
Large-scale pan-cancer cell line screening identifies actionable 
and effective drug combinations

Azadeh C. Bashi*,1, Elizabeth A. Coker*,2,4, Krishna C. Bulusu*,1, Patricia Jaaks**,2, 
Claire Crafter**,1, Howard Lightfoot2, Marta Milo1, Katrina McCarten2, David F. Jenkins3, 
Dieudonne van der Meer2, James T. Lynch1, Syd Barthorpe2, Courtney L. Andersen3, 
Simon T. Barry1, Alexandra Beck2, Justin Cidado3, Jacob A. Gordon3, Caitlin Hall2, James 
Hall2, Iman Mali2, Tatiana Mironenko2, Kevin Mongeon3, James Morris2, Laura Richardson2, 
Paul D. Smith1, Omid Tavana3, Charlotte Tolley2, Frances Thomas2, Brandon S. Willis3, 
Wanjuan Yang2, Mark J. O’Connor1, Ultan McDermott1, Susan E. Critchlow1, Lisa Drew3, 
Stephen E. Fawell3, Jerome T. Mettetal†,3, Mathew J. Garnett†,2

1Oncology R&D, AstraZeneca, Cambridge, UK

2Wellcome Sanger Institute, Cambridge, UK

3Oncology R&D, AstraZeneca, Waltham, MA, USA

Abstract

Oncology drug combinations can improve therapeutic responses and increase treatment options 

for patients. The number of possible combinations is vast and responses can be context-specific. 

Systematic screens can identify clinically-relevant, actionable combinations in defined patient 

subtypes. We present data for 109 anti-cancer drug combinations from AstraZeneca’s oncology 

small molecule portfolio screened in 755 pan-cancer cell lines. Combinations were screened 

in a 7x7 concentration matrix, with over 4 million measurements of sensitivity, producing 

an exceptionally data-rich resource. We implement a new approach using combination Emax 

(viability effect) and Highest Single Agent (HSA) to assess combination benefit. We designed a 

clinical translatability workflow to identify combinations with clearly-defined patient populations, 

rationale for tolerability based on tumor type and combination specific ‘emergent’ biomarkers, and 

exposures relevant to clinical doses. We describe three actionable combinations in defined cancer 

types, confirmed in vitro and in vivo, with a focus on hematological cancers and apoptotic targets.
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Introduction

Many anti-cancer agents have limited single agent activity in the clinic, making 

drug combinations an important treatment strategy. The first successful combination 

chemotherapy, introduced more than 50 years ago, consisted of a cocktail of four drugs 

(cyclophosphamide, vincristine, procarbazine, and prednisone) and resulted in durable 

clinical responses in patients with Hodgkin’s lymphoma (1,2). These chemotherapy 

combinations were often determined empirically in the clinic using existing monotherapy 

treatments. The recent advent of molecularly-targeted agents has led to the development 

of more rationally-designed combinations. Inhibiting multiple nodes in either the same 

or parallel signaling pathways can help tackle problems such as pathway redundancy, 

feedback reactivation and tumor heterogeneity, all of which can contribute to reduced 

efficacy and disease progression (3). There are however several challenges that need 

to be addressed when identifying efficacious drug combinations. First, obtaining deep 

pharmacological profiles of available targeted and chemotherapeutic agents is a complex 

and resource-intensive task. Second, handling the scale of this data generation and analyses 

towards identifying ‘actionable’ combinations are difficult. Finally, clinically-translatable 

combinations that deliver patient benefits are rare.

Employment of several criteria into portfolio decisions has resulted in higher success rate 

during discovery and development of novel drugs (4,5), including considerations of the 

target (efficacy), safety, patient population, exposure, and commercial opportunity. Like 

single agent drugs, candidate drug combinations require demonstration of activity in a 

patient population of unmet clinical need, an efficacy profile similar or superior to existing 

treatments, confidence in the tolerability profile, and knowledge of the exposures required 

for activity. When possible, application of these principles to design and analysis of in vitro 
combination screens could increase the likelihood of gathering this crucial understanding 

early in the drug development process. Specifically, comprehensive analysis of multi-omics 

data for cell line panels can identify potential biomarkers that could lead to patient 

stratification in the clinic. Avoiding combinations which are broadly active across models in 

in vitro screens can exclude combinations which may also be active in cells without genetic 

alteration, which thus could have activity in healthy tissues, limiting tolerability. Finally, 

the design of dose-response surfaces covering a matrix of concentrations relevant to clinical 

exposures can help inform the right doses for development.

Several groups, including ourselves (6)(7,8), have published unbiased combination screens 

in cancer cell lines. These have generally focused on assessing large numbers of 

combination pairs in relatively small cell panels. For example, we published a pan-cancer 

study as part of the DREAM combination prediction challenge that included >11,500 

experiments across 910 combinations in 85 cell lines (6); O’Neil et al. published >22,000 

experiments across 583 combinations in 39 cell lines (9); and the NCI-ALMANAC study 

included >5,000 combinations in 60 cell lines of the NCI-60 panel (10). We also recently 

described screening subsets of 2,025 combinations across 125 cell lines for three cancer 

types (7). For all these studies, in addition to screening relatively few cell lines, drug 

combinations were tested using either a limited or a subset of a full concentration matrix, 

thereby limiting the ability to comprehensively examine the most relevant range. Here, 
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to extend our knowledge of effective drug combinations beyond previous studies, we 

screened 109 drug combinations using a 7x7 concentration matrix across 755 cell lines 

and developed an end-to-end framework which led to the identification and validation of 

clinically-actionable drug combinations.

Results

Over 68,000 combination-cell line pairs screened in 41 cancer types

We screened a diverse and molecularly-characterized panel of 755 cancer cell lines, covering 

41 cancer types (11) (Figure 1A and B, Supplementary Table 1). Against these cell lines 

we screened 109 unique combinations of 37 individual drugs and investigational agents, 

with the majority coming from the AstraZeneca (AZ) portfolio covering diverse targets 

and mechanism of action with a particular focus on compounds targeting genome integrity, 

apoptosis and the cell cycle, which had potential for broad activity in a pan-tumor panel 

and which were of interest for clinical development (Figure 1C, Supplementary Table 2). 

Overall, this included 68,816 combination-cell line pairs: 82 combinations were screened in 

755 cell lines and additional 27 combinations screened against a half cell line panel of 376 

cell lines. To enable in-depth investigations of drug combination responses, we included a 

high coverage of chosen pathways, including combinations of drugs targeting apoptosis with 

genome integrity (Figure 1C).

Drugs were screened in a 7x7 combination matrix over a 1,000-fold concentration range 

of each drug chosen to cover IC50 values reported in previous single agent drug screens 

(12,13). The concentrations were informed by clinical relevance, including clinically 

achievable Cmax (maximum achievable concentration within the body). This design led 

to a wide range of combo Emax values (second highest viability effect) obtained across 

the screen (Figure 1D). As a control for screen quality, plates had low coefficient of 

variation, robust dynamic range as measured by Z-factor, and high correlation between 

control replicate screens (Figure S1A-C and see methods). Furthermore, there was a high 

correlation when comparing single agent IC50 values for six overlapping drugs screened 

using the same experimental platform (Figure S1D) (13), the GDSC2 (Genomics of Drug 

Sensitivity in Cancer 2) dataset (Pearson R=0.855; 735 common cell lines). Comparisons 

with the GDSC1 and PRISM monotherapy datasets had good (GDSC1 (12); Pearson R= 

0.753; 699 common cell lines for 2 drugs) to moderate (PRISM (14); Pearson R= 0.513; 346 

common cell lines for 13 drugs) correlations, with the lower correlations likely reflecting the 

use of different experimental platforms and protocols (Figure S1E-F). These results support 

the robustness of the screen.

We used multiple estimates of single agent and combination activity. These include two 

single agent IC50 values, the two single agent maximum viability reductions (single agent 

Emax; Figure S1G), combination maximum viability reduction (combo Emax, the second 

highest activity level seen in the matrix) (Figure S1H), and synergy scores, according to 

either the Bliss model (15) or Highest Single Agent (HSA) (16). HSA metric identifies drug 

combinations if the response is greater than either single agent alone. We report ‘matrix’ 

synergy scores averaged across all 49 wells of the combination matrix. In addition, we 

report ‘window’ synergy scores calculated across all 25 possible 3x3 sub-matrices of the 
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7x7 matrix and report the synergy score for the 3x3 ‘window’ with the largest synergy score 

(Figure S1I). The window synergy score is useful where synergy is concentration dependent. 

For example, IST-MES1 mesothelioma cell line treated with AZD5991 (MCL1 inhibitor) + 

AZ-3202 (BCL-Xli; also known as compound 15 (17)) had higher Bliss synergy excess for 

the window (0.823) versus matrix (0.180) (Figure S1J). Overall, 52.3% of combination-cell 

line pairs had a negative Bliss matrix excess and positive Bliss window excess, indicating 

that synergy was frequently observed within a narrow range of tested concentrations. Bliss 

excess was highly correlated with HSA excess (R = 0.924) (Figure S1K). In contrast, there 

was poor correlation between combo Emax with either HSA or Bliss synergy, consistent 

with some combination activity being driven by single agent activity (Fig S1L-M). Similarly, 

single agent Emax weakly correlates with combo Emax (Figure S1N), and single agent 

activity poorly correlates with synergy (Figure S1O).

Fitted and raw data are available through Figshare and the GDSC Combination 

website (https://gdsc-combinations.depmap.sanger.ac.uk/), where data can be visualized and 

explored at the screen, cancer type, combination and cell line-combination. Altogether, these 

data are a rich resource and show the value of acquiring multiple estimates of single drug 

and combination activity across a matrix of concentrations.

Prioritization based on combination activity and tumor subtypes specificity

From the over 68,000 combination-cell line pairs tested, we aimed to identify candidate 

combinations with the greatest potential to be taken forward into clinical development. 

Therefore, we sought to prioritize combinations with strong activity specifically focused 

within particular tumor subtypes. As a first step, we identified combination-cell line pairs 

with high activity (combination Emax>0.5) and combination benefit/synergy beyond single 

agent activity (HSA>0.1) (Figure 2A). We have previously screened nine combinations 

with a limited concentration matrix in up to 114 breast, colon and pancreatic cancer cell 

lines, representing 4,790 overlapping combination-cell line pairs (7). In support of our 

screening results, the classification of high activity and synergy beyond single agent activity 

agreed with the classification of synergy/non-synergy for 65.4% of combination-cell line 

pairs (Figure S2A). More examples of active combinations were identified in this study, 

supporting the value of our approach incorporating a 7x7 concentration matrix design and 

HSA metric.

We next identified combinations where at least 10% of cell lines tested within a specific 

cancer type fulfilled these criteria, reducing the number of combination:cancer type pairs 

by 76% from 4,469 to 1,056 (Figure 2B, Supplementary Table 3 and Supplementary Table 

4). The minimum threshold of 10% was chosen to allow a relatively small number of 

models to highlight a potential combination, while maintaining a strong enough signal to 

support clinical actionability. Six combinations showed no combination benefit (HSA < 

0.1, combination Emax <0.5) in the 755 cell lines tested, including the MCL1 inhibitor 

AZD5991 combined with either the DNAPK inhibitor AZD7648 or cMET inhibitor 

savolitinib; ATM inhibitor AZD1390 combined with either the MEK inhibitor selumetinib, 

the EGFR inhibitor gefitinib, or the AKT inhibitor capivasertib; and the PARP inhibitor 

olaparib combined with the BRD4 inhibitor AZD5153. Combination benefit was most 
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enriched in combination:cell line pairs where the combination targeted ERK/MAPK and 

PI3K/MTOR signaling, or dual targeting of the cell cycle (Figure S2B).

The majority of the active combinations were active in multiple cancer types. Specifically, 

nineteen combinations were active in more than 50% of cancer types (Supplementary 

Table 5). Of these, five involved combinations targeting proteins that have a protein-

protein/functional interaction from STRING database (prexasertib + AZD1775, SRA737 

+ AZD1775, AZD5991 + AZ3202, trametinib + taselisib, dasatinib + trametinib), and 3 

combinations target synthetic lethal pairs of genes as defined by SynLethDB (AZD5153 

+ selumetinib, trametinib + taselisib, AZD5991 + AZ-3202)(Figure S2C). Broadly active 

combinations may be more likely to be active in normal tissues, thereby limiting their 

therapeutic window and potential for clinical development. For example, the combination 

of the MEK inhibitor, selumetinib, and the AKT inhibitor, capivasertib, had activity in 22 

out of 41 cancer types. Despite strong preclinical activity here and in other studies, the 

overlapping clinical toxicities of selumetinib (inhibitor of MEK: MEKi) combined with 

MK2206 (AKTi) was found to prevent sufficient dose escalation to achieve the desired 

level of target inhibition, and clinical activity was not observed (18). However, more recent 

AKT inhibitors such as capivasertib or ipatasertib may have a broader therapeutic window 

on account of an ATP competitive mode of action, whereas MK2206 was an allosteric 

inhibitor. To maximize the therapeutic window of selected combinations, an additional 

filtering step was therefore applied to select combinations with high activity (HSA > 0.1 and 

Combination Emax > 0.5) in less than 50% of cancer types. This reduced the number of 

combination:cancer type pairs to 489 (Figure 2B-C and Supplementary Table 6).

As a final step of prioritization, drug combinations were ranked based on their activity 

(% responders in a cancer type) and cancer type selectivity (cancer type specificity score). 

The cancer type specificity score was calculated by subtracting the number of cancer types 

showing sensitivity to an individual drug combination (at least 10% responder cell lines) 

from the total number of cancer types. Activity and cancer-type selectivity were given equal 

weights and scores were given as a sum of percentage responders in that particular cancer 

type and the cancer type specificity score. Combination:cancer type pairs tested in less than 

10 cell lines were excluded to prevent small sample sizes biasing the analysis, leading to 

a list of 99 combination:cancer type pairs in hematological cancers (Supplementary Table 

7) and 252 combination:cancer type pairs in solid tumors. The top 100 combination:cancer 

type pairs are shown in Supplementary Table 8. This systematic approach informed our 

prioritized shortlist for prospective validation (see validation section below).

The top scoring combination in hematological cancers was selumetinib (MEKi) + 

venetoclax (BCL2i) in AML (response in 36% of AML cell lines), which also had above 

10% activity in B-Lymphoblastic Leukemia (Figure 2D, Supplementary Table 6 and 7). 

Another highly ranked combination also included venetoclax, now with a cell death agent 

AZD5991 (MCL1i), with 63% responder cell lines in AML, but less selectivity across 

cancer types (active in 15 cancer types). For solid tumors, crizotinib + dasatinib in low 

grade glioma (87% responders; active in 16 cancer types) and AZD0156 (ATM/ATRi) plus 

olaparib (PARPi) in Ewing’s sarcoma (84% responders; active in 16 cancer types) were 

high scoring (Figure 2E, Supplementary Table 8). Several combination:cancer type pairs 
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which have previously been shown to drive combination activity were identified, including 

AZD5991 (MCLi) + venetoclax (BCL2i) which was active in AML cell lines, and has been 

tested in a phase II trial in patients with AML (NCT03218683), providing support that our 

screen and prioritization process is capable of identifying clinically-relevant combinations in 

specific cancer types.

To evaluate the impact of our scoring thresholds on prioritized combinations, we 

investigated alternative thresholds for percentage response and cancer type specificity. 

Higher response thresholds (from more than 10% of cell lines to 25, 50 or 75%) led to a 

drop in the number of top hits (120, 14 and 3 respectively) by excluding combinations which 

are most cell line selective in their activity (Supplementary Table 9 and Supplementary Table 

10). There was no change in the top 15 hits when the percentage response threshold was 

increased to 25% (Supplementary Table 9). Changing the cancer type specificity threshold 

(from less than 50% of cancer types to either less than 25% or 75%) also altered the number 

of combinations (223 and 727, respectively), either requiring combinations to be highly 

cancer type specific, or including widely active combinations which are less likely to be 

clinically tolerable.

With respect to the frequency of active combinations by cancer-type, AML had the highest 

number of active combinations within the top hematological cancer hits (25 combinations), 

followed by Chronic Myelogenous Leukemia (17 combinations) and B lymphoblastic 

leukemia (15 combinations) (Supplementary Table 7). In solid tumors, the highest number 

of active combinations within the top 100 hits were in Ewing’s sarcoma (16 combinations), 

followed by head and neck (9 combinations) and small cell lung carcinoma (8 combinations) 

(Supplementary Table 8).

To gain mechanistic insights into the top ranked combinations, we assigned combinations 

into nine categories based on the mechanism of action of the two constituent drugs 

(Supplementary Table 11). Out of the top 100 drug combination:cancer type pairs in solid 

tumors, 19 hits belonged to the ‘cell death’ plus ‘cell signaling’. However, in hematological 

cancers top hits, the highest number of combinations were the ones targeting ‘cell death’ 

plus ‘DNA damage response (DDR)’ pathways (31 hits). In contrast, combinations from 

the ‘cell signaling’ plus ‘chemotherapeutic agent’ category were overall rare (2 hits for 

hematological cancer and 2 hits for solid tumors) (Supplementary Table 7, Supplementary 

Table 8 and Supplementary Table 12). Out of the top ten drug combinations in hematological 

cancer, 7 included at least one compound targeting the ‘cell death’ pathway (Figure 2D). 

This finding is in agreement with the fact that apoptosis/cell death pathways are frequently 

dysregulated in hematological cancers leading to efficacy of cell death agents in these 

tumors (19). Overall, our prioritization approach enriched for combinations which are 

selectively active in subsets of cell lines and by tumor type, increasing the probability of 

identifying combinations with a clinically manageable tolerability profile.

Multi-omics analysis identifies biomarkers of combination response

We leveraged the large number of cell lines screened to understand how molecular context 

affects drug combination response. Using GDSCtools ANOVA (20), we performed 5.4 

million statistical tests to identify statistically significant associations between drug response 
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metrics and multi-omics features (Figure 3A, Supplementary Table 13). This included 

curated molecular features previously associated with single agent drug response (somatic 

mutations, copy number alterations and DNA methylation; n =1,073 (13)); additional 

molecular features curated from public datasets (see methods) (n = 586); a curated set of 

binarised gene expression features (n =1,344) (21,22); and PAM50 status for breast cancer 

cell lines (n=9) (23,24). Associations were identified with five response metrics, including 

single agent (compound 1 Emax, compound 2 Emax) and combination responses (combo 

Emax, Bliss matrix, Bliss window). Bliss was chosen over HSA as the synergy metric 

for biomarker identification because it is a more stringent measure of drug combination 

response and biomarkers of Bliss scores are more likely to identify drug interactions.

We identified significant associations for 21 different subgroups of cell lines. This included 

pan-cancer across the entire cell line panel; per cancer type for the 14 most common 

cancer types in our panel (>19 cell lines); and 6 molecular ‘baskets’ representing cancer 

type-agnostic cell line subpanels of the six most frequently mutated genes (TP53 (n=477 

cell lines), KRAS (n=107), MLL2/KMT2D (n=81), PTEN (n=72), PIK3CA (n=80) and 

BRAF (n=61)). Overall, we identified 11,611 statistically significant associations (p<=0.001, 

FDR<=10%, and positive and negative Glass delta >=1) (Figure 3A-B). This included 

6,911 non-unique single agent and 4,700 combination biomarkers, representing at least 

one significant association for every combination tested (combo Emax associations, n 

=2,170; Bliss matrix, n =1,080; Bliss window, n =1,450). Cancer-type specific ANOVAs 

and molecular basket ANOVAs identified 803 and 4,388 context-specific biomarkers, 

respectively, in addition to those found in the pan-cancer setting, confirming the benefit 

of considering sensitivity biomarkers in specific molecular contexts (Figures S3A and B) 

(7).

A subset of biomarker associations were linked to the target of one or both of the drugs 

in a combination. For example, elevated expression of PIK3CG was associated with a 

greater Bliss window synergy score for AZD8186 (PI3Kβi) + palbociclib (CDK4/6i) in 

the KRAS molecular basket (Figure S3C). Elevated expression of BIM (BCL2L11) was 

significantly associated with higher AZD4320 (BCL2i, BCL-XLi) and venetoclax (BCL2i) 

single agent Emax values in the KRAS molecular basket (Figure S3D-E), and elevated 

BCL2 expression was associated with higher venetoclax (BCL2i) Emax in the TP53 mutant 

basket (Figure S3F). In many instances, combination biomarkers were also associated with 

the single agent activity of a constituent drug. Specifically, 59.5% (6,911 of 11,611) of 

combination biomarkers were also biomarkers for at least one of the two monotherapies 

in that combination. This has been observed previously, for example BRAF mutation is a 

predictor of dabrafenib monotherapy activity in multiple cancer types and of response to 

dabrafenib-containing combinations in colon cancer (25–27).

We reasoned biomarkers specifically associated with combinatorial activity, and not with 

single agent activity of the individual constituent drugs, so called ‘emergent’ combination 

biomarkers, would be of particular interest because they are more likely to capture 

properties arising from drug-drug interactions. By excluding monotherapy-driven markers 

for each compound, we identified 14% of biomarkers (1,631 out of 11,611: 755 Bliss 

matrix only, 161 Bliss Matrix AND Combo Emax, 715 Combo Emax only; Figure 3C) as 
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‘emergent’ (Supplementary Table 13). Considering the top 100 most statistically significant 

emergent biomarkers (Supplementary Table 14), these involved ten unique combinations, 

seven of which included BCL2 or MCL-1 inhibitors which target cell death pathways 

(Supplementary Table 15, Supplementary Table 16 includes emergent biomarkers). To 

gain further insights into their properties, emergent biomarkers were grouped by signaling 

pathway prior to performing pathway enrichment analysis using EnrichR comparing single 

agent and emergent biomarkers for each mechanistic category of combination (28) (Figure 

3D and Figure S3G). Apoptosis, P53 and E2F pathway were among the most enriched 

pathways across the combination categories. A smaller number of pathways were enriched 

in categories including chemotherapeutic agents, with no signaling pathway being enriched 

for the emergent biomarkers in the ‘cell signaling’ (non-DDR/cell death) plus chemotherapy 

category. Chemotherapeutics were broadly active in our screen, likely explaining why highly 

predictive markers of response were not observed. We hypothesize that these emergent 

biomarkers represent predictors of drug-drug interactions that cannot be readily identified 

from single agent activity alone, and thus highlight the potential utility of combination 

screens for biomarker identification over using monotherapy biomarkers alone.

Combination Validation

We identified active and cancer-type selective combinations using our prioritization 

framework. A subset of the top scoring combinations are exemplified here and were 

validated in vitro and in vivo based on AZ portfolio interest, prior knowledge and to 

illustrate different types of therapeutic opportunities including new combinations and 

repurposing.

AZD5991 plus venetoclax in AML

The second ranked combination in hematological cancers was venetoclax (BCL2i) + 

AZD5991 (MCLi) in acute myeloid leukemia (AML). For 13 of 19 AML cell lines the 

combination was active (HSA > 0.1 and combination Emax > 0.5) (Figure S4A-B). The 

combination was also active in other hematological cancers including Hodgkin’s lymphoma 

(42.9%, 3 of 7 cell lines), B-lymphoblastic leukemia (40%, 6 of 15 cell lines) and B Cell 

Non Hodgkin’s lymphoma (36%, 9 of 25 cell lines), as well for some solid tumors such 

as small cell lung carcinoma (47.2 %, 17 of 36 cell lines) and Ewing’s sarcoma (45%, 9 

out of 20 cell lines) (Figure S4C). From our biomarker analysis, cell cycle and DNA repair 

pathways genes (e.g. BRCA2, WEE1, CDC25A) were associated with combination Emax, 

and downregulation of the nucleotide excision repair protein ERCC1 was associated with 

Bliss synergy, providing a putative mechanistic link between combination activity and DDR 

and cell cycle related pathways, as previously reported (29–31) (Figure S4D, Supplementary 

Table 17). Importantly, this combination was selective, with 40% (17/41) of tumor types 

having a response rate >10% and only 19% (8/41) of tumor types having a response rate 

>25%. In comparison, the combination of AZD5991 with another cell death target, the 

Bcl-xL inhibitor (AZ-3202), has poor selectivity with a >25% response rate in 90% (38/41) 

of tumor types (Figure S5A). The combination of AZD5991 + venetoclax was under clinical 

investigation in a phase 1/2a trial in patients with refractory or relapsed hematological 

malignancies but was recently terminated for undisclosed reasons (NCT03218683).
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Selumetinib plus venetoclax or AZD5991 in AML

Two further effective and specific combinations in AML were selumetinib (MEK1/2i) 

combined with venetoclax (BCL2i) or AZD5991 (MCLi) (Supplementary Table 7). Both 

combinations also had activity in other hematological cancers and solid tumors (Figure 

S6A-B). Of the nineteen AML cell lines included in the screen, six (EoL-1-cell, ML-2, 

OCI-AML5, NOMO-1, KG-1, HL-60) had strong combination activity when selumetinib 

was combined with venetoclax and four cell lines (ME-1, ML-2, NOMO-1, HL-60) 

when combined with AZD5991 (Figure 4A-D). These cell lines predominantly harbored 

alterations in MAPK pathway family members including OCI-AML5 (SOS1N2337Y, 

NF1K1385R), ML-2 (KRASA146T), HL-60 (NRASQ61L), and Nomo-1 (KRASG13D). 

Consistent with these findings, among the significant biomarkers for venetoclax and 

selumetinib were proteins involved in ERK-MAPK signaling including EGF and SOS1, 

as well as members of the BCL2 family (PMAIP1) (Figure S7A-B, Supplementary Table 

17).

To validate these two combinations in vitro, we assessed MAPK pathway inhibition and 

induction of apoptosis in the sensitive Nomo-1 cell line. Treatment with selumetinib 

completely inhibited phospho-ERK (pERK) levels tested for up to 72 hours. Neither 

venetoclax nor AZD5991 altered pERK levels (Figure 4E and 4F). When selumetinib was 

combined with venetoclax or AZD5991, pERK suppression was maintained and induction 

of cleaved PARP and cleaved caspase 3 was observed as early as 24 hours, increasing at 72 

hours. AZD5991 alone caused a weak induction of cleaved PARP which was enhanced by 

the combination. Combination benefit was also achieved by combining selumetinib with an 

alternative selective MCL1 inhibitor, tapotoclax, or selective BCL2 inhibitor, S55746 (both 

currently under clinical investigation) in NOMO1, HL60 and ML2 cell lines. Similarly, an 

alternative MEK1/2 inhibitor trametinib was active in combination with the four MCL1 

and BCL2 inhibitors tested (Figures S8A-C and S9A-C). Together, these results confirm on-

target combination activity induces suppression of MAPK signaling and increased apoptosis.

We next evaluated the in vivo activity of the combinations using subcutaneous Nomo-1 

xenograft models. Neither venetoclax (100 mg/kg oral daily) nor AZD5991 (two intravenous 

doses of 30mg/kg given two hours apart once weekly) alone caused any significant 

tumor growth inhibition when dosed as a monotherapy (Figure 4G). Whilst selumetinib 

monotherapy (10 mg/kg oral twice daily, 8 hours apart) led to 63% tumor growth 

inhibition (TGI) at day 10, tumors eventually grew out. Notably, combining selumetinib 

with venetoclax or AZD5991 markedly reduced tumor growth. Tumors treated with the 

selumetinib + venetoclax combination only reached a mean tumor volume of 963 mm3 

after 28 days. The combination of selumetinib with AZD5991 was even more pronounced 

(88% TGI at day 10) and the mean tumor volume had not exceeded 400 mm3 by day 28. 

Collectively, these results confirm the in vitro and in vivo efficacy of these combinations in 

the setting of AML.

Venetoclax monotherapy in AML is only modestly active and significant benefit comes from 

addition of a second agent such as decitabine or cytarabine. Selumetinib has modest clinical 

activity as a monotherapy in AML patients (32). Given that the MAPK pathway is activated 

in about 70% of patients with AML due to mutations in upstream key proteins including 
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RAS and FLT3 (33), and recent studies which show that further mutations in MAPK can 

arise from use of venetoclax or targeted therapies like gilteritinib (FLT3i), the use of a MEK 

inhibitor like selumetinib as a combination partner has strong rationale (34). Furthermore, 

the activity of selumetinib combined with AZD5991 also suggests an alternative partner in 

patients where BCL2 inhibition is insufficient to remove the anti-apoptotic blockade, and 

combination with an MCL1 inhibitor may be a good choice.

AZD2811 plus venetoclax in DLBCL

An additional highly ranked combination was the aurora kinase B inhibitor (AurkB) 

AZD2811 + venetoclax in B-Cell Non-Hodgkin Lymphoma (NHL). The active 

pharmaceutical ingredient in AZD2811 (AZD1152) has previously undergone clinical 

evaluation for diffuse large B cell lymphoma (DLBCL), and the combination activity 

of aurora kinase B inhibitors and BH3 mimetics has been investigated in solid and 

hematological malignancies (35). AZD2811 + venetoclax has efficacy in TP53 mutant and 

wildtype AML in vitro and in vivo models, and overcame venetoclax resistance in TP53 
models (36). However, despite these preclinical and clinical signals, the combination of 

Aurora kinase inhibitors with BCL2 inhibitors has not been reported to be active in DLBCL.

In our screen, 6 of the 25 B-Cell NHL cell lines had strong combination activity (HSA 

> 0.1 and combination Emax > 0.5), including 2 DLBCL cell lines (WSU-DLCL2 and 

KARPAS_422; Figure 5A and 5B). Combination activity was also seen in AML (5 of 19 cell 

lines), Ewing sarcoma (4 of 20 cell lines), plasma cell myeloma (3 of 13 cell lines) and small 

cell lung carcinoma (9 of 36 cell lines) (Figure S10A). In support of our screening results, 

combinations with alternative compounds targeting aurora kinase (danusertib) and BCL2 

(S55748) had combination benefit in DLBCL models WSU-DLCL2 and KARPAS422 

(Figure S11A-B). Except for upregulation of CCNB1, MCL1 and BCL2A1 gene expression 

in the KRAS, BRAF and PIK3CA baskets respectively, other significant biomarkers were 

non canonical to the cell cycle and cell death pathways which are the targets of the drugs 

(Figure S12A and Supplementary Table 17).

One of the responsive DLBCL cell lines, WSU-DLCL2, was selected for further in vitro and 

in vivo validation. The combination of venetoclax plus AZD2811 led to a time dependent 

induction of apoptosis compared to either single agent alone (Figure 5C), and combination 

activity was suppressed by pretreatment of cells with the pan-caspase inhibitor Q-VD-OPH 

(50nM; QVD) (Figure 5D). Additionally, in vivo anti-tumor activity of AZD2811 combined 

with venetoclax was assessed in mice bearing WSU-DLCL2luc xenografts. Once weekly 

intravenous administration of 25 mg/kg AZD2811 resulted in a statistically significant tumor 

growth inhibition (TGI) of 74%, while daily 100 mg/kg venetoclax resulted in 49% TGI but 

failed to reach statistical significance (Figure 5E). While both monotherapies were unable 

to prevent progressive tumor growth, the combination of AZD2811 and venetoclax drove 

striking activity, leading to tumor regression resulting in statistically significant complete 

regression (98% regression) by the third week of dosing. Together these studies support the 

in vitro and in vivo activity of venetoclax + AZD2811 in the setting of DLBCL.
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Capivasertib (AZD5363) plus AZD5991 in endometrial cancer

The combination of the AKT inhibitor capivasertib (AZD5363) with the MCL1 inhibitor 

AZD5991 was one of the most selective combinations, active in only 2 of 41 cancer 

types (Figure S12B). The greatest responses were in endometrial cancer with 3 of the 

10 endometrial cell lines showing strong combination activity (Figure 6A and 6B). Our 

biomarker analysis identified three significant associations involving DDR pathway genes 

(up-regulation of BRCA2, RAD51 and down regulation of ERCC1), and upregulation of 

genes which directly or indirectly activate AKT (e.g CDC25A in the TP53 basket and 

RHOA in the PTEN basket) were associated with combination Emax and Bliss score 

(Supplementary Table 17).

We chose two responder cell lines (AN3-CA and MFE-296) and two non-responder 

cell lines (HEC1 and MFE-280) for further validation. Both cell lines sensitive to the 

combination have PTEN mutations and had elevated baseline levels of phosphorylated AKT 

and PRAS40 (Figure S13A). Selective combination activity was confirmed in responsive 

and non-responsive lines, and notably became apparent as early as 3 hours, before either 

compound had single agent activity (Figure S13B - C). The combination of capivasertib and 

AZD5991 led to apoptosis (Figure 6C - E) as evidenced by induction of cleaved PARP and 

cleaved caspase 3 as early as 1 hour, as well as a marked induction of caspases (Figure 6C). 

Pre-treatment with the pan-caspase inhibitor QVD blunted apoptosis (Figure 6D).

To evaluate the on-target mechanism of action of the combination, we tested alternative 

compounds with similar target specificity. Combination activity was specific to MCL1 

inhibition as both AZD5991 and tapotoclax (an alternative MCL1 inhibitor) showed 

combination benefit with AKT inhibition in responder cells (Figure S14A - B), whereas, 

the BCL2 inhibitor venetoclax (ABT-199) or a BCL-XL selective inhibitor AZ-3202 did not 

(Figure 6F). The combination effect with AZD5991 also occurred with the AKT inhibitors 

MK2206 and ipatasertib, as well as AZD8186 (PI3Kβ/δ), and to a lesser degree BYL719 

(PI3Kα), but not the mTOR1 inhibitor rapamycin (Figure S14A - B and S15). Additionally, 

genetic knockdown of MCL1 in AN3-CA and MFE-296 cells caused a shift and reduction 

in the IC50 of AZD5363 and ipatasertib (Figure S16A-D). Taken together these results show 

marked combination activity through dual targeting the PI3K-AKT-pathway and MCL1 

signaling axes in the setting of endometrial cancer.

Discussion

In this study, 755 genomically-characterized cell lines from 41 cancer types were screened 

with 109 drug combinations using a 7x7 concentration matrix to generate over 4 million 

individual sensitivity measurements, of which more than 2.3 million describe combination 

response. Previous studies have been limited to a maximum of 125 cell lines (7) and 

consequently lack the same diversity of molecular backgrounds and cancer-types, which are 

known to impact treatment response. Furthermore, the use of full dose matrices uniquely 

provides an opportunity to identify effective combinations across a range of clinically-

relevant concentrations with enhanced sensitivity compared to previous studies which have 

adopted a partial matrix approach (6–8,37). We anticipate that this dataset will be a rich 
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resource and contribute to datasets available for these cancer cell lines as part of a Cancer 

Dependency Map (38).

Future analyses investigating combinations not prioritized in this study may yield 

additional actionable combinations, and the data availability will enable this. For example, 

combinations with activity limited to a small number of cell lines could have utility for a 

subset of patients if highly predictive markers could be identified. Similarly, combinations 

which were highly active across multiple tumor types, and so likely to be less tumor cell 

selective, may be tolerable for patients through the use of fractionated and alternative dosing 

schedules.

We capitalized on the availability of multi-omics data across all cell lines to not only identify 

biomarkers within a molecular basket (i.e. clinically-relevant genotypes), but also markers 

of monotherapy and combination response. We report emergent combination biomarkers 

that could not be readily explained by markers of response to the individual drugs. Such 

biomarkers, subject to validation, could provide insights into novel biology and signaling 

pathways driving combination efficacy. Future work incorporating newly available ‘omics’ 

data such as proteomics (39,40) may yield additional markers for combination opportunities 

and enable precision medicine approaches.

Our approach is designed to optimize preclinical interpretation with a focus on actionability. 

Rather than simply selecting combinations which elicited the greatest synergy, we shortlisted 

combinations that were highly active, more effective than monotherapy alone, and cancer-

type selective. Several of the identified combination hits have already undergone clinical 

and preclinical development in the same cancer type as identified in our screen, such as the 

combination of the AZD5991 (MCL1i) + venetoclax (BCL2i) in AML (41) A factor driving 

our selection of combinations for experimental follow-up was having a rationale for at least 

one of the agents in the indication. For example, selumetinib (MEKi) + AZD5991 (MCL1i) 

in AML cell lines, which builds on reports showing combination activity in colorectal 

and melanoma cell models (30). The combination of AZD2811 (AurkBi) + venetoclax 

(BCL2i) was shown here to be active in DLBCL cell lines. This combination has activity 

in AML preclinical models (36). In addition, the combination of capivasertib (AKTi) + 

AZD5991 (MCL1i) has shown activity in breast cancer models (42) and was identified 

here as an active combination in endometrial lines. The PI3K/AKT/mTOR signaling 

pathway is frequently altered in endometrial cancer, therefore capivasertib + AZD5991 

could represent an active and potent combination in this cancer type which currently lacks 

effective treatments. For multiple combinations we confirmed comparable activity using 

alternative inhibitors to the same targets, indicating that ‘on-target’ combination activity can 

be achieved with inhibitors in addition to the specific molecules tested here.

Future work should seek to refine and extend the current study. Focused screens in healthy 

or primary cells, albeit technically challenging, could control for potential combination 

toxicity. Similarly, tumor xenograft studies should be used to assess in vivo activity and 

tolerability. The inclusion of tumor stroma into screens could inform how the tumor 

microenvironment modulates combination response, and reveal new active combinations 

that target tumor cell - stroma signaling. A longer duration of combination exposure 
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to cells might identify combinations that are dependent on cell division, and screening 

in 3D cultures could reveal combinations dependent on cell-cell interactions and 3D 

structure. Furthermore, many current clinically effective oncology drug combinations work 

through targeting tumor heterogeneity, a concept called independent action (43). The large 

heterogeneous panel of cell lines used here should enable analyses for independent drug 

action. Beyond the specific combinations identified, we anticipate that the experimental and 

analytical approach taken here will facilitate the interpretation of future drug combination 

studies. The richness of the full matrix design should enable data-driven approaches to 

better model combinatorial drug responses and to guide more efficient experimental designs 

based on optimized matrices, for example through subsampling the matrix or discontinuous 

dosing gradients (7,44). Furthermore, our study will be of interest to the fields of machine 

learning and computational biology, and as such complements previously published drug 

combination studies (6,9,37,45–47).

In conclusion, this study provides a rich resource and identifies actionable combinations as 

a starting point towards achieving the goal of developing rational combinations to improve 

treatment options for patients.

Methods

Cell Lines

The majority of cell lines were sourced commercially from repositories and cell banks. 

To facilitate high throughput screening all cell lines were maintained and screened in 

one of two media types; DMEM/F12 or RPMI supplemented with 10% FBS, Penicillin-

Streptomycin and Sodium Pyruvate. All cell line stocks used for screening were tested 

for mycoplasma contamination prior to banking using both a polymerase chain reaction (EZ-

PCR Mycoplasma Detection Kit, Biological Industries) and a biochemical test (MycoAlert, 

Lonza). Cultures testing positive using either method were removed from the collection.

To prevent cross-contamination or misidentification, all banked cryovials of cell lines were 

analyzed using a panel of 94 single nucleotide polymorphisms (SNPs) (12) (Fluidigm, 96.96 

Dynamic Array IFC). The data obtained were compared against a set of reference SNP 

profiles that have been authenticated by short tandem repeat (STR) back to a published 

reference (typically the supplying repository). Where a published reference STR profile 

was not available, the reference SNP profile is required to be unique within the collection/

dataset. A minimum of 75% of SNPs is required to match the reference profile for a sample 

to be positively authenticated.

In addition, cell line underwent authentication via STR profiling at CellBank Australia 

(Westmead, Australia) in 2022. STR loci were amplified using the PowerPlex® 16HS 

System (Promega) and the data were analyzed using GeneMapper™ ID software 

(ThermoFisher). The models were typically maintained for less than a month between 

thawing and being screened. The cell line stocks were authenticated using SNP and STR 

profiling. Details of cell lines are in Supplementary Table 1 and provided on the Cell Model 

Passport database (11).
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Compounds

Compounds were sourced from commercial vendors or supplied by pharmaceutical 

collaborators. The purity of all compound supplied by AstraZeneca compound management 

was >85% as determined by UV analysis of liquid chromatography-mass spectroscopy 

(LCMS) chromatograms at 254 nM and substantiated using the TAC (Total Absorption 

Chromatogram). DMSO solubilised compounds were stored at room temperature in a 

low humidity (<12%), low oxygen (<2.5%) environment. Details of compounds and drug 

combinations are in Supplementary Table 2. We included 3 compounds in our screen outside 

the AstraZeneca portfolio that have not yet completed clinical trials that are available for 

purchase from vendors: SCH7729 (48), prexasertib (49), SG3199 (50).

Screening

Cells were transferred into 1536 microwell plates within 7.5μl of the appropriate media. 

The seeding density of each cell line was optimized to ensure they remained in the growth 

phase throughout the duration of the assay. Assay plates were then incubated at 37°C in a 

humidified atmosphere at 5% CO2 for 24 hours prior to dosing with the compounds. Final 

DMSO concentrations were typically 0.2% and the duration of drug treatment was 72 hours. 

Cell viability was measured using Cell Titer Glo 2.0 (Promega), 2.5μl was added to each 

well, plates incubated for 10 minutes and quantification performed using a luminescence 

microplate reader.

Controls

Each assay plate contains widely distributed controls wells including, two sets of negative 

controls n=155 (wells receiving either no treatment or those treated with DMSO only), 

positive controls n=32 (wells treated with either MG-132 or Staurosporine) and blank 

wells n=28 (media only, no cells). To ensure high quality data we used quality control 

metrics of the screen: 1536 microtiter screening plates passing coefficient of variation 

(CV; threshold: CV≤0.17985, median: 0.1228, range: 0.1252 - Figure S1A) and Z-factor 

(threshold: Z-factor≥0.3, median: 0.498 and range: 0.54945 for both positive controls - 

Figure S1B) thresholds.

Quality Control

Strict quality controls were applied to each assay plate and across the screen. An assay plate 

is required to have a negative control coefficient of variation (CV) below 0.18 which is 

calculated using the DMSO treated wells (NC-1).

CV = σ N/ μ N

With σN the standard deviation of the negative controls and μN the mean of the negative 

controls.

The effect of DMSO on cell viability is also assessed using the untreated and DMSO treated 

negative control wells. The DMSO concentration in the negative control wells is equivalent 

to that of the combination treatment wells (0.2%). Plates are required to have an NC-0/NC-1 

ratio of between 0.8-1.2 calculated using the mean of each negative control. Z-factors are 
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calculated using the negative control (NC-1) and each positive control (PC1, PC2 & B). 

Where cell lines are sensitive to a positive control (NC-1/PC ratio ≥ 4) the Z-Factor is 

required to be above 0.3 (a small proportion of lines ~5% have a lower threshold of 0.2).

Z−factor = 1 − 3∗( σ P + σ N)/( μ N − μ P)

With σN and σP the standard deviation of the negative and positive controls, and μN and μP 

the mean of the negative and positive controls, respectively. Across all plates in a screen the 

mean and median Z-Factors will be >0.4.

A subset of seven cell lines (A375, HT-29, PC-14, U-2-OS, SW620, C32 and MHH-ES-1) 

are screened in technical triplicate on six occasions. This generates 18 replicates for 

every compound across each of the seven lines, provided all plates meet quality controls 

and enables reproducibility to be investigated. Correlations between single agent and 

combination and synergy metrics for replicated cell lines are shown in Figure S1C.

Additionally, we compare the response of each drug across all the technical and biological 

replicates for the seven replicate cell lines to identify any systematic error or inconsistency. 

Drugs were flagged as failing QC when they demonstrate the following: either significant 

inconsistency across two or more dose points, or the behavior is observed in two or more 

of the replicate lines. Compounds meeting these criteria were failed and removed from the 

screen.

Curve fitting and drug responses

Fluorescent intensity measurements of drug-treated wells (Cell Titer Glo assay) were 

normalized to a cell growth inhibition scale between a maximum of 1 (mean of blank 

wells) and a minimum of 0 (mean of DMSO control wells). Dose responses on this scale for 

individual library drugs are fitted to a two parameter logistic curve using a non-linear mixed 

effects model (51). The fitted response at the highest screened dose is reported as the single 

agent Emax. Combination treatments are normalized but not fitted. As a precaution against 

outlying results, the combo Emax is the second highest reported inhibition value for a given 

7x7 matrix. Results are in Supplementary Table 18.

Synergy measurements

Synergy of combinations is measured using two metrics, Bliss excess (15) and Highest 

Single agent (HSA) (16,52). For Bliss excess, the single agent activities of Drug A and Drug 

B must be expressed as a probability between 0 and 1 (0 ≤ E A ≤ 1 and 0 ≤ E B ≤ 1). The 

observed effect of the combination is also expressed as a probability: (0 ≤ E AB ≤ 1). This 

means that the expected Bliss additive effect can be expressed as EA + EB (1 − EA) = EA + 

EB − EAEB. A positive ‘excess’ over the expected Bliss additive effect defines a synergistic 

response. For HSA, a combination of Drug A and Drug B is classified as synergistic if 

the effect of the combination is larger than the effect of either Drug A alone or Drug B 

alone, whichever is larger: a positive HSA value therefore indicates synergy. Both metrics 

are reported as either the highest Bliss/HSA value found across the entire 7 x 7 dose matrix 

(‘Bliss matrix’, ‘HSA matrix’), or as the highest value measured across the 25 possible 3 x 
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3 submatrices, or ‘windows’, across the 7 x 7 dose matrix (‘Bliss window’, ‘HSA window). 

Synergy metrics are calculated in this way to provide global and local views of synergy to 

enable identification of local, dose-specific maxima of synergy that may be ‘canceled out’ 

when considering the full dose matrix. During the course of screening it was decided that 

the top two highest concentrations for the wee1 inhibitor AZD1775 were too high to give 

biologically-relevant results, and so for these combinations the 7 x 7 matrix was cut down to 

5 x 5, removing the two highest doses of both drugs for AZD1775-containing combinations 

only. Results are in Supplementary Table 18.

Biomarkers

GDSCTools (20) was used to perform ANOVA biomarker discovery using single agent 

and combination Emax, and Bliss matrix as inputs. Significance cutoffs of p<=0.001 and 

FDR <=10% and both Glass deltas >=1 were applied to filter results. Biomarkers were 

identified in either pan-cancer, within common cancer types, or within specific genomic 

‘basket’ (common genotypes: TP53, KRAS, PIK3CA, MLL2, PTEN, BRAF) settings by 

subsetting the cell lines used for each ANOVA using information on cancer type from Cell 

Model Passports (11,13), or information on mutational status in the multi-omics binary 

event matrix (13). 5,498,585 tests were performed, of which 11,611 passed significance 

thresholds. Results are in Supplementary Table 13.

Biomarker features

A multi-omics binary event matrix (‘MOBEM’) of mutational, gene fusion, CNA and 

methylation features (number of features=1,073) previously found to be informative for 

predicting single agent drug response in cell lines (13) were used as a feature dataset 

for biomarker discovery - the ‘Sanger MOBEMs’. This was supplemented with additional 

binary genomic and molecular biology features (number of features = 586, the ‘AZ 

MOBEMs’) curated from public datasets. To identify CRISPR gene dependencies that are 

significantly associated with clinically relevant molecular alterations, we implemented a 

framework that integrates TCGA(The Cancer Genome Atlas (RRID:SCR_003193)) data 

with DepMap (Cancer Dependency Map Portal (RRID:SCR_017655)) annotations. These 

alterations are either recurrently mutated genes (indicated by the gene name) or recurrent 

chromosomal regions that are lost or gained (indicated as gain:cna or loss:cna and a 

gene name where a known cancer gene is present in that chromosomal segment). All 

clinically recurrent mutations and copy number alterations identified in each tumor type 

are mapped on to >1000 cancer cell lines. We defined whether a gene was an oncogene 

or a tumor suppressor gene using the OncoKB database (53). Copy number regions in cell 

lines were defined as ‘gain’ or ‘loss’ if log2(Segment_Mean) >1 or <-1 respectively for 

that region. We defined for all common TCGA tumor types (The Cancer Genome Atlas 

(RRID:SCR_003193)):

1. Driver-mutated Cancer Genes (CGs) specific for each tumor type (54,55)(The 

Cancer Genome Atlas (RRID:SCR_003193))

2. Recurrent copy number regions amplified or deleted per tumor type(56)

3. ER expression status (Breast cancer) and ERBB2 (HER2) expression
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4. Microsatellite instability (MSI)(57)

ER/ERBB2 status - we used expression for ER and ERBB2 as defined by the CCLE team 

at the Broad Institute. For cell lines with RNA-seq data, they used a probabilistic model to 

classify the status. The classification was consistent in both RNA-seq and RPPA, and with 

the previous knowledge. This classification was equivalent to log2(RPKM+1) > 1.5. For cell 

lines for which they did not have RNA-seq data, the status from published data was used.

Additionally, previously published RNAseq gene expression data (21) was filtered to a panel 

of 672 genes representing known targets of the drugs used in the screen and their family 

members, genes encoding receptor tyrosine kinases, genes associated with the DNA damage 

superpathway (58), plus genes known to be clinically relevant in the oncology clinic (22) 

and genes annotated as mutated in the MOBEM. The gene expression dataset was then 

binarised across the relevant cell line panel subsets by a Z score >= 2 equating ‘GeneX_up’ 

and a Z score <=-2 equating to ‘GeneX_down (number of features=1,344). Additionally, 

binarised PAM50 status (number of features = 9) (23,24) was also used as a biomarker 

feature for breast carcinoma cell lines.

Protein interaction and synthetic lethality assessment

Protein interaction maps were generated in STRINGdb (59) with the following ‘source’ 

filters applied – Experiments, Databases, Gene Fusions. Each edge captures confidence in 

the interaction with the minimum threshold of 0.4. Synthetic Lethality assessment of all 

broadly active combination targets was performed using SynLethDB 2.0 (60).

Enrichment assessment of synergistic pathways over random

All synergistic combinations with targets and pathways (Supplementary Table 18) and 

implemented the threshold 0.1 HSA, 0.5 Emax to define efficacious combinations (‘n’). 

Next, we calculated the total number of combinations per pathway using the full data 

matrix represented in Fig. 1C ('Nc'). In order to assess randomness within the combination-

pathway relationship, we generated random numbers (from 1-n) and assigned them to 

each pathway combination. This was performed by bootstrapping 10-fold with a upper 

limit of 'n' and calculating average for each pathway combo category (‘nb’). The number 

of pathway combinations for only synergistic combinations per category ('nc'). Ratio of 

pathway combinations with synergistic combinations vs total number of combinations. 'Es 
= nc/Nc' for each pathway category - Es (enrichment for synergy). Pathway combinations 

with weight from bootstrap 'Er = nb/Nc' for each pathway category - Er (enrichment by 
random). Enriched for synergy over random if Es > Er. Code for this analysis is included in 

the publication’s Github repository.

Additional Cell Culture

WSU-DLCL2 cells are maintained in RPMI-160 (Gibco) supplemented with 10% (v:v) 

heat-inactivated fetal bovine serum (Sigma Aldrich; Cat. No. F4135), 2 mM L-Glutamine, 

and 50 U/mL Penicillin-Streptomycin.

NOMO1 cells were obtained from DSMZ and maintained in RPMI-160 (Gibco) 

supplemented with 10% fetal bovine serum and 5% L-Glutamine.
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AN3-CA cells were obtained from ATCC and maintained with DMEM supplemented with 

1-% FBS and 1% L-Glutamine. HEC1 were obtained from ATCC and maintained with 

McCoy’s 5a Medium Modified supplemented with 10% FBS. MFE-280 were obtained by 

ECACC and MFE-296 were obtained from DSMZ. Both cells were maintained in MEM 

with 10% FBS and 1% L-Glutamine. All cells were incubated at 37 °C under 5% CO2. All 

cell lines were authenticated and tested negative for mycoplasma contamination.

Drug treatments and cell assays

For AZD2811 in combination with venetoclax studies, cells were seeded at 0.5E6 cells/mL 

in culture medium containing either 50 μM Q-VD-OPH (Cayman Chemical; item no. 15260) 

pan-caspase inhibitor or vehicle 16 hours prior to dosing with compounds. Compounds were 

solubilized in DMSO at a stock concentration of 10 mM and diluted in sterile PBS to a 10X 

solution. Falcon 96-well White Flat Bottom plates (Corning; cat. No. 353296) were seeded 

with 10X compounds and cells were added on top for a final assay volume of 100 μL/well. 

5 μM Staurosporine (Sigma Aldrich; cat. No. S5921) was used as a positive control for cell 

death. After 72 hours, 50 μL of CellTiter Glo (Promega; cat. No. G7572) was added on top 

of the cells, the plates were shaken for 2 minutes, and then left to incubate protected from 

light at room temperature for 30 minutes before reading luminescence on the Synergy Neo2 

(BioTek) plate reader.

The Caspase-Glo-3/7 time course assay was conducted similarly to the 3-day growth assay, 

except that 100 μL/well of Caspase-Glo-3/7 (Promega; cat. No. G8090) was added onto the 

cells at the time point. Separate plates were used for each time point.

For the AKT inhibitor capivasertib in combination with the MCL1 inhibitor AZD5991 

studies cells were seeded overnight on white opaque plates (384w; Corning) at 2500-5000 

cells per well in a 30μL volume. Combinations were dosed using 5-point half-log dilutions 

at indicated doses using an Echo 555 acoustic liquid dispenser (Labcyte). Cell viability was 

measured at indicated time points after drug incubation using CellTiter-Glo (Promega). 

The percentage of viability was calculated by normalizing drug-induced luminescent 

measurements to a negative control (DMSO only). For pre-treatment studies, DMSO or 

QVD was added to the media when cells were seeded; 16 hours later the combination was 

added and cell viability was measured at indicated time points.

For measurement of caspase activation, cells were incubated with compounds for 6 

hours followed by addition of Caspase-Glo 3/7 (Promega) following the vendor-supplied 

protocol. The percentage of caspase activation was calculated by normalizing drug-induced 

luminescent measurements to maximum (100% mixture of 0.5 mM AZD5991 and 0.5 mM 

AZD4320 inhibitors) and minimum (dimethyl sulfoxide [DMSO] only) controls.

For drug treatments used for light microscopy or harvesting protein, cells were seeded 

overnight in 6-well plates (Corning) at 30-80% confluency. Compounds were manually 

added at indicated doses and harvested at indicated time points.

For the cell viability 6 x 6 drug combination matrix studies 1000 – 2000 cells were seeded in 

384 black well plates (Greiner Bio-One Ltd, Stonehouse, #781090) and incubated overnight 
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at 37 °C, 5% CO2. Cells were dosed using an Echo 555 acoustic liquid dispenser (Labcyte). 

Cell viability was measured at the time of dosing (day 0) and 72 hours after drug incubation 

using CellTiter-Glo (Promega) according to the manufacturer’s instruction. Cell viability 

values were normalized to the day 0 and the day 3 DMSO and were analyzed using 

Genedata Screener to generate heatmaps and calculate the HSA synergy score.

For siRNA experiments, AN3-CA (30nM siRNA) and MFE-296 (40nM siRNA) with 9000 

cells per 96 well) were reverse transfected using lipofectamine RNAimax and siRNAs 

of a non-targeting pool (Dharmacon, D-001810-10-05) or a MCL1 pool (Dharmacon, 

L-004501-00-0005). After 18 hrs cells were treated with a drug dose range of 0.001 to 

10uM. 72hrs later viability was measured with CTG and signal normalized to the DMSO 

control.

Western Blot

Cells were collected and centrifuged before the pellet was lysed in a cold RIPPA buffer 

(Thermo Scientific 89901) supplemented with HALT protease and phosphatase inhibitor 

cocktail (Thermo Fisher; Cat. No. 78440). Samples were prepared with NuPAGE LDS 

Sample Buffer (4X) (Thermo Fisher; Cat. No. NP0007) and boiled at 95°C for 5 minutes. 

Protein samples were quantified using Pierce BCA Protein Assay Kit (Thermo scientific 

23225) according to the manufacturer instruction before equal amounts of proteins were 

loaded and separated on to 4-12% NuPAGE or Bolt Bis-Tris protein gels, transferred to 

nitrocellulose membranes and blocked with 5% (wt/vol) nonfat dry milk in TBST (20 

mM Tris-HCl (pH 7.6), 137 mM NaCl, 0.1% Tween-20). Membranes were probed with 

indicated primary antibodies overnight at 4 °C. HRP-conjugated secondary antibodies (CST 

7074) (1:2000) were diluted in 5% (wt/vol) nonfat dry milk in TBST and detected on 

autoradiographic films or using G:Box gel doc system (Syngene) or Amersham ImageQuant 

800 imager (Cytiva) after incubating with the ECL or SuperSignal West Dura reagents 

(Pierce).

Antibodies

The following antibodies were used in this study: pPRAS40(T246) catalog number CST 

2997; pAKT(S473) CST9271; total AKT CST 4691; cleaved PARP CST 9542; cleaved 

caspase 3 CST 9664; vinculin Sigma V9131; GAPDH CST 2118; pERK CST 9101; BIM 

CST 2933; β-Tubulin CST 2146; MCL1 CST 5453.

Xenograft Efficacy Studies

All experimental work involving the use of laboratory animals was conducted in accordance 

with the recommendations set forth in the Guide for the Care and Use of Laboratory 

Animals, 8th edition. Mice were housed under pathogen-free conditions in individual 

ventilated cages at the AAALAC (Association for the Assessment and Accreditation of 

Laboratory Animal Care) accredited facilities at AstraZeneca (Waltham, MA) or Champions 

Oncology (Rockville, MD). All studies were reviewed and approved by the respective 

Institutional Animal Care and Use Committees (IACUC); work at Champions Oncology was 

also reviewed for compliance with AZ’s global ethics standards. All results were reported 

following the Animal Research: Reporting In Vivo experiments guidelines.
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C.B.-17 scid (severe combined immunodeficient) mice were purchased from Charles River 

Laboratories (Wilmington, MA) for the WSU-DLCL2 study or Taconic (Germantown, NY) 

for the NOMO-1 study. 5-8 week old mice were implanted with either five million luciferase 

tagged WSU-DLCL2 tumor cells (WSU-DLCL2luc) or two million NOMO-1 cells with 

50% matrigel (Corning). Tumor volumes (measured by caliper), animal body weight, and 

tumor condition were recorded twice weekly for the duration of the study. The tumor 

volume was calculated using the formula: length (mm) x width (mm)2/0.52. Tumor growth 

inhibition from the start of treatment was assessed by comparison of the differences in tumor 

volume between control and treated groups

Statistical significance was evaluated using a two-way ANOVA with Tukey’s Test. Statistical 

significance is identified as follows: * 0.05 < p < 0.01, ** 0.01 < p < 0.001. For efficacy 

studies, mice were randomized based on tumor volumes using stratified sampling, and 

enrolled into control and treatment groups.

Software

Figures 1A and 3A were created using a licensed version of BioRender.com. Figures 4A, 

4B, 5A, 6A were generated using TIBCO Spotfire Analyze. Matrices in Figures 6C, 6D, 

6F and S8A-C, S9A-C, S11A-B, S13A-B, S14A-B, and S15A were generated in Genedata 

Screener.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data Availability

Screening data is available through Figshare (https://figshare.com/projects/Large-scale_pan-

cancer_cell_line_screening_identifies_actionable_and_effective_drug_combinations/

163378). Combination response data is available via the GDSC Combinations 

Website (https://gdsc-combinations.depmap.sanger.ac.uk/). Combination response data 
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is visualized and explored at the screen, cancer type, combination and cell line-combination 

level. Additionally, there are links to other widely-used cancer pharmacogenomics 

resources such as CancerRXGene (61), Cell Model Passports (11,61), Depmap 

(38) and Project SCORE (62), enabling researchers to fully explore their combinations 

and cancer type of interest in the context of other large public pharmacogenomic datasets.
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Statement of significance

We present the largest cancer drug combination screen published to date with 

7x7 concentration response matrices for 109 combinations in over 750 cell lines, 

complemented by multi-omics predictors of response and identification of ‘emergent’ 

combination biomarkers. We prioritize hits to optimize clinical translatability, and 

experimentally validate novel combination hypotheses.
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Figure 1. Dose response matrix combination screening landscape.
A: Schematic of screen and analysis. Created with Biorender.

B: Overview of cell line cancer types.

C: Drug combinations screened grouped by drug target pathways.

D: Combination Emax for 755 cell lines screened with 109 combinations. White represents 

combination/cell line pairs not screened.
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Figure 2. Shortlisting for active and selective combinations.
A: Growth inhibition (Emax) and HSA matrix plots were generated for each combination in 

every cell line. Combination Emax and HSA were used to identify active combinations with 

benefit over single agent (s.a.).

B: Combinations were filtered based on their activity and selectivity in the tested cancer 

types.
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C: Activity of each combination tested in this screen in 41 cancer types. The fraction of 

cell lines where the combinations are active is indicated and combinations are grouped by 

category.

D and E: Top 10 hits in (D) hematological cancers and (E) solid tumors. Percentage of 

responder cell lines for each combination in each cancer type plotted versus cancer-type 

specificity scores. Each color represents a cancer type and combination categories are 

represented by different shapes. CD = cell death, DDR = DNA damage response, CS = cell 

signaling, chemo = chemotherapeutic agents.
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Figure 3. Multi-omics biomarkers of combination activity.
A: Schematic of biomarker pipeline including molecular features incorporated and analyses 

performed. Created with BioRender.com.

B: Volcano plot of biomarkers from all analyses. Statistically significant associations are 

coloured by analysis type, non-significant biomarkers are colo red gray.

C: Venn diagrams of the biomarkers from different inputs leading to the identification of 

emergent biomarkers. Note that single agent biomarkers may be duplicated for the multiple 

combinations in which the single agent has been screened: the Venn diagram depicts unique 

single agent biomarker associations only.

D: Significant enriched pathways for emergent biomarkers in each drug combination 

category based on adjusted p values. * 0.05 < p < 0.01, ** 0.01 < p < 0.001, *** p < 

0.001 (CD = cell death, CS = cell signaling, chemo = chemotherapeutic agents).
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Figure 4. Combination activity of selumetinib plus venetoclax or AZD5991 in AML.
A and B: Combination Emax versus HSA scores in 19 AML cell lines exposed to 

selumetinib combined with (a) venetoclax or (b) AZD5991.

C and D: NOMO1 growth inhibition and HSA excess to the combination of selumetinib with 

(c) venetoclax or (d) AZD5991.

E and F: Western blot for apoptosis markers in NOMO1 cells following time course 

treatment with selumetinib (300nM) combined with (e) venetoclax (300 nM) or (f) 

AZD5991 (100nM).

G: Tumor growth in NOMO1 xenografts treated with selumetinib, AZD5991 or venetoclax 

alone or in combination for 28 days (n=5 each arm). Control and monotherapy experimental 

arms were halted once the maximum permitted tumor volume (2000cm3) was reached. Data 

are plotted as mean tumor volume +/- SEM.
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Figure 5. AZD2811 plus venetoclax combination in DLBCL.
A: Combination Emax versus HSA in 25 B-cell NHL cell lines including 11 DLBCL cell 

lines. Cell lines with high combination activity (combination Emax > 0.5 and HSA > 0.1) 

are in red.

B: Growth inhibition and HSA excess matrices in DLBCL cell line WSUDLCL2.

C: Western blot for cleaved PARP in WSUDLCL2 cells treated with AZD2811 or 

venetoclax alone or in combination.

D: Matrix plots indicating combination activity (measured by growth inhibition) in 

WSUDLCL2 cells pretreated with pan caspase inhibitor Q-VD-OPH and exposed to 

AZD2811 combined with venetoclax for 72 hours. Matrix values represent cell viability 

normalized to day 0 on the scale of 0 - 200 (value < 100 = percentage of growth inhibition, 

value > 100 = cell death).

E: Tumor growth in WSUDLCL2 xenografts treated with AZD2811 or venetoclax alone or 

in combination for 46 days (n = 6 per group, * 0.05 < p < 0.01, ** 0.01 < p < 0.001). Data 

are plotted as mean tumor volume +/-SEM.
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Figure 6. Capivasertib (AZD5363) plus AZD5991 combination activity in endometrial cell lines.
A: Screening results of combination Emax versus HSA in endometrial cell lines treated with 

AZD5363 plus AZD5991. Cell lines with high combination activity are in red.

B: Representative growth inhibition and HSA excess matrix plots in endometrial AN3CA 

cells.

C: Matrix plot measuring apoptosis with AZD5991 and AZD5363 at indicated doses for 6 

hours in AN3-CA cells.

D: Matrix plots showing viability for AN3-CA cells pretreated with DMSO or QVD 

(caspase inhibitor) for 16 hours prior to the combination for 6 hours.

E: Western blot analysis in AN3-CA cells treated with AZD5363 (1μm), AZD5991 (500 

nM), or in combination at indicated times.

F: Matrix plots showing viability in AN3-CA cells treated with AZD5991 or Venetoclax 

(ABT-199-BCL2 inhibitor), AZD4320 or AZ3202 (BCL-XL inhibitors) with AZD5363 at 

indicated doses for 6h.
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