.

Discussion

This secondary analysis aimed to determine the environmental limits to the distribution of 

podoconiosis and estimate its burden in Kenya to provide evidence to inform the Ministry 

of Health and WHO action plans for the prevention, management and elimination of 

podoconiosis.1 Several regions in Kenya were found to have environments suitable for the 

development of podoconiosis. The number of cases in these regions ranged from 25 to 

5052. The environmental extent, population at risk and number of cases of podoconiosis 

in the country is small compared with other endemic countries, making the elimination 

of podoconiosis feasible with concerted effort to expand prevention and case management 

interventions.

The predicted number of cases of podoconiosis in Kenya (9344) was lower than what was 

estimated in Cameroon (41556)12 and Ethiopia (1.56 million)11 but higher than the estimate 

in Rwanda (6429).13 In addition, the areas suitable for podoconiosis were geographically 

restricted in Kenya (i.e. 4.2% of the total landmass of Kenya) compared with Ethiopia 

(24%).16 The burden of podoconiosis coupled with almost universal shoe wearing at an 

early age implies that with little effort to scale up the prevention and management of 

podoconiosis, the country is poised to eliminate podoconiosis.14 Increased urbanization, 

improved access to water and infrastructure development, including improved housing and 

road construction, will pay dividends in reducing the burden of podoconiosis and ultimately 

its elimination.

The prevalence and burden of podoconiosis in Kenya is geographically variable. There 

was no risk or cases predicted in the Nairobi region. This agrees with this region’s better 

socio-economic and infrastructure development compared with other regions. A high burden 

is estimated in the Eastern, Nyanza and Western regions. The Eastern region is a lowland 

area with a lot of mining exploration and sand harvesting, most often done when people 

work barefooted. The Nyanza and Western regions are largely highlands and mountainous, 

they receive relatively high amounts of rainfall39, 40 and the soil types in these areas are 
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largely volcanic, which are thought to contain irritant minerals that can trigger inflammatory 

processes.41, 42 Interventions targeted towards podoconiosis should prioritize these regions. 

The number of podoconiosis cases per county is small in most counties. Only 6 counties 

had > 500 cases and only 11 counties had > 100 cases. This implies that the morbidity 

management of podoconiosis can easily be integrated at dispensaries, health centres and 

subcounty hospitals as part of routine health services without the need to set up a stand-

alone podoconiosis control program.43 More than 60% of the cases were predicted in 

three counties (Kakamega, Siaya and Busia). Prioritising these high-burden counties would 

help significantly reduce the burden of podoconiosis and advance the national goal of 

elimination.

Although at a low prevalence, podoconiosis is documented in Kenya’s Coastal region. 

Previous studies documented that the region is endemic for LF.44, 45 This implies that 

the region is where podoconiosis and LF overlap geographically, as described elsewhere.4 

Therefore, health workers in the region should be trained to have a high index of suspicion 

for lymphoedema due to these two diseases. Even if the morbidity management is similar 

for the two diseases, there is a need to differentiate the cause of lymphoedema to tailor 

preventive public health education and social mobilization strategies based on the aetiology 

of lymphoedema in the region.

Our modelling approach is not without limitations. First, the number of data points 

used in the analysis is minimal (i.e. 48 villages). Nonetheless, the data points were 

geographically distributed across Kenya. We believe the data points captured the different 

geographic, climatic, spatial variability and environmental characteristics to accurately 

define the geographical limits of podoconiosis in Kenya. Second, an ongoing challenge 

for podoconiosis modelling is the absence of covariates at the required spatial scale.4, 12, 13 

This includes access to shoes and shoe-wearing practices. Host genetic factors are also 

determinants of susceptibility to podoconiosis, but the mechanisms are currently poorly 

understood beyond the clear association with class II HLA gene variation. HLA genes are 

highly polymorphic and the frequencies of the different gene variants vary considerably 

between populations. Therefore it is impossible to extrapolate findings from other endemic 

populations to Kenyan populations, so this information could not be included in our 

modelling work. Third, limitations exist in the survey data that were used to construct 

the models. Data quality issues such as sampling bias may have arisen when remote areas 

were left out due to inaccessibility. In addition, underestimation of podoconiosis cases might 

have resulted from lack of mobility and associated stigma.14 Looking to the future, as 

additional covariates and prevalence data continue to be collected, it will be important to 

extend this modelling framework to include shoe-wearing practices, the poverty index and 

genetic susceptibility to podoconiosis. This will help to include individual behaviours data in 

addition to climatic and environmental data in the models.

Our analysis provided important insights into the geographical distribution, environmental 

limits and burden of podoconiosis in Kenya. Such information is critical for tackling the 

disease, designing preventive interventions and monitoring progress. We identified the 

high-risk areas and high-burden counties where the focus of prevention and morbidity 

management interventions should be. Such information helps the Ministry of Health 
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determine where to prioritize resources and efforts to bring about high impact and value 

for the money at an early intervention stage.

In conclusion, our analysis has identified restricted geographical and environmental 

suitability for podoconiosis in Kenya. In addition, the number of estimated cases in 

the country compared with other countries is low. Most of the cases were found in 

three counties: Kakamega, Siaya and Busia. Therefore, an approach targeting these three 

high-burden counties would be an efficient way of planning podoconiosis prevention and 

treatment interventions. The findings also suggest that the Kenyan Ministry of Health 

should plan and roll out a podoconiosis response, including morbidity management, 

footwear use at an early age and foot hygiene practices. The rollout of interventions 

can be achieved by integrating these interventions and services within the national health 

structure, focusing on dispensaries, health centres and subcounty hospitals. There is a need 

for inclusion of podoconiosis in the community-based surveillance system. Intensified and 

tailored behavioural change communication and social transformation is required to address 

the preventable root causes of podoconiosis (barefoot and poor foot hygiene practices), 

which will advance the national goal and accelerate the progress towards a world without 

podoconiosis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Distribution of surveyed villages and number of cases of podoconiosis recorded.
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Figure 2. 
Ensemble of predicted environmental suitability models for podoconiosis and corresponding 

uncertainty of prediction. Uncertainty was calculated as the range of the 95% UI in predicted 

probability of occurrence for each pixel and rescaling to a 0–1 scale.
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Figure 3. Predicted podoconiosis prevalence maps of Cameroon.
(A) Mean predicted prevalence and (B) lower and (C) upper 95% UI bounds. Areas 

considered environmentally unsuitable for the occurrence of podoconiosis as predicted by 

the environmental model have been excluded.
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Figure 4. County-level predicted prevalence of podoconiosis.
(A) Mean predicated prevalence of podoconiosis and (B) estimated number of people with 

podoconiosis.
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Figure 5. Map of probability of exceeding 1% podoconiosis prevalence in Kenya.
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Table 1
Estimation of podoconiosis cases by regions in Kenya

Estimated podoconiosis cases

95% CI

Province Predicted suitable area (sq. km) Population living in suitable areas n Lower bound Upper bound

Central 387 38 805 25 11 49

Coast 8817 270 203 816 353 1612

Eastern 7003 468 451 1112 495 2160

Nairobi – – – – –

Northeastern 2185 2539 8 3 16

Nyanza 2153 510 888 2302 1061 4373

Rift Valley 1211 36 090 29 14 56

Western 2649 912 192 5052 2285 9696

Total 24 405 2 239 168 9344 4222 17 962
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