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Abstract

For over 300 million years, insects have relied on symbiotic microbes for nutrition and defence. 

However, it is unclear whether specific ecological conditions have repeatedly favoured the 

evolution of symbioses, and how this has influenced insect diversification. Here, using data 

on 1,850 microbe–insect symbioses across 402 insect families, we found that symbionts have 

allowed insects to specialize on a range of nutrient-imbalanced diets, including phloem, blood 

and wood. Across diets, the only limiting nutrient consistently associated with the evolution of 
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obligate symbiosis was B vitamins. The shift to new diets, facilitated by symbionts, had mixed 

consequences for insect diversification. In some cases, such as herbivory, it resulted in spectacular 

species proliferation. In other niches, such as strict blood feeding, diversification has been severely 

constrained. Symbioses therefore appear to solve widespread nutrient deficiencies for insects, but 

the consequences for insect diversification depend on the feeding niche that is invaded.

Across the tree of life, microbial symbionts have enabled organisms to harness new forms 

of energy, access unobtainable nutrients and out-source critical functions such as defence1–4. 

So valuable are symbiotic partnerships that they have repeatedly led to organisms becoming 

obligately dependent on each other for survival5. Such interdependence between hosts 

and symbionts has led to the evolution of new levels of organismal complexity that have 

ultimately shaped the diversity of life on Earth3,6.

The essential metabolic services provided by symbionts have enabled hosts to expand into 

previously uninhabitable environments1,4,7. For example, sulfur-oxidizing bacteria enable 

giant marine tubeworms to live in deep-sea vents, root-associated fungi helped plants 

colonize land and nutrient-supplementing symbionts have allowed insects to live solely on 

the imbalanced diets of plant sap and vertebrate blood2,8,9. However, it is unclear whether 

there are unifying factors that guide how and why symbiotic relationships evolve.

Insects are an excellent system to study the evolution of obligate symbiosis. Multiple 

insect families have acquired microbes to perform a range of functions, including defence 

and nutrition10. Defensive symbionts protect their hosts from attack by natural enemies11, 

whereas nutritional symbioses allow insects to feed on specialized resources that lack 

essential nutrients, such as plant sap, blood (haematophagy) and wood (xylophagy)2. 

It is therefore widely accepted that symbiotic partnerships have opened new ecological 

niches and helped the incredible diversification of insects7. However, previous work has 

primarily focused on the functional role and impact of obligate symbiosis within single 

groups of insects. Consequently, whether we can generalize about the ecological causes and 

consequences of obligate symbiosis across different groups of insects is unknown. Are there 

consistent nutrient limitations that have repeatedly selected for the evolution of symbioses 

across different feeding niches? Do symbioses influence diversification in a consistent or 

niche-dependent way?

In this article, we address these questions by examining the macro-evolutionary patterns of 

obligate symbiosis across 1,850 microbe-insect combinations from 402 insect families. Data 

were collated across bacteria, fungi and protist symbionts with nutritional and defensive 

functions (Supplementary Tables 1–4). First, we estimated how often insect lineages 

within different feeding niches have evolved obligate symbiosis, where the host cannot 

survive without symbionts. We are interested in cases where hosts are obligately or highly 

dependent (effectively obligately) on their symbionts. Obligate dependence is ideally proven 

experimentally, but only a limited number of such studies exist5. To allow comparison across 

a wider range of species, we used two criteria to establish putative obligate dependence, 

hereafter referred to as obligate dependence, both of which had to be fulfilled: (1) the 

symbiont is universally present in reproductive females; and (2) the insect possesses 

morphological structures that are pre-dominantly associated with symbionts being required 
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for survival (for example, bacteriocytes10), or where information on symbiont housing 

organs was lacking, data on the impact of symbiont removal and patterns of host–symbiont 

co-speciation were used to determine obligate dependence (‘Insect and symbiont data’ in 

Methods). Known parasitic symbionts, such as reproductive manipulators (for example, 

Spiroplasma, Cardinium and Wolbachia), that have not evolved beneficial functions were 

excluded from our dataset.

Second, we examined the composition of insect diets to determine whether specific nutrient 

deficiencies have consistently led to the evolution of obligate symbiosis across different 

feeding niches. The nutritional composition of diets was determined by collating literature 

on the food sources used by adults and juveniles (nfood sources = 362) and extracting 

information on carbohydrates, fats, proteins, essential amino acids, non-essential amino 

acids and vitamins A, B, C and E from as many example foods as possible (range 1–24) 

from nutritional databases (‘Nutrient data’ in Methods, Supplementary Table 4 and Extended 

Data Fig. 1). Data on other vitamins were collected but had >30% missing data and so 

were excluded from analyses (‘Nutrient data’ in Methods). We differentiate between insect 

families that specialize on single plant-based resources (phloem, xylem or wood) from 

families that exploit various plant parts (phytophagy, referred to here as herbivores), as there 

were large differences in the nutrients of these diets (Supplementary Tables 1 and 4). Third, 

we tested if the acquisition of obligate symbionts has increased or decreased host species 

richness after radiating into different feeding niches. We circumvent the problem of poorly 

resolved species level phylogenies by reconstructing the evolutionary history of obligate 

symbioses at the family level.

Evolutionary origins of obligate symbiosis

We found at least 16 independent origins of obligate symbiosis spread across 89 insect 

families (Bayesian phylogenetic mixed model (BPMM): Fig. 1 and Supplementary Table 

5). These origins were estimated on the time-calibrated phylogeny12 to date back as far as 

336 million years. Within insect families, there were also several more recent transitions 

to obligate symbiosis. For example, 15 families were found to contain species with and 

without obligate symbionts (Fig. 1 and Supplementary Tables 1 and 2) but without species 

phylogenies the exact number of origins cannot be resolved. Our analyses therefore focus on 

the deeper, family-level origins of symbiosis, while accounting for variation within families 

by modelling the percentage of species within families with obligate symbionts (‘Specific 

analyses’ in Methods).

Reconstructing the ancestral feeding niches of insect families showed that obligate 

symbioses evolved from omnivorous, herbivorous and predatory ancestors (respective 

percentage of origins estimated using stochastic character mapping (SCM): 75%, 8% and 

17%; Fig. 1 and Supplementary Table 5). Following the acquisition of obligate symbionts, 

60% of lineages switched to a single food source (phloem 42%, blood 12%, xylem 

6%; Fig. 1 and Supplementary Table 5). This pattern of food utilization explains the 

current distribution of obligate symbiosis remarkably well, where over 90% of insect 

species feeding on blood, phloem, xylem and wood have obligate symbionts (Fig. 1 and 

Supplementary Tables 1, 2 and 6). Conversely, there are no known cases of obligate 
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symbioses in insect families that are predominantly predators or fungivores (Fig. 1 and 

Supplementary Tables 1, 2 and 6).

Only five insect families are known to have endosymbionts with defensive functions. This 

is probably influenced by sampling effort, as defensive symbionts residing within insect 

hosts have only been discovered relatively recently11,13, in taxa such as aphids, drosophilids, 

psyllids, crabronids (beewolves) and beetles (reviewed in ref. 14). There are well-known 

examples of defensive mutualisms that reside outside of the host (ectosymbionts), 

such as the antimicrobial producing actinobacteria of fungus-farming ants15, but these 

were excluded as our analyses focus on endosymbiosis. Out of the 13 endosymbiont 

species shown to provide insects with protective services, nearly all maintain facultative 

relationships with their hosts. There is only one exception in our database, the Asian citrus 

psyllid, Diaphorina citri, which has evolved obligate dependence on a defensive symbiont, 

which is housed in bacteriocytes alongside a putative nutrient provisioning symbiont16.

Several defensive symbioses show evidence of strong vertical inheritance and are associated 

with hosts at high frequencies, such as those found in lagriid beetles17, beewolves18 and 

fungus-growing ants19, suggesting they may be near obligate in nature. However, the 

absence of the symbiont in some individuals18,20, existence of multiple symbiont strains 

within the same host individual20 and evidence of frequent acquisitions from environmental 

sources19,21 demonstrates that most defensive symbioses have not reached the high degree 

of mutual dependence observed in obligate nutritional associations. While more work is 

clearly needed, these data support the hypothesis that selection for protection against 

natural enemies is too inconsistent across generations to favour the evolution of obligate 

dependence5,11.

Nutrient deficiencies and obligate symbiosis

Our results show that the evolution of obligate symbioses in insects is associated with 

transitions to specialized feeding niches (Fig. 1). Studies have shown that symbionts have 

enabled these transitions by synthesizing a range of essential nutrients missing in their hosts’ 

diet including vitamins, carotenoids and amino acids, as well as digestive enzymes that aid 

in nutrient recycling10,22–24. However, it is not clear if certain key nutrients are consistently 

deficient in the diets of insects with obligate symbionts across different feeding niches.

We found that only one dietary component was significantly correlated with the presence 

of obligate symbionts across all feeding niches: low levels of B vitamins (Fig. 2; BPMM: 

phylogenetic correlation −0.32, credible interval (CI) −0.54 to −0.09, proportion of iterations 

above or below a test value correcting for the finite sample size of posterior samples 

(pMCMC) = 0.006; Supplementary Table 7). This pattern held across hosts with diets that 

are highly variable in carbohydrates, proteins, fats, vitamins and amino acids (Fig. 2 and 

Supplementary Table 7). Examining types of B vitamins further showed that specifically B5 

and B9 are phylogenetically negatively correlated with the evolution of obligate symbiosis 

(Fig. 2 and Supplementary Table 8). Different types of B vitamins were, however, highly 

correlated, indicating that sets of B vitamins are often concurrently absent from the diets 

of some insects (Extended Data Fig. 2). For example, vitamins B1 and B6 were correlated 
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with B9 (Pearson’s correlation coefficients r = 0.89 and 0.96) and vitamins B2 and B3 were 

correlated with B5 (r = 0.92 and 0.64; data on vitamins B7 and B12 had >30% missing data 

and so were not analysed).

No other macro- or micronutrients were significantly correlated with obligate symbiosis 

across insect families (Fig. 2 and Supplementary Table 7). This is not to say that obligate 

symbionts are not important for provisioning other nutrients, but rather these nutrients are 

restricted to specific niches. For example, essential amino acids are deficient in certain 

feeding niches associated with obligate symbiosis, such as phloem (BPMM: phloem versus 

background levels β = −1.11, CI = −1.53 to −0.67, pMCMC = 0.001), but are enriched in 

other niches with symbionts, such as blood (BPMM: blood versus background levels β = 

3.25, CI = 2.77 to 3.86, pMCMC = 0.001; Supplementary Table 9). Note that all amino acids 

concentrations were highly correlated across insect diets (Extended Data Fig. 3).

Our results are consistent with detailed studies that have demonstrated the fitness 

consequences of providing B vitamins to specific insect species. For example, the fitness 

of tsetse flies depends on B9 and B6 vitamins provided by Wigglesworthia bacteria25,26, and 

Buchnera supplements aphids with B5 and B2 vitamins, with B5 having a particularly strong 

effect on host survival27. Similarly, the Baumania symbiont of xylem-feeding sharpshooters 

has retained the capacity to synthesize six B vitamins (all but B3 and B12), and the 

coordinated host–symbiont biosynthesis of B7 and B5 in whiteflies has been shown to be 

critical for host fitness28,29. Dietary studies have also confirmed that mutualistic Wolbachia 
provide essential B vitamins for Cimex bed bugs30; and metabolic homeostasis is restored 

in symbiont-free Dysdercus cotton stainers when B vitamins are supplemented, or hosts are 

re-infected with their actinobacterial symbionts31. In addition, genome studies have shown 

that the metabolic pathways to biosynthesize B vitamins have been retained in the genomes 

of symbionts from insects that occupy diverse feeding niches (for example, blood32, plant 

sap33,34 and seeds35), suggesting their widespread importance in maintaining symbioses. 

A useful future step would be to assess whether B-vitamin pathways are more highly 

conserved in symbiont genomes, compared with pathways that encode other host-beneficial 

factors.

Evolutionary transitions to nutrient-deficient diets

Our results suggest that B-vitamin deficiencies are widespread and important for the 

evolution of obligate symbiosis in insects. There are, however, two evolutionary scenarios 

for why such transitions occur. One possibility is that insects feeding on diets low in vitamin 

B recruited symbionts to supply B vitamins. The alternative is that insects first acquired 

obligate symbionts that could synthesize B vitamins, possibly for some other benefit, which 

then enabled them to invade feeding niches where B vitamins were scarce. The question is 

therefore whether the evolution of obligate symbioses were triggered by low B vitamins in 

diets or whether obligate symbioses facilitated specialization on these diets.

We tested these competing hypotheses by estimating the amount of B5 and B9 vitamins in 

ancestral diets before, and following, transitions to obligate symbiosis. A high phylogenetic 

signal of B vitamins across insects allowed us to relatively accurately estimate ancestral 
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values (Supplementary Table 8 and Extended Data Fig. 4). We found little evidence that 

levels of B5 and B9 vitamins were reduced in the diets of insects before they acquired 

obligate symbionts (Fig. 3 and Supplementary Tables 10 and 11). Instead, we found that 

hosts that recruited obligate symbionts subsequently evolved to specialize on diets with 

low levels of B5 and B9 vitamins (Fig. 3 and Supplementary Tables 10 and 11). Once 

obligate symbioses evolved, shifts to diets deficient in B vitamins were much more frequent, 

particularly for B5, where transition rates to low levels of B5 were 30 times higher than for 

lineages without obligate symbionts (Supplementary Table 11).

The importance of obligate symbionts in supplying B vitamins was further supported by the 

loss of obligate symbioses when insects switched to diets with elevated B-vitamin levels 

(Fig. 3 and Supplementary Tables 10 and 11). Insect lineages with above-average levels of 

B5 and B9 vitamins in their diets were more likely to lose their obligate symbionts (Fig. 

3a,b and Supplementary Table 11). Our results match with observations from specific taxa, 

where obligate symbiont losses have been associated with dietary changes in their insect 

hosts. In the mealybug genus, Hippeococcus, symbiont losses are thought to be associated 

with nutrient provisioning by Dolichoderus ants, and Typhlocybides plant hoppers lost their 

ancestrally acquired obligate symbionts when switching from plant sap to more nutrient-rich 

parenchyma36.

Symbiont specialization in nutrient provisioning

Given the importance of B-vitamin provisioning by symbionts in insects, we examined 

whether specific lineages of symbiotic bacteria specialize in providing B vitamins to hosts. 

Have hosts relied on a restricted set of symbiotic partners, or have a variety of symbionts 

converged to provide B vitamins? To address this question, we constructed a phylogeny for 

symbionts to quantify the amount of variation in dietary B vitamins explained by symbiont 

ancestry and their co-evolutionary relationships with hosts.

We found that hosts have evolved dependence on a broad range of microbes (Supplementary 

Tables 12 and 13). Less than 1% of variation in B5 and B9 vitamins in host diets was 

explained by symbiont phylogenetic history and the co-evolutionary relationships between 

symbionts and hosts (BPMM: symbiont phylogeny (% variance) B5 0.08, CI = 0.02 to 

0.15; B9 0.1, CI = 0.03 to 0.2; co-evolutionary interaction (% variance) B5 0.06 CI = 

0.02 to 0.12; B9 0.09 CI = 0.03 to 0.16; Supplementary Tables 12 and 13). Instead, 

divergent symbiotic lineages appear to have become convergently associated with insects 

feeding on low-vitamin-B diets (Extended Data Fig. 5). Following the establishment of 

obligate symbioses, hosts and symbionts tend to co-evolve, as related insect families were 

significantly more likely to be partnered with phylogenetically similar symbionts (BPMM: 

co-evolutionary interaction (% variance) 22.65, CI = 10.47 to 37.35; Parafit: P = 0.05; 

Supplementary Tables 14 and 15). These results match with research showing that diverse 

symbiotic bacteria have retained the genes for synthesizing B vitamins37, and those insects 

whose bacteria lose the capacity to provide B vitamins recruit new symbiont lineages to 

compensate for the loss38.
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Obligate symbiosis and insect diversification

Finally, we tested if obligate symbioses have influenced patterns of diversification across 

insects. The current paradigm, based on observations from specific lineages, such as 

sap-feeding Hemipterans, is that the acquisition of symbionts opens up new niches and 

increases host species proliferation39,40. Host–symbiont co-evolution can also generate 

incompatibilities between populations that may increase speciation rates4. Dependence on 

symbionts may, however, ‘trap’ hosts in specific niches, leading to the opposite prediction 

that symbionts reduce diversification4. For example, hosts can be restricted to feeding on 

specific resources because of symbiont-assisted specialization41, or limited by the sensitivity 

of their obligate symbionts to environmental conditions, such as temperature42,43. Mutation 

accumulation can also degrade symbiont functioning, resulting in hosts being stranded with 

maladapted symbionts that may increase extinction risk44.

Although symbioses are thought to have facilitated adaptive radiations in specific insect 

lineages7,45, these competing hypotheses have not been systematically tested across insects, 

generating debate over the general role of symbiosis in insect diversification. We therefore 

analysed the relationship between obligate symbiosis and species richness in three ways: 

across all families, across families with and without obligate symbionts that have the same 

feeding niche, and between sister lineages.

Across all insects, we found that obligate symbiosis was associated with extreme highs 

and lows of species richness compared with background rates (Fig. 4a and Supplementary 

Tables 16 and 17). At the extreme high, herbivorous insect families with obligate symbionts 

had 12 times as many species compared with the average across families (Fig. 4a; BPMM: 

herbivores with obligate symbionts versus background species richness 2.75, CI = 0.97 to 

4.01, pMCMC = 0.001). At the other extreme, extraordinarily low species richness was 

associated with insect families feeding on blood, which had eight times fewer species than 

the average (Fig. 4a; BPMM: blood feeders with obligate symbionts versus background 

species richness −1.95, CI = −3.64 to −0.26, pMCMC = 0.01). This resulted in a 51-

fold difference in the number of species in herbivorous insect families with obligate 

symbionts versus those in blood-feeding niches. These estimates of species richness were 

after accounting for differences between holo- and hemi-metabolism, the age of insect 

families and insect phylogenetic history, all of which can affect the number of species in 

families12,46.

Obligate symbiosis promotes diversification within niches

Patterns of species richness across insects appear to be niche specific (Supplementary Table 

17). However, within feeding niches, symbionts may directly promote diversification if 

they allow species to exploit different resources. For example, in insect families feeding 

on more varied diets, such as generalist herbivores and omnivores, symbionts may enable 

resource partitioning between species, fuelling the speciation process. There were three 

feeding niches where families with and without obligate symbionts could be compared: 

herbivores, omnivores and wood feeders. If true, then families within these niches with 

obligate symbionts should have higher species richness than families without them.
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We found that herbivorous insect families with obligate symbionts had 15 times as many 

species as families without symbionts (Fig. 4a; BPMM: families with versus without 

obligate symbionts 3.47, CI = 1.57 to 4.79, pMCMC = 0.001; Supplementary Table 17). 

Omnivorous and wood feeding families of insects with obligate symbionts also had two to 

three times as many species as families that lacked symbionts, but these differences were not 

statistically significant (Fig. 4a; BPMM: omnivorous families with versus without obligate 

symbionts 0.17, CI = −1.08 to 1.34, pMCMC = 0.78; wood families with versus without 

obligate symbionts 0.13, CI = −2.78 to 3.71, pMCMC = 0.71; Supplementary Table 17).

In support of obligate symbiosis playing a role in promoting diversification at finer 

evolutionary scales, we found that among more closely related sister taxa, lineages with 

higher percentages of obligate symbionts (n = 13) were more specious (Fig. 4b; BPMM: 

percentage of species with obligate symbionts 7.43, CI = −0.03 to 12.79, pMCMC = 0.05; 

Supplementary Tables 18 and 19 and Extended Data Fig. 6). Our results are consistent with 

findings from specific taxonomic groups. For example, symbionts allowed Curculionidae 

weevils, now one of the most diverse families of insects, to feed and radiate exclusively 

on plants47,48. Similarly, the success of certain highly specious ant lineages has been 

facilitated by nutrient-provisioning symbionts that have allowed them to thrive on primarily 

plant-derived diets49.

Sensitivity analyses

We examined the robustness of our analyses to different methodological approaches. First, 

we examined the robustness of our estimates of obligate symbiosis and ancestral feeding 

niches to different analytical approaches (Supplementary Table 20 and ‘The number of 

origins of obligate symbiosis’ and ‘Estimating ancestral feeding niches’ in Methods). 

Second, we tested how inserting families (n = 23) that were not included in the published 

phylogeny12 influenced our results (Supplementary Table 21 and Extended Data Fig. 7). 

Third, we examined the robustness of our results to excluding non-bacterial symbionts 

and families that had multiple co-occurring obligate symbionts (Supplementary Tables 22–

24 and Extended Data Fig. 8). Fourth, we repeated our analyses using a second dataset 

restricted to species where dependence on symbionts had been directly studied, rather than 

inferred from microscopy studies on the presence of bacteriocytes within certain insect 

orders and superfamilies (Supplementary Tables 25–27 and Extended Data Fig. 9). Fifth, 

15 out of the 402 insect families had species with and without obligate symbionts. This 

was accounted for by modelling the percentage of species with obligate symbionts within 

families. However, in the transition rate analyses, families had to be classified as having 

obligate symbionts (>50% of species with obligate symbionts) or not (<50% of species with 

obligate symbionts). We tested the sensitivity of these analyses to this binary classification 

by re-running models including only families where 100% of species had, or did not have, 

obligate symbionts (Supplementary Table 28). All of these different analyses provided 

qualitatively and quantitatively similar conclusions (‘Sensitivity analyses’ in Methods).

Cornwallis et al. Page 8

Nat Ecol Evol. Author manuscript; available in PMC 2024 April 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Discussion

Genomic and experimental studies have provided important insights into the metabolic 

function of obligate symbioses for specific insects. This previous work has focused 

on well-studied groups—mostly plant-feeding hemipterans containing symbionts with 

highly reduced genomes10,24,50,51, but also herbivorous beetles23,47,52, omnivorous ants53, 

cockroaches54 and blood-feeding insects (flies55,56, bed bugs30 and lice57). Our approach 

complements this work by allowing tests of the importance of obligate symbioses in 

overcoming nutrient limitations at a much broader taxonomic scale, including lineages 

where symbioses have not been studied in-depth using detailed molecular methods. 

This enables contrasts to be made between insect lineages with and without symbionts, 

circumventing potential biases that arise from studying only positive associations.

Our analyses highlight that B-vitamin deficiencies are the primary nutrient limitation 

associated with obligate symbioses. While B vitamins are consistently important, this 

does not mean that other nutritional deficiencies are not important for specific clades. For 

example, certain ant and beetle lineages have evolved tyrosine-supplementing symbioses 

that are thought to help thicken their heavily sclerotized cuticles47,53,58. Specialized 

herbivores have evolved symbioses to solve a variety of problems, from including the 

production of digestive enzymes to breakdown of plant cell walls23 and the synthesis of 

specific amino acids missing from plant-based diets35. Similarly, transitions to feeding 

on plant phloem and xylem are well known to be associated with essential amino acid 

provisioning by bacteria in insects2,24,52. These feeding niches are, however, also deficient 

in B vitamins, a common feature of symbiont-associated diets, including those rich in 

amino acids, such as blood feeding. The widespread need for B-vitamin supplementation is 

also reflected in the genomes of symbionts that retain metabolic pathways to synthesize B 

vitamins across a diversity of host feeding niches32–35. Further insights into the consistent 

need for B-vitamin supplementation may be gained by extending such genomic analyses to 

compare the synthesis pathways of B vitamins with those of other nutrients, such as amino 

acids, in both symbionts and their insect hosts.

To conclude, it appears possible to make relatively broad inferences about the causes and 

consequences of obligate symbioses in insects. Vitamin B supplementation by microbial 

partners is widespread in insects and has helped insect hosts to exploit novel food resources. 

In some cases, such as herbivorous insects, the shift to feeding on new resources appears 

to have facilitated adaptive radiations, analogous to textbook examples such as Darwin’s 

finches59. In other cases, such as strict blood feeding, new niches seem to have severely 

constrained diversification. The intricate relationships between hosts and their nutritional 

symbionts therefore appear key to shaping patterns of global insect diversity.

Methods

Data collection

Insect and symbiont data. Literature searches—We compiled a database on insect–

microbe symbioses by: (1) searching published literature using the following key words 

[order name] OR [family name] AND ‘symbio’* using the search engines Web of Science 
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and Google scholar during 2015–2017 and again in 2020, (2) searching prominent reviews 

(for example, Ries60, Schneider61, Müller62, Buchner36, Douglas63, Abe et al.64, Bourtzis 

and Miller65–67, Baumann68 and Baumann et al.69) and (3) forward and backward searches 

from the resulting papers. A full list of the papers screened can be found in Supplementary 

Table 2.

The insect families included in the literature search were those listed in Bouchard et 

al.70, Davis et al.71 and Rainford et al.12, and those included in published phylogenies 

investigating insect biodiversity: Hedges et al.72, Misof et al.73 and Rainford et al.12. 

For symbiont detection, we considered only studies using methods capable of capturing 

phylogenetically diverse bacteria species (for example, deep-coverage sequencing, or 

cloning, using ‘universal’ 16S ribosomal RNA (rRNA) primers), or microscopy studies 

investigating whole insects for the presence of symbionts.

Specific clades of insects are known to carry the same obligate symbionts due to strict 

vertical transmission (Supplementary Table 2 ‘reference obligate criteria’). We therefore 

searched Genbank to recover all insect species that have been associated with specific 

vertically transmitted symbionts (identified taxonomically by symbiont genus name in 

most cases) to increase our coverage of host–symbiont associations (Supplementary Table 

3). Search results were checked manually to ensure host species belonged to the insect 

clade known to harbour the symbiont (Supplementary Table 3). In families that have 

species both with and without obligate symbionts, we considered only species directly 

studied for obligate symbiosis. Vertically transmitted symbionts were included only in 

analyses of host evolution (‘Specific analyses’ in Methods). In analyses of host–symbiont 

co-evolution we were interested in testing how host and symbiont phylogenetic history 

influence symbiont recruitment (‘Nutrient deficiencies and host–symbiont co-specialisation’ 

in Methods). Vertically transmitted symbionts were excluded as they inflate the signature 

of co-evolution, not because of symbiont recruitment, but because of inheritance from a 

common ancestor.

Data inclusion and exclusion—The aim of our paper was to investigate the evolution 

of beneficial obligate symbioses. We therefore excluded studies: (1) on parasitic symbionts, 

such as those that manipulate host reproduction (for example, Spiroplasma, Cardinium 
and Wolbachia) that have not evolved beneficial functions; (2) that failed to screen the 

entire insect (for example, performed only insect gut analyses); and (3) on symbionts with 

presumed beneficial functions, but that lacked data needed to assess our obligate criteria (see 

below). Fungal and protist symbionts were included where data on host dependency were 

available. Analyses of host–symbiont co-evolution were restricted to symbionts for which 

a phylogeny could be constructed (bacteria with 16S rRNA genetic data: for details, see 

‘Insect and symbiont phylogenies’ in Methods).

For each insect–microbe association we collected data on: the insect species; juvenile 

and adult insect diets; whether insects were holo-versus hemi-metabolous; the identity 

of symbionts; symbiont domain; whether symbionts were intra- or extracellular; whether 

symbionts were housed within specialized structures (for example, bacteriocytes); whether 
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symbionts are thought to have a defensive or nutritional function in nature; and whether 

insects were obligately dependent on symbionts (for assessment criteria, see below).

Criteria for assessing obligate symbiosis—We are interested in cases where hosts 

are obligately or highly dependent upon their symbionts (effectively obligate). Obligate 

dependence is usually proven experimentally, but only a limited number of such studies 

have been carried out5. Consequently, to allow comparison across a wider range of 

species, we used the following criteria as indicators of putative obligate dependence, 

both of which must be fulfilled: (1) Symbiont is universally present in reproductive 

females; and (2) symbionts are housed in a bacteriome (or mycetome) within bacteriocytes 

(specialized symbionthousing cells), or insect-symbiont phylogenies are concordant, or 

symbiont removal results in significant reduction in host fitness.

In well-studied systems, insects with bacteriocytes typically cannot survive without 

their symbionts under natural conditions, as observed in aphids74, coccids75, carpenter 

ants76, cockroaches77, anobiid beetles78, cerambycid beetles79, tsetse flies80 and lice81 

(for examples under other conditions, see refs. 75,82,83). In these cases, stable mutual 

dependence is evident from extreme partner fidelity, genetic uniformity of symbionts within 

a host species, and concordance of host and symbiont phylogeny as the microbe is faithfully 

maternally transmitted from a common ancestor (reviewed in refs. 10,84). Consequently, 

species where a single symbiont is not universally present in all reproductive females, 

or where specialized symbiont housing organs are lacking were classified as not having 

obligate symbionts. If symbionts were universally present, but cophylogenetic and/or host 

fitness data were unavailable the relationship was classified as unresolved and were not 

included in analyses.

Data on individual species were used to estimate the percentage of species in each family 

that have evolved dependency on symbionts, which is summarized in Supplementary Table 

1. Data on the insect species examined, their associated symbionts and the criteria to assess 

dependency are provided in Supplementary Table 2.

Feeding niche classification—The feeding niches of species were classified using 

information on their diets. Omnivores were defined as species that feed on both plant and 

animal matter, or those that scavenged on detritus. Due to large differences in the nutrient 

contents of different plant tissues, insect species that specialize on phloem, xylem and wood 

(xylophagy) were considered separately from species that exploit non-vascular/non-woody 

plant tissues (for example, leaves, flowers, fruits, seeds and/or root tips), which we refer to 

as generalist herbivores (also known as phytophagous).

The feeding niches of families were classified using the information on species feeding 

niches (Supplementary Table 1). Families were described as having omnivorous diets if 

they contained species that were omnivores/detritivores, or if single species within families 

utilized multiple food sources that combined plant, animal or fungal material. Families 

containing species that fed on multiple plant tissues were classified as generalist herbivores. 

Families were assigned to the feeding categories of haematophagy, phloem feeding, xylem 

feeding and predatory where most species in the family, if not all, feed exclusively on those 
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resources. Families assigned as xylophagous were those where most species fed on wood as 

their primary food source. In cases where species-specific diets were not available, we based 

diets on family-level feeding habits published in books and reviews listed in Supplementary 

Table 2.

Nutrient data—To estimate the nutrient composition of each insect family, we performed 

the following steps:

(1) The food types (for example, fruit and roots) utilized by adults and juveniles 

of all species in our obligate symbiosis dataset were collected from published 

literature (Supplementary Table 2). Literature was searched using the terms 

[species name] and [adult diet] or [juvenile diet] in Web of Science and Google 

Scholar. Where possible, we cross-validated diet assignments using multiple 

published studies (Supplementary Table 2).

(2) The nutrient composition of all food types that species were found to feed 

on (Nfood types = 362) was estimated by searching dietary databases for as 

many examples of those food types as possible (range per food type 1–24, 

total number of nutrient estimates 5,446; Supplementary Table 4). From dietary 

databases, we extracted information on the concentration of carbohydrate, fat, 

protein, essential amino acids (histidine, isoleucine, leucine, lysine, methionine, 

phenylalanine, threonine, tryptophan and valine), non-essential amino acids 

(arginine, cystine, glycine, glutamic acid, proline and tyrosine) and vitamins 

(A,B, C, D, E, K, choline and betaine). Nutrient contents were from a range 

of foods and are therefore an approximation of insect diets. Where possible, 

micronutrients were broken down into their subcomponents, for example, 

individual B vitamins. There were substantial missing data for vitamins C, D, 

K, choline and betaine (>30% of insect families missing data), which were 

excluded from analyses.

(3) For each food type, the median concentration of each nutrient across example 

foods was calculated. Median nutrient values were combined with information 

on insect diets to calculate a nutrient profile for adults and juveniles of 

each species (Extended Data Fig. 1). For omnivorous species, nutrients were 

calculated by averaging across all foods.

(4) Estimates of the nutrients in the diets of each species were calculated by taking 

the median across adults and juveniles.

(5) Estimates of the dietary nutrients for each family were calculated by taking the 

median across all species within families. In cases where species-specific diets 

were not available, we based diets on family-level feeding habits published in 

books and reviews listed in Supplementary Table 2.

Standardization of nutrient data—Reported data on nutrients (carbohydrates, fats, 

proteins, amino acids and vitamins) were converted to amount per gram. For some foods, 

however, this was wet weight and for others it was dry weight. We therefore standardized 

nutrient values to make them comparable across food types. Values were standardized 
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by dividing each nutrient by the mean weight of each food type (for details, see R 

script ‘DataConstruction.R’). The mean was used rather than the sum to avoid the non-

independence of percentages when analysing all nutrients together.

Diversification—Diversification is typically modelled using three different approaches 

when species level phylogenies are not available: (1) diversification rates are calculated 

using clade age and species richness information (also known as ‘age richness rate’); (2) raw 

estimates of species richness are used; and (3) species richness of sister taxa are compared. 

It has recently been shown that calculating diversification rates should be avoided when 

examining patterns of biodiversity85. We therefore examined patterns of diversification using 

species richness, including family age as an explanatory variable (‘Species richness and 

obligate symbiosis’ in Methods), and by testing differences in species richness between 

sister lineages. The ages of families were extracted from the time-calibrated Rainford 

phylogeny12. Data on the number of extant species in insect families (species richness) were 

taken from ref. 12. It is likely that species richness for all insect families is underestimated 

as new species are continually being described. Our analyses do not, however, rely on exact 

absolute numbers of species, but rather that estimates are representative of relative species 

richness across families, which has been argued as reasonable46. Variation in estimates of 

species richness, for example, due to differences in research effort, are also unlikely to 

correlate to the proportion of species with obligate symbionts, likely adding noise to our 

results rather than systematic bias.

Insect and symbiont phylogenies

Insects—Our analyses were conducted using the dated insect phylogeny published in 

ref. 12. The tree was constructed using maximum likelihood (RAxML) and dated with a 

relaxed molecular clock in MrBayes calibrated with 86 fossils12. A single consensus tree 

was published, and therefore our analyses do not account for uncertainty in tree topology 

or branch lengths. A useful next step will be to incorporate tree uncertainty into analyses, 

which can be done, for example, by integrating results over a sample of candidate trees. 

More in-depth details of topological uncertainties and dating methods are available in ref. 

12.

Families that lacked data on obligate symbioses were pruned from the tree. There were 23 

families for which there were data on obligate symbioses that were not included in ref. 12. 

We therefore added these families to the phylogeny at branches corresponding to published 

sister taxa (Supplementary Table 1) using the bind.tip function in the R package ‘phytools’86 

(for details, see R script ‘Rainford_adding_tips.R’). Added families were not included for 

diversification analyses due to uncertainty of the age of these families.

Symbionts—We estimated the phylogenetic relationships for bacterial symbionts for 

which genetic data were available. A ~1,500 bp region of the bacterial 16S rRNA gene 

downloaded from the SILVA RNA database was aligned with MUSCLE and edited in the 

alignment software Geneious 8.1.8 (https://www.geneious.com). We constructed a maximum 

likelihood phylogeny for the bacterial lineages using the on-line PhyML server87, and the 

best-fitting models of evolution were estimated using the Aikake information criterion. 
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The symbiont phylogeny was bootstrapped 100 times and rooted to Thermus thermophilus, 

which is basal to all the bacterial lineages presented in this study.

General statistical methods

Data were analysed using Bayesian phylogenetic mixed models with single (BPMM) and 

multiple response variables (MR-BPMM), SCM and transition rate models with Markov 

chain Monte Carlo (MCMC) estimation. In this section we provide general details of 

modelling approaches, and in ‘Specific analyses’ in Methods, we outline the details of the 

analyses conducted. All analyses were performed in R 4.1.3 (ref. 88), apart from transition 

rate models that were conducted in BayesTraits V4 (ref. 89). Continuous response and 

explanatory variables were Z-transformed before analyses (mean 0, standard deviation 1).

BPMMs—Model construction, parameter estimates and assessing significance. To estimate 

phylogenetic signature, co-evolutionary relationships and ancestral trait values we used 

BPMMs and MR-BPMMs with MCMC estimation in the R package MCMCglmm90. 

Obligate symbiosis was analysed as the number of species with and without obligate 

symbionts (proportion) within each family using a binomial error distribution with a logit 

link function. Analysing obligate symbiosis in this way enables variation in the number of 

species examined for obligate symbionts across insect families to be accounted for. Nutrient 

concentrations were Z-transformed before analysis and modelled as Gaussian response 

variables and species richness was modelled using a Poisson error distribution with log link 

function.

The global intercept was removed from MR-BPMMs to allow trait specific intercepts to be 

estimated. Parameter estimates from models are presented as posterior modes with 95% CIs, 

together with approximate P values (pMCMC)90.

The non-independence of data resulting from phylogenetic relatedness between insect 

hosts and phylogenetic relatedness between symbiont lineages was modelled using random 

effects. For phylogenetic effects we fitted a variance–covariance matrix constructed from the 

insect and bacteria phylogenies. Phylogenetic and residual correlations between traits were 

calculated using the variance and covariance estimates from unstructured phylogenetic and 

residual variance–covariance matrices. We estimated the amount of variation in response 

variables explained by random effects (RE), including phylogenetic effects, as the intraclass 

correlation coefficient on the latent scale estimated as

V i/V RE + V e

where Vi is the focal random effect, VRE is the sum of all random effects and Ve is the 

residual variance on the latent scale. For binomial error distributions Ve was calculated as 

the observed residual variance plus the variance associated with the link function (logit = 

pi2/3; for discussion, see refs. 91,92).

Prior settings—For random effects we began prior selection by assessing model 

convergence using inverse-gamma priors (V = diag(n), nu = n − 1 + 0.002, where n 
was equivalent to the number of response traits). If the mixing properties of the MCMC 
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chain were poor, which was often the case for binomial response variables, we examined 

parameter expanded priors (V = diag(n), nu = n − 1, alpha.mu = rep(0, n), alpha.V = diag(n) 

× 252) (ref. 92). For fixed effects the default priors in MCMCglmm (independent normal 

priors with zero mean and large variance (1010)) were used apart from in models with 

binomial response variables where a prior of mu = 0, V = σ2 units + π2/3 was specified. This 

is approximately flat on the probability scale when a logit link function is defined90,93, and 

in all cases improved the mixing of chains. The final prior settings used for each analysis are 

specified in the supplementary R code (R script ‘Analyses.R’).

Model convergence—Models were run for 2 million iterations with a burn-in of 

1 million iterations, and chains were sampled every 1,000 iterations. We examined 

the convergence of models by repeating each analysis three times and examining the 

correspondence between chains using the R package ‘coda’94 in the following ways: (1) 

visually inspecting the traces of the MCMC posterior estimates and their overlap; (2) 

calculating the autocorrelation and effective sample size of the posterior distribution of each 

chain; and (3) using Gelman and Rubin’s convergence diagnostic test that compares within- 

and between-chain variance using a potential scale reduction factor. Potential scale reduction 

factor values substantially higher than 1.1 indicate chains with poor convergence properties. 

For convergence checking, see R script ‘ModelCheckingCombining.R’.

Transition rate models

SCM—SCM was used to estimate ancestral states of obligate symbiosis and feeding niches 

across the insect phylogeny in the R package ‘phytools’86. In brief, this approach calculates 

the conditional likelihood that each ancestral node is in a given state depending on the 

estimated transition rate matrix (Q) between states and the length of the branch associated 

with that node. On the basis of these conditional likelihoods, ancestral states at each 

node are stochastically simulated and used in combination with observations at the tips 

to reconstruct a character history along each branch. Each character history is simulated 

using a continuous-time Markov chain where changes between states and the time spent in 

each state are modelled as a Poisson process (for more details, see ref. 95).

BayesTraits—BayesTraits V4 was used to reconstruct ancestral values of feeding niches 

and examine co-evolutionary relationships between B vitamins and obligate symbiosis (for 

details, see ‘Specific analyses’ in Methods). We used hyper priors where values are drawn 

from a uniform distribution with a range 0 to 10 to seed the mean and variance of an 

exponential prior to reduce uncertainty over prior selection89. We ran each model three times 

for a total of 11,000,000 iterations with a burn-in of 1,000,000 iterations and sampled every 

1000 iterations. We examined the convergence of models in the same way as ‘Transition rate 

models’ in Methods.

Bayes factors (2(log marginal likelihood of complex model − log marginal likelihood of 

simple model)) were used to test if models where traits were allowed to co-evolve provided 

a better fit to the data than models that assumed independent evolution. To calculate the log 

marginal likelihood, we used the stepping-stones procedure as described in the BayesTraits 

V4 manual where 100 stones were run for 1,000 iterations each. Bayes factors over 2 
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are considered to offer positive evidence, over 5 strong evidence and over 10 very strong 

evidence89. To test whether transition rates were significantly different from each other, we 

calculated the posterior mode, 95% CIs and pMCMC value of the posterior distribution of 

differences between transition rates.

Specific analyses

Evolutionary history of obligate symbioses—The number of origins of obligate 

symbiosis. The probability of each node in the insect phylogeny having an obligate symbiont 

was estimated using a BPMM with the proportion of species in families with obligate 

symbionts as a response variable. The posterior probability of each node having obligate 

symbionts was estimated using the ‘predict’ function in MCMCglmm and nodes with a 

posterior probability greater than 0.5 were classified as ‘obligate’. We found support for 16 

origins and 8 losses of obligate symbiosis.

We examined the robustness of the estimated number of origins and losses of obligate 

symbiosis using SCM. As SCM requires categorical states (obligate versus non-obligate), 

insect families (n = 402) were classified as having an obligate symbiosis where over 50% 

species in families had symbionts. Data on obligate symbiosis were used to build 1,000 

stochastic character maps across the insect phylogeny using an all-rates different Q matrix 

estimated with MCMC. Nodes were classified as having obligate symbionts if the proportion 

of the 1,000 stochastic character maps was above 50%. We found high correspondence 

between the SCM and BPMM analyses: 98% of ancestral states had the same predicted 

state of obligate symbiosis across analyses, indicating that our results are robust to different 

statistical approaches (Supplementary Table 20).

Estimating ancestral feeding niches—Ancestral feeding niches were estimated using 

SCM. Data on the feeding niches of insect families (n = 402) were used to build 1,000 

stochastic character maps across the insect phylogeny using an equal-rates Q matrix 

estimated with MCMC. Ancestral estimates of nodes were assigned according to the 

feeding niche with the highest proportion of the 1,000 stochastic character maps. Transitions 

between feeding niches were identified where ancestral and descendant nodes were in 

different states (Supplementary Table 5).

We examined the robustness of ancestral feeding niches estimated using SCM by performing 

a second set of ancestral reconstructions. We used the MULTISTATE module in BayesTraits 

V4 with reversible-jump MCMC estimation and compared them with the estimates gained 

by SCM. There was very good correspondence between SCM and MULTISTATE, with 94% 

of ancestral nodes predicted to have the same feeding niche (Supplementary Table 20).

Rates of obligate symbiosis across different feeding niches—The probability that 

insects with different feeding niches had obligate symbionts was modelled using a BPMM 

with the proportion of species in families with obligate symbionts as a response variable. 

The feeding niche of each family was fitted as an eight-level fixed effect (Supplementary 

Table 6). To determine if rates of obligate symbiosis were significantly different across 

niches, we calculated the pairwise differences between niches and examined if the 95% CIs 

spanned 0 (Supplementary Table 6).
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Nutritional deficiencies and the evolution of obligate symbiosis—Phylogenetic 

correlations between obligate symbiosis and nutrients. The phylogenetic correlations 

between obligate symbiosis and nutrients within diets was estimated using a MR-BPMM 

with the proportion of species in families with obligate symbionts and concentrations of 

carbohydrate, fat, protein, essential amino acids (sum of histidine, isoleucine, leucine, lysine, 

methionine, phenylalanine, threonine, tryptophan and valine), non-essential amino acids 

(sum of arginine, cystine, glycine, glutamic acid, proline and tyrosine), vitamin A, vitamin 

B (sum of individual B vitamins) and vitamin E as response variables (Supplementary 

Table 7). For analyses of individual amino acids, see ‘Obligate symbiosis and types of 

amino acids’ in Methods and Supplementary Table 29. There were missing values for some 

nutrients for some families in our dataset (Supplementary Table 4). In BPMMs, missing 

data are permitted in response variables and are predicted with an accuracy relative to the 

phylogenetic signature in traits and magnitude of trait correlations. This can enable missing 

values to be predicted with high accuracy93,96. All nutrients had high phylogenetic signature 

(phylogenetic heritability (phylo H2) 0.71–0.96; Supplementary Table 7), and therefore 

nutrients with up to 30% missing values were included in analyses (vitamin A = 21%, 

vitamin E = 29%; all other nutrients had less than 5% missing data).

Differences in the nutrient contents of feeding niches—Differences in the 

nutritional composition of feeding niches were estimated using a MR-BPMM with 

carbohydrate, fat, protein, essential amino acids, non-essential amino acids, vitamin A, 

vitamin B and vitamin E as response variables. To test if nutrient levels of each feeding 

niche differed from background rates, we sequentially fitted two-level factors of focal 

feeding niche versus all other niches as a fixed effect (Supplementary Table 9).

Phylogenetic correlations between obligate symbiosis and B vitamins—The 

phylogenetic correlations between obligate symbiosis and individual B vitamins were 

analysed using a MR-BPMM with the proportion of species in families with obligate 

symbionts and concentrations of vitamins B5 and B9 as response variables (Supplementary 

Table 8). Data on vitamins B7 and B12 were not analysed as there were missing values for 

over 30% of insect families. Data on B1, B2 and B3 were highly correlated with vitamin B5 

levels (r > 0.9), but there were more data on vitamin B5. As a result, only vitamin B5 was 

analysed, but it is worth noting that B1, B2 and B3 may contribute to any association with 

obligate symbiosis.

Nutrients and the gains and losses of obligate symbiosis—Ancestral B vitamins 

in relation to the gains and losses of symbionts. We examined how levels of B5 and B9 

vitamins differed between the ancestors of families with and without obligate symbionts 

using a two-step approach: first, we used the output of the model in ‘The number of 

origins of obligate symbiosis’ in Methods to classify nodes as: (1) non-obligate node with 

non-obligate descendants (Non to Non); (2) non-obligate node with at least one obligate 

descendant (Non to Ob); (3) obligate node with obligate descendants (Ob to Ob); and 

(4) obligate node with at least one non-obligate descendant (Ob to Non). Second, node 

classifications were entered as a four-level fixed factor in an MR-BPMM with B5 and B9 

vitamin concentrations as response variables (Supplementary Table 10). B5 and B9 vitamin 
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levels were compared across nodes that preceded the origin (1 versus 2), maintenance (1 

versus 3) and loss of obligate symbiosis (3 versus 4). Unstructured phylogenetic and residual 

variance–covariance matrices were fitted as random effects with the phylogenetic covariance 

matrix being linked to node labels.

To account for uncertainty in our node classifications, we repeated the analysis 100 

times, each time reclassifying nodes as ‘obligate’ or ‘non-obligate’ by resampling from 

the posterior distribution of model 4.1.1. Posterior samples from across the 100 models 

were combined. Each model was run for 1,100,000 iterations with a burn-in of 1,000,000 

iterations and a thinning interval of 10,000 samples, which across the re-samplings resulted 

in 1,000 posterior samples (100 re-samplings × 10 samples per resampling). To verify 

that our estimates of B vitamins were robust to rate shifts in B vitamins across the 

tree, we compared our BPMM estimates with phylogenetic ridge regression models that 

allowed for rate shifts97. We found high correspondence between estimates from BPMM and 

phylogenetic ridge regression models and between BPMM estimates and actual B vitamin 

values for insect families (Extended Data Fig. 4).

Transition rates between obligate symbiosis and B vitamins—We tested if 

models that allowed for co-evolution between obligate symbiosis and B5 and B9 vitamins 

better explained our data than models that assumed independent evolution of each trait using 

transition rate models in BayesTraits. Co-evolution was modelled using an all-rates different 

Q matrix with separate models run for B5 and B9 vitamins. For transition rate models, 

only binary classifications can be modelled. Insect families were therefore classified as 

obligate (>50% of species within families have obligate symbionts) and non-obligate (<50% 

of species within families have obligate symbionts), and having high and low B5 and B9 

vitamins. For B-vitamin classifications, two different cut-offs were analysed to establish the 

sensitivity of our results to different thresholds: above and below the 25% and 50% quantile 

for high and low B vitamins, respectively (Supplementary Table 11). It was not necessary 

to examine the sensitivity of our results to the classification of obligate symbiosis as 96% 

of 402 insect families had 100% of species with or without obligate symbionts. Reversible-

jump MCMC models were also run to further test if transitions occurred (percentage of 

models where transition rate was above 0) and if transition were different from each other 

(percentage of models where transition rates were assigned to different rate categories).

Nutrient deficiencies and host–symbiont co-specialization—Host–symbiont 

interactions and the evolution of obligate symbiosis. To examine how obligate symbiosis has 

been influenced by the co-evolutionary history between insects and bacteria, we constructed 

a dataset of pairwise combinations between all insect families and all symbionts (excluding 

vertically transmitted symbionts). For each combination, the number of insect species within 

a family with a particular obligate symbiont versus the number of species sampled without 

that symbiont was calculated and analysed using a BPMM with a binomial error distribution. 

This enabled differences in the sampling effort across different insect–bacteria associations 

to be accounted for. Whether symbionts were intra- and extracellular was included as a 

two-level fixed effect. Three different variance–covariance matrices were fitted as random 

effects to quantify the amount of variation in obligate symbiosis explained by: (1) insect 
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hosts independent of their phylogenetic history (‘h’), for example, certain hosts are more 

likely to form obligate relationships than others; (2) insect hosts phylogenetic history 

(‘[h]’), for example, certain host lineages are more likely to form obligate relationships 

than others; and (3) phylogenetic interactions between hosts and symbionts (‘[hs]’), for 

example, particular host phylogenetic lineages are more likely to form obligate symbioses 

with particular bacterial phylogenetic lineages (Supplementary Table 14). For details of 

model fitting, see ref. 98 (the variance–covariance matrices outlined in ref. 98 that relate to 

the number of hosts symbionts associate with were not fitted in models as each symbiont 

lineage was found in only one insect family).

To further examine whether phylogenetically related lineages of bacteria are more likely to 

form obligate symbioses with phylogenetically related lineages of insects, we used parafit 

in the R package ‘ape’ (Supplementary Table 15). This tests the correlation between host- 

and symbiont-shared branch lengths against a randomized distribution generated from 1,000 

permutations of the data99.

Host–symbiont interactions and levels of B vitamins in insect diets—To test 

if specific lineages of symbiotic bacteria specialize in providing B5 and B9 vitamins to 

hosts, we used the same BPMM approach described in ‘Host–symbiont interactions and the 

evolution of obligate symbiosis’ in Methods. We estimated variation in levels of B vitamins 

(Gaussian responses) explained by h, [h], [s] and [hs]. Separate models were run for B5 

and B9 vitamins, and data were restricted to combinations of hosts and bacteria that formed 

obligate symbioses (Supplementary Tables 12 and 13).

Obligate symbiosis and diversification—Species richness and obligate symbiosis. 

The relationship between obligate symbioses and species richness was estimated using 

an MR-BPMM with the proportion of species in families with obligate symbionts and 

species richness as response variables. Family age and whether insect families were holo- 

or hemimetabolous (two-level factor previously shown to influence diversification rates12) 

were fitted as fixed effects (Supplementary Table 16).

Species richness across symbiont-associated feeding niches—To test if species 

richness differed between insect families with and without obligate symbionts occupying 

different feeding niches, a BPMM with species richness as a response variable was used. 

Each insect family was classified according to whether it had obligate symbionts (>50% 

of species with symbionts) and its feeding niche (11-level factor), which was fitted as a 

fixed effect along with family age and holo–hemi metabolism (Supplementary Table 17). 

To test if species richness of each obligate symbiosis-feeding niche combination differed 

from background levels, we re-ran models fitting two-level fixed factor of the focal obligate 

symbiosis-feeding niche combination versus all other data (Supplementary Table 17).

Species richness and obligate symbiosis among sister taxa—Sister comparisons 

were extracted from ref. 12 phylogeny using the ‘extract_sisters’ function in the R package 

‘diverge’100 (Supplementary Table 30). We analysed data on all sister comparisons (n = 

123) using a BPMM to test if feeding niche and obligate symbiosis was related to species 

richness at a finer taxonomic scale than in ‘Species richness and obligate symbiosis’ in 
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Methods. Species richness was the response variable and the percentage of species within 

families with obligate symbionts (% logit transformed), age of the sister comparison (million 

years) and feeding niche were included as fixed effects. The non-independence of data from 

sister taxa was modelled by including sister pair identity as a random effect and the non-

independence of sister pairs across the phylogeny was modelled by including node identities 

of each sister comparison linked to the phylogeny as a random effect (Supplementary Table 

18).

Species richness changes and the evolution of obligate symbiosis—To further 

examine if the evolution of obligate symbiosis is associated with increased species richness, 

we restricted our sister comparison dataset to cases where sister families differed in 

the percentage of species with obligate symbionts. Differences in species richness was 

calculated as the log2 of the ratio of species richness between sister taxa and analysed as 

a Gaussian response variable using a BPMM. The difference in the percentage of species 

with obligate symbionts between sister taxa and pair age were fitted as fixed effects. Node 

identity of sister comparisons, linked to the phylogeny, was included as a random effect 

(Supplementary Table 19).

Sensitivity analyses—We tested the robustness of our conclusions to several underlying 

data assumptions. These sensitivity analyses provided quantitatively similar results to our 

main analysis (Supplementary Tables 21–27).

Removing families added to the Rainford tree—There were 23 families within 

our obligate symbiont dataset that were not represented in the Rainford phylogeny 

that were added to the phylogeny (‘Insect and symbiont phylogenies’ in Methods). To 

examine the robustness of our results to including these families, we re-ran the analyses 

detailed in ‘Phylogenetic correlations between obligate symbiosis and nutrients’ in Methods 

(Supplementary Table 21) with the 23 families excluded.

Including only bacterial symbionts—Bacteria made up the vast majority of obligate 

symbionts (79 out of 84 insect families had bacterial symbionts, 94%). To verify that our 

results were not explained by a few outlying eukaryotic symbionts, we re-ran the analyses 

detailed in ‘Phylogenetic correlations between obligate symbiosis and nutrients’ in Methods 

including only insect families with bacterial symbionts (nfamilies = 395; Supplementary Table 

22).

Removing co-occurring obligate symbionts—There were 112 unique host–bacterial 

symbiont combinations. Of these 49% (n = 55) had multiple co-occuring symbionts. It 

is possible that any signature of bacteria specializing in B5 and B9 vitamin production 

is obscured by the presence of co-residing obligate symbionts that may change nutrient 

provisioning roles. We therefore repeated the analyses in ‘Host symbiont interactions and 

levels of B vitamins in insect diets’ in Methods section after removing hosts that had 

multiple co-occurring symbionts (Supplementary Table 23).

Excluding data from microscope studies—Out of the 402 insect families included 

in our analyses, 260 were inferred to lack obligate symbionts from microscopy by Buchner 
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and colleagues that showed an absence of specialized symbiont organs. Insects in the orders 

Ephemeroptera, Plecoptera, Odontata, Neuroptera, Orthoptera and Lepidoptera, superfamily 

Tenthredinoidea and subclade Aculeata (excluding Formicidae) all lacked bacteriocytes and 

in general do not depend on endosymbionts for survival23. We tested the sensitivity of our 

results to including this inferred data by re-running analyses outlined in 4.2.1, 4.2.3 and 

4.5.2 on data where obligate symbiosis had only been directly studied (for more details, see 

‘Criteria for assessing obligate symbiosis’ in Methods). This also tested the robustness of 

our results to removing Lepidoptera that contribute many tips to the phylogenetic tree, lack 

obligate symbionts and are predominately herbivorous.

Obligate symbiosis and types of amino acids—In 4.2.1 we analysed the sum of 

essential and non-essential amino acids. All amino acids were highly correlated (r > 0.8. 

Extended Data Fig. 3), but to further check if minor differences in the concentration of 

each amino acid influenced the relationship with obligate symbiosis we ran a second set 

of analyses. The phylogenetic correlation between obligate symbiosis and each amino acid 

was examined using a series of MR-BPMMs. The proportion of species with obligate 

symbionts in families and the concentration of each amino acid were response variables 

in each analysis (nine different bivariate models for essential amino acids and six different 

bivariate models of non-essential amino acids; Supplementary Table 29).

Removing families with and without obligate symbionts—Out of the 402 insect 

families, 15 families contained species with and without obligate symbionts (3.7%). For 

transition rate analyses, these mixed families had to be classified as having obligate 

symbionts or not. We tested the sensitivity of our results to this classification by removing 

these families and re-running the analyses described in ‘Transition rates between obligate 

symbiosis and B vitamins’ in Methods.

The conclusions from the sensitivity analyses were quantitatively similar to our main 

analyses (Supplementary Tables 21–29).

Reporting summary

Further information on research design is available in the Nature Portfolio Reporting 

Summary linked to this article.
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Extended Data

Extended Data Fig. 1. The correspondence between the composition of adult and juvenile diets 
across insect families.
The relationship between adult and juvenile dietary concentrations of (A) Carbohydrate, 

(B) Fat, (C) Protein, (D) Essential Amino Acids (EssAA), (E) Non-Essential Amino Acids 

(NonEssAA), (F) Vitamin A, (G) Vitamin B and (H) vitamin E are presented. Each point is 

one insect family and the lines are linear regressions with 95% confidence intervals (shaded 

bands). Pearson correlation coefficients (‘Correlation’) are presented for each nutrient.
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Extended Data Fig. 2. The relationship between different B vitamins across diets.
The frequency distributions of the different B vitamins are plotted in the diagonal panels. 

Scatter plots of the correlation between different B vitamins are plotted in the panels 

below the diagonal, where each point represents one insect family and lines represent linear 

regressions with 95% confidence intervals (shaded bands). Pearson correlation coefficients 

are given in the panels above the diagonal.
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Extended Data Fig. 3. The relationship between different amino acids across diets.
The frequency distributions of the different amino acids are plotted in the diagonal panels. 

Scatter plots of the correlation between different amino acids are plotted in the panels 

below the diagonal, where each point represents one insect family and lines represent linear 

regressions with 95% confidence intervals (shaded bands). Pearson correlation coefficients 

are plotted above the diagonal.
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Extended Data Fig. 4. Reconstruction of ancestral levels of B vitamins, obligate symbiosis and 
feeding niches across 402 insect families.
Ancestral concentrations of (A) B5 and (B) B9 vitamins were estimated using BPMMs and 

are shown by the size of circles at each node. Turquoise tips and branches indicate obligate 

symbionts and different coloured dots represent different feeding niches. Ancestral feeding 

niches were estimated using SCM and states of obligate symbiosis were estimated using 

a BPMM (Supplementary Table 5). There was greater correspondence between predictions 

from BPMMs and raw concentrations of (C) B5 and (D) B9 vitamins than there was for 

predictions from phylogenetic ridge regressions (PRR, E-F), which allowed for rate shifts in 
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B vitamins across the phylogeny (E-F). In C-F lines represent linear regressions with 95% 

confidence intervals (shaded bands).

Extended Data Fig. 5. Levels of B vitamins in host diets in relation to symbiont phylogenetic 
history.
B5 vitamins are presented in blue and B9 vitamins are in black with the size of the circles 

indicating the amount of B5 and B9 vitamins in the diets of insect hosts.
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Extended Data Fig. 6. Sister comparisons of families with and without obligate symbionts.
Obligate symbiosis was associated with increased species richness in all comparisons apart 

from one, where there has been a switch to blood feeding from predation. Species richness 

was measured as the number of species within families and is presented on the natural 

logarithmic scale. There were 13 sister families with different percentages of species with 

obligate symbionts. Of these, 5 comparisons had small differences in rates of obligate 

symbiosis: <35% difference in percentage of species with obligate symbionts (not plotted, 

see Fig. 4 for all 13 comparisons).
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Extended Data Fig. 7. The evolution of obligate symbioses in relation to nutrient deficiencies 
after removing families that were added to the Rainford tree.
The proportion of species with obligate symbionts in families is plotted in relation to 

dietary concentrations of (A) Carbohydrate, (B) Protein, (C) Fat (D) Essential Amino Acids, 

(E) Vitamin B5 and (F) vitamin B9. Obligate symbioses was negatively phylogenetically 

correlated to concentrations of B vitamins (B phylo r (CI) = −0.36 (−0.53, −0.11), pMCMC 

= 0.008. Supplementary Table 21). Values of macro- and micro-nutrients are standardized 

amounts per gram (‘Nutrient data’ in Methods). The size of points represents the mean 

number of host species (log transformed) examined for obligate symbionts per family. Lines 

represent logistic regressions with 95% confidence intervals (shaded bands) plotted for 

illustrative purposes.
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Extended Data Fig. 8. The evolution of obligate symbioses in relation to nutrient deficiencies 
including only bacterial symbionts.
The proportion of species with obligate symbionts in families is plotted in relation to 

dietary concentrations of (A) Carbohydrate, (B) Protein, (C) Fat (D) Essential Amino Acids, 

(E) Vitamin B5 and (F) vitamin B9. Obligate symbioses was negatively phylogenetically 

correlated to concentrations of B vitamins (B phylo r (CI) = −0.35 (−0.49, −0.06), pMCMC 

= 0.008. Supplementary Table 22). Values of macro- and micro-nutrients are standardized 

amounts per gram (‘Nutrient data’ in Methods). The size of points represents the mean 

number of host species (log transformed) examined for obligate symbionts per family. Lines 

represent logistic regressions with 95% confidence intervals (shaded bands) plotted for 

illustrative purposes.
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Extended Data Fig. 9. The evolution of obligate symbioses in relation to nutrient deficiencies 
after restricting data to families where obligate symbioses had been directly studied.
The proportion of species with obligate symbionts in families is plotted in relation to 

dietary concentrations of (A) Carbohydrate, (B) Protein, (C) Fat (D) Essential Amino Acids, 

(E) Vitamin B5 and (F) vitamin B9. Obligate symbioses was negatively phylogenetically 

correlated to concentrations of B vitamins (B phylo r (CI) = −0.58 (−0.79, −0.04), pMCMC 

= 0.05. Supplementary Table 25). Values of macro- and micro-nutrients are standardized 

amounts per gram (‘Nutrient data’ in Methods). The size of points represents the mean 

number of host species (log transformed) examined for obligate symbionts per family. Lines 

represent logistic regressions with 95% confidence intervals (shaded bands) plotted for 

illustrative purposes.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. The evolutionary origins of obligate symbionts and their association with different feeding 
niches.
a, The phylogenetic distribution of obligate symbionts across insect families investigated for 

symbiosis and their feeding niches. Turquiose tips and branches represent obligate symbiosis 

and different coloured dots represent different feeding niches. Ancestral feeding niches 

were estimated using SCM, and obligate symbiosis states were estimated using a BPMM 

(Supplementary Table 5; for tree with tip labels, see Extended Data Fig. 4). b, The number 

of times obligate symbiosis evolved in different ancestral feeding niches of insects estimated 
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using a BPMM. c, Proportion of species within families with obligate symbionts (mean ± 

standard error of the mean (s.e.m.)) in relation to the feeding niches of insects. The average 

number of species within families is given along the x axis.

Cornwallis et al. Page 51

Nat Ecol Evol. Author manuscript; available in PMC 2024 April 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 2. Nutrient deficiencies and the evolution of obligate symbioses.
a–d, Across all diets, macronutrients (a–c) and essential amino acids (d) were not 

consistently associated with the proportion of species within families that had obligate 

symbionts. e,f, Insect families with diets deficient in B5 (e) and B9 (f) vitamins had a 

significantly higher proportions of species with obligate symbionts than families feeding 

on diets with high levels of B vitamins (B5 phylogenetic correlation (CI) −0.45 (−0.61 to 

−0.22), pMCMC = 0.001; B9 phylogenetic correlation (CI) −0.25 (−0.48 to −0.05), pMCMC 

= 0.03). Nutrient values on x axes are standardized amounts per gram (‘Nutrient data’ 

in Methods). The size of points represents the number of host species (log-transformed) 

examined for obligate symbionts per family. Lines represent logistic regressions with 95% 

confidence intervals (shaded bands) plotted for illustrative purposes. Analyses of individual 

amino acids confirmed that obligate symbiosis was not consistently associated with any 

amino acid deficiencies (‘Obligate symbiosis and types of amino acids’ in Methods and 

Supplementary Table 29).
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Fig. 3. Obligate symbiosis enables evolutionary shifts to diets deficient in B vitamins.
a,b, The ancestors of lineages that evolved obligate symbioses had similar levels of B5 

(a) and B9 vitamins (b) in their diets compared with lineages that did not evolve obligate 

symbioses. c,d, After acquiring obligate symbionts, lineages evolved diets with significantly 

lower levels of B5 (c) and B9 vitamins (d) (‘non-obligate maintenance versus obligate 

maintenance’ comparison). The evolutionary loss of obligate symbiosis was also associated 

with increases in dietary levels of vitamin B5 and B9 compared with where obligate 

symbiosis was maintained (c,d: ‘obligate maintenance versus obligate loss’ comparison). 

Vitamin B concentrations are standardized amounts per gram for each ancestral node, 

estimated from the diets of extant insect families (‘Nutrient data’ in Methods; for 

reconstructed levels of B vitamins plotted on the tree and robustness of estimates to rate 

shifts in B vitamins, see Extended Data Fig. 4). Numbers along the x axis in a and b indicate 

the numbers of transitions. Violin density curves represent the posterior distribution of 
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estimated ancestral levels of B5 and B9 vitamins (1000 samples) estimated using a BPMM. 

The violin width corresponds approximately to the most likely estimate of B vitamins. A 

BPMM was used to test for significant differences between transitions (*pMCMC <0.05, 

**pMCMC <0.01, ***pMCMC <0.0001; exact pMCMC values are given in Supplementary 

Table 10): In a and b we tested if the posterior distribution of B-vitamin estimates for a 

given transition was above or below the comparison transition, and in c and d we tested if 

the posterior distribution of the difference in B-vitamin estimates for transition comparisons 

was above or below 0. NS, not significant.
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Fig. 4. Obligate symbioses and the evolutionary potential for diversification.
a, Diversification was measured as the number of species within families presented on a 

natural logarithmic scale (mean ± s.e.m.). BPMMs were used to test if the species richness 

of each feeding niche was significantly higher or lower than the average of all other 

niches (*pMCMC <0.05, **pMCMC <0.01, ***pMCMC <0.0001. Exact pMCMC values 

are given in Supplementary Table 17), and if families with (>50%) and without (<50%) 

obligate symbionts feeding within the same niche had higher or lower species richness 

(Supplementary Table 17). BPMMs controlled for differences in family age, holo- and 

hemi-metabolism and insect phylogenetic history. The number of insect families are given 

along the x axis. b, Sister lineage comparisons showing families with a higher percentage 

of species with obligate symbionts are associated with greater species richness (y axis: log2 

fold change: 0, no difference; 1, double the number of species; −1, half the number of 

species; Extended Data Fig. 6 shows differences in absolute numbers of species). Details of 

the taxa involved in sister comparisons are presented in Supplementary Table 29. Symbols 

are coloured by the feeding niches of the sister families, with colours on the left indicating 

the feeding niche of the family with the lowest rates of obligate symbiosis and the highest 

on the right. Regression line with 95% confidence intervals (shaded band) plotted for 

illustrative purposes. NS, not significant.
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