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Abstract
Auditory neurons are often described in terms of their spectrotemporal receptive fields (STRFs).
These map the relationship between features of the sound spectrogram and neurons’ firing rates.
Recently we showed that neurons in the primary fields of the ferret auditory cortex are also subject
to gain control: when sounds undergo smaller fluctuations in their level over time, the neurons
become more sensitive to small level changes (Rabinowitz et al., 2011). Just as STRFs measure
the spectrotemporal features of a sound that lead to changes in neurons’ firing rates, in this study
we sought to estimate the spectrotemporal regions in which sound statistics lead to changes in
neurons’ gain. We designed a set of stimuli with complex contrast profiles to characterize these
regions. This allowed us to estimate cortical neurons’ STRFs alongside a set of spectrotemporal
contrast kernels. We find that these two sets of integration windows match up: the extent to which
a stimulus feature causes a neuron’s firing rate to change is strongly correlated with the extent to
which that feature’s contrast modulates the neuron’s gain. Adding contrast kernels to STRF
models also yields considerable improvements in the ability to capture and predict how auditory
cortical neurons respond to statistically complex sounds.

Introduction
One of the central questions that we ask about sensory neurons is what stimulus features
they encode in their spike trains. When characterizing neurons throughout the auditory
pathway, modellers and electrophysiologists have long employed the spectrotemporal
receptive field (STRF) to answer this question (Aertsen et al., 1980; Aertsen and
Johannesma, 1981; deCharms et al., 1998; Theunissen et al., 2000; Klein et al., 2000; Miller
et al., 2002; Escabí and Schreiner, 2002; Linden et al., 2003; Fritz et al., 2003; Gill et al.,
2006; Christianson et al., 2008; Gourévitch et al., 2009; David et al., 2009). The success of
STRFs at this task, however, has been somewhat limited (Sahani and Linden, 2003;
Machens et al., 2004), necessitating the development of nonlinear extensions – such as
adding input nonlinearities (Ahrens et al., 2008b), output nonlinearities (Atencio et al., 2008;
Rabinowitz et al., 2011), feedback kernels (Calabrese et al., 2011), simplified second-order
interaction terms (Ahrens et al., 2008a), and multiple feature dimensions (Atencio et al.,
2008).

One reason for the STRF’s limited predictive power is that the encoding of stimulus features
by auditory neurons is modulated by stimulus context (Blake and Merzenich, 2002;
Valentine and Eggermont, 2004; Ahrens et al., 2008a; Gourévitch et al., 2009). For neurons
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in the mammalian primary auditory cortex, the statistics of recent stimulation are a major
modulatory influence on the encoding of sound. We recently described a gain control
process that is in place by this stage of the auditory pathway (Rabinowitz et al., 2011):
neurons in ferret auditory cortex adjust their gain according to the contrast of sound
stimulation. When sounds, on average, only change in level by a small amount over time,
the neurons scale up their sensitivity to the small fluctuations in sound level. Other authors
have observed similar compensatory effects when changing stimulus statistics, from the
auditory periphery (Joris and Yin, 1992) to the midbrain (Rees and Møller, 1983; Kvale and
Schreiner, 2004; Dean et al., 2005; Nelson and Carney, 2007; Dahmen et al., 2010) and the
higher auditory pathway (Nagel and Doupe, 2006; Malone et al., 2010).

Just as STRFs estimate which features of a spectrotemporally complex stimulus drive a
neuron to spike, we might ask a similar question of gain changes. What features of a
spectrotemporally complex stimulus drive a neuron to change its gain? Our previous work
demonstrated, at a coarse, population level, that gain changes are predominantly driven by
contrast in sound frequency bands that are local to cortical neurons’ best frequencies.
However, we do not know how this dependency operates on a neuron-by-neuron basis, or
what its relationship is to individual neurons’ STRFs.

To answer these questions, we recorded from neurons in the primary auditory fields of the
anesthetized ferret, while presenting a set of stimuli with complex patterns of contrast. For
each neuron, we determined the spectrotemporal window within which sound contrast
informs that neuron’s gain. We did this by extending the notion of the STRF, and estimating
a set of “gain receptive fields”, i.e. spectrotemporal kernels for stimulus contrast. This class
of contrast kernel models extends the linear-nonlinear (LN) framework of models by
capturing the modulation of neurons’ input/output functions by patterns of stimulus
statistics.

Several possibilities could have arisen. The gain of neurons may be a function of the sound
statistics in a broad or a narrow set of frequency bands, and may depend only on the
statistics within the short time windows of STRF or on those over longer periods. Our
results reveal the relationship between the range of stimulus features that auditory cortical
neurons encode, and the range of stimulus statistics which modulate this encoding.

Materials and Methods
Animals

All animal procedures were approved by the local ethical review committee and performed
under license from the UK Home Office. Full surgical procedures are provided in Bizley et
al. (2010). Briefly, three female adult pigmented ferrets were chosen for
electrophysiological recordings under ketamine (5 mg/kg/hr) and medetomidine (0.022 mg/
kg/hr) anesthesia. Bilateral extracellular recordings were made in the two auditory cortices
using silicon probe electrodes (Neuronexus Technologies, Ann Arbor, MI) with 16 sites on a
single probe, vertically spaced at 50 μm. Spikes were sorted offline using spikemonger, an
in-house software package. Stimuli were presented via earphones, as described in
Rabinowitz et al. (2011).

Stimuli
The main stimulus used was a variant of the dynamic random chord (DRC) stimuli
presented in Rabinowitz et al. (2011), which we define here as Random Contrast DRCs
(RC-DRCs). As with ordinary DRCs, RC-DRCs comprise a sequence of chords, composed
of tones whose levels were drawn from particular distributions. For these RC-DRCs, we
used NF = 23 pure tones, with frequencies log-spaced between flow = 500 Hz and fhigh =
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22.6 kHz at 1/4 octave intervals. The levels of the tones were changed every 25 ms, with 5
ms linear ramps between chords. As in Rabinowitz et al. (2011), the amplitude of each tone
was always non-zero.

The major distinguishing feature of RC-DRCs is the organisation of these chords into
segments of several seconds’ duration. In each segment, the distribution of levels for each of
the NF bands had different parameters. A random subset of Nhigh of the NF tones had their
levels drawn from a high contrast (half-width wL = 15 dB; standard deviation σL = 8.7 dB;
contrast c = 92%) uniform level distribution, while the remaining Nlow = NF – Nhigh tones
had their levels drawn from a low contrast (wL = 5 dB; σL = 2.9 dB; c = 33%) uniform level
distribution. Both tone distributions had mean level μL = 40 dB SPL; these are shown in
Figure 1C. By virtue of the 3 s duration, each segment consisted of a sequence of 120
chords, sufficient for a rough approximation of the output nonlinearity during that contrast
condition (as explained below).

In order to explore as large a region of contrast space as possible, between NS = 80 and NS =
120 segments were presented at each electrode penetration. Two types of segment were
necessary to establish baselines for gain measurements: one where all tone distributions
were low contrast, and one where all were high. Given the importance of these two baseline
conditions, 9 of the NS segments were reserved for each. The remaining segments all had a
randomized partition of tones into Nhigh = 5 high contrast bands and Nlow = 18 low contrast
bands, as described above. Thus, the set of segments provided an ensemble of contrast
conditions in an analogous way to how an ordinary DRC would provide an ensemble of tone
level conditions.

The segments were packaged into individual RC-DRC sequences, each consisting of 12
segments. The first segment of each sequence was 5 s in duration, so that the first 2 s of each
stimulus presentation could be discarded. This was necessary as units often showed transient
responses to the onset of each DRC sequence that depended on the duration of silence since
the end of the last sequence presentation (typically 1-2 s). From each 3 s segment, the first
0.5 s of data was set aside for the analysis of Temporal Contrast Kernels (TCKs), with the
remaining 2.5 s of data used to fit Spectral Contrast Kernels (SCKs). The 38 s sequences
were presented 10 times each, randomly interleaved.

Unit selection criteria
Only units which modulated their firing rate in response to the RC-DRCs in a reliable,
repeatable manner were included for analysis. This was measured via the noise ratio (NR;
see Sahani and Linden (2003) and Rabinowitz et al. (2011)) for the PSTH of each unit:

(1)

The PSTH was binned at 25 ms, with bins offset by between 0 and 25 ms to allow for
response latency. The offset was chosen on a unit-by-unit basis to minimize the NR. This
same offset was used to bin all PSTHs throughout the study; fixing offsets at 10 ms
produced similar results. The maximum admitted NR was 40 (estimated across the whole
ensemble of stimuli); units with NR > 40, i.e. whose explainable variance was less than
~2.5% of the total variance, were excluded from analysis. Models were evaluated while
taking NR into consideration (see below).
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Notation
We use the following notation throughout this paper. Each DRC stimulus grid is uniquely
identified by a matrix (i.e. 2-tensor), Ltf, where each component of the matrix describes the
sound pressure level (in dB SPL) of a tone with frequency f at time t. To simplify the
notation used for fitting spectrotemporal receptive fields (STRFs) below, we define the 3-
tensor Ltfh as a time-lagged version of Ltf: where h is a history index, and the elements of
Ltfh are defined as the elements of Ltf from h time bins in the past, i.e. L(t–h),f. The (trial-
averaged) response is denoted as yt, and any model predictions of this response are denoted

. Once the STRF was fitted, it was fixed; the output of the STRF model for a given unit is
denoted xt throughout.

As with the tone levels, the contrast profile of the stimulus is denoted by σtf; this matrix (or
2-tensor) defines the contrast of the level distribution for the tone at frequency f and time t.
Since only two distributions were presented, we define σ = 0 for the low contrast
distribution (yellow in Figure 1B-D) and σ = 1 for the high contrast distribution (red in
Figure 1B-D). Similarly, the recent history of contrast is denoted by σtfh, whose elements
are defined by the time lagged contrast profile, as σtfh = σ(t–h), f.

Model structure: STRFs and the LN model
The models developed in this paper begin with spectrotemporal receptive fields (STRFs).
These were estimated by correlating the stimulus history, Ltfh, with the spike peri-stimulus
time histogram (PSTH), yt, at a 25 ms resolution. This involved fitting the general model:

(2)

STRFs that are separable in frequency, f, and time history, h, often provide better fits than
fully in-separable STRFs (Linden et al., 2003; Simon et al., 2007; Ahrens et al., 2008a;
Rabinowitz et al., 2011). This was generally the case for this dataset as well. Thus, we

assume kfh = kf  kh where  is the outer product. This is illustrated in Figure 2B.

We also fitted the majority of the models presented here using inseparable kernels as the
first stage of the linear-nonlinear and contrast kernel models. Prediction scores for these
models (evaluated using Equation (23) below) were typically 2 – 5 percentage points lower
than the corresponding models fitted using separable kernels. Nevertheless, the general
trends as presented in this paper were the same (data not shown).

For comparison with the contrast kernel models developed below, the linear STRF was
refined by fitting a static linear-nonlinear (LN) model to units’ responses (Chichilnisky,
2001; Simoncelli et al., 2004). This involved passing the output of the linear model, xt,
through a static (i.e. memory-less), nonlinear function F, such that . As per
Rabinowitz et al. (2011), a logistic curve (sigmoid) was fitted to the data via gradient
descent:

(3)

The parameters a through d are illustrated in Figure 2C. They can be interpreted as follows:
a, as the minimum firing rate; b, as the output dynamic range; c, as the stimulus inflection
point; and d, as the (inverse) gain.
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Model structure: contrast kernels
To consider how the ongoing contrast profile of the stimulus affects the coding of a cortical
neuron, we extended the static linear-nonlinear model above by rendering each of the four
parameters, a through d, dependent on the recent history of contrast:

(4)

There is considerable freedom in Equation (4) to specify the form of the functions a[σtfh]
through d[σtfh]. The simplest assumption, which we consider here, is that these are linear
functions of σtfh. This is motivated by three factors: symmetry with the STRF; a
linearization of the results in Rabinowitz et al. (2011); and simplicity. The full model takes
the form:

(5)

(6)

(7)

(8)

(9)

For brevity of notation, we use the generic parameter θ to denote each of the four
nonlinearity parameters, a, b, c, and d. Thus Equations (6) – (9) can be written:

(10)

Since the profile of recent contrast, σtfh, varies with time, so each parameter θ  {a, b, c, d}
of the output nonlinearity varies with time. These changes are mediated via a weighted sum

of the contrasts in different frequency bands, provided by the term , which we refer to as
the spectrotemporal contrast kernel (STCK) for the parameter θ. The form of this model is
illustrated in Figure 2A.

As with the STRF, the number of parameters of the contrast kernels can be dramatically
reduced by assuming that they are separable in frequency and time history. Thus we

constrained , such that the spectrotemporal contrast kernel could be
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decomposed into the outer product of a spectral contrast kernel (SCK) and a temporal
contrast kernel (TCK). We took further advantage of this property by fitting the SCK and
TCK separately.

The full model of Equations (5) – (9) has a large number of parameters, numbering 4 × (NF

+ NH + 1) parameters (there being redundancy between  and θ1, as discussed below), in
addition to the NF + NH parameters of the separable STRF. We made several assumptions to
reduce the number of parameters. First, not all of the nonlinearity parameters {a, b, c, d}
need to be contrast-dependent. For such parameters θ, we set θ1 = 0, such that θt = θ0. Next,
it is possible that changes to some of these parameters are the result of the same
physiological process. This would allow us to assume a shared contrast kernel between pairs

of parameters θ and θ′, with .

For brevity, we assign the following notation to individual models. The full model, wherein
all nonlinearity parameters have separate contrast kernels, is denoted as the a/b/c/d–model.
When a nonlinearity parameter is assumed to be contrast-independent, we omit the
corresponding letter from the name. Thus, b does not change with contrast in the a/c/d–
model. Finally, we concatenate letters when they share the same contrast kernel. Thus, in the

a/cd–model, .

One special case is worth particular mention. The results of Rabinowitz et al. (2011)
demonstrate that the primary effects of changing contrast lie in changes to the gain, via the
parameter d, with some correlated changes in threshold, via the parameter c. These effects
can be most simply captured by the cd–model, wherein the nonlinearity parameters a and b
are contrast-independent, while c and d share a single contrast kernel. The cd–model thus
takes the form:

(11)

Fitting procedures
With the assumption that contrast kernels could be separated into spectral (SCK) and
temporal (TCK) components, we first fitted SCKs. We limited the TCKs to cover 500 ms of
history; as a consequence of both this and the segmented structure of the RC-DRCs, the
values of the parameters at through dt would be constant from 500 ms after each segment
transition until the next segment transition. We thus fitted SCKs by using only the last 2.5 s
of data from each segment, and the following set of equations:

(12)

(13)

Rabinowitz et al. Page 6

J Neurosci. Author manuscript; available in PMC 2013 February 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



In order to reduce the time taken to fit models, we took further advantage of the segmented
nature of the RC-DRCs. Since σtf does not change with time within a segment k, the set of
contrast values can be summarized as a matrix skf, capturing the contrast in segment k of
frequency band f. Rather than fitting the parameters directly to the entire, trial-averaged
training dataset (with NT ≈ 8000), the set of (STRF-weighted-)stimulus/response pairs (xt,
yt) within each segment was divided equally into 20 bins along the x axis (Chichilnisky,
2001; Simoncelli et al., 2004). This reduced the size of the dataset fivefold, and enabled us
to confirm that the sigmoid parameterization was appropriate (e.g. Fig. 5, middle column).

For bin j in segment k, we denote the bin centre as , and the mean firing rate . This
resultant model was considerably more efficient to fit:

(14)

(15)

This reduction in the size of the dataset was necessary for the bootstrapping and Markov
Chain Monte Carlo (MCMC) analyses (explained below). On a subset of units we confirmed
the validity of this approximation by comparison with fits to Equations (12)–(13). These
produced near identical results.

Equations (13) and (15) each contain a redundancy between and θ1 and . We therefore

constrained each SCK to sum to unity, i.e. . For the purposes of including priors (see

below), we defined  as the unnormalized SCK for θ, such that:

(16)

To fit TCKs for each unit, we returned to the first 0.5 s of data that followed each segment

transition. We fixed the values of θ0 and θ1 for each θ, together with the SCKs, , that had
already been fitted for each unit. To ensure consistency with Equation (13), we also

constrained each TCK to sum to unity, i.e. , by defining  as the unnormalized
TCK for θ, via:

(17)

As TCKs could only be fitted to the periods immediately after each segment transition, there
were limited data available to fit the TCK parameters. One consequence of this was that

allowing the coefficients of  to take on any value (subject to a Gaussian prior) resulted in
considerable overfitting (see the  performance in Figure 7G). Thus TCKs were fitted with
the constraint that all coefficients be positive.

The dataset for each unit was subdivided randomly into training (90%) and prediction (10%)
subsets. All parameter fitting took place on the training dataset. Separable STRF models
were first fitted to the whole training dataset using maximum likelihood, ignoring the
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segmented structure of the RC-DRCs. STRFs were fixed thereafter. Next, Maximum A
Posteriori (MAP) estimates of the nonlinearity and contrast kernels were estimated all
together, using gradient descent. For each model, the log posterior probability was
calculated, as well as its derivatives with respect to all the parameters. Minimization of the
negative log posterior was performed using the L-BFGS-B algorithm (Zhu et al., 1997), via
SciPy (Jones et al., 2001). This assumed that xt, i.e. the output of the linear STRF model,
was observed. The log likelihoods (and the log posteriors) were only convex with respect to
some parameters; the gradient descent algorithm thus needed to be initialized at a number of
different initial conditions to reduce the chances of settling in local minima. Forty different
starting locations were chosen by random draws from the prior distributions over the
parameters, with an additional initialization condition at the mean of the priors (see below).
Generally, at least half of these repeats converged to the same (best) fixed point.

In principle, we could have merged the STRF fitting with the nonlinearity/contrast kernel
fitting, and minimized a single objective function. However, optimizing all parameters
proved computationally impractical. Alternatively, we could have iterated between
optimizing the nonlinearity/contrast kernel parameters (with the STRF fixed), and
optimizing the STRF (with the other parameters fixed). However, we observed that this
iterative procedure typically made little to no difference to prediction scores, and STRFs did
not noticeably change over successive iterations. Since the focus here is not on the STRF,
but on the contrast-dependent changes in output nonlinearities, no successive refinements to
STRFs were pursued beyond the initial fit.

A major goal of this work was to characterize the contrast kernels for cortical neurons. This

involves estimating not only the best parameter values for , but also their error bounds. In
addition to the MAP estimates, which pinpoint the mode of the posterior parameter
distributions, we approximated the shape of these posterior distributions by sampling from
them using Markov Chain Monte Carlo (MCMC) methods. MCMC models were
constructed in Python, using the PyMC package (Patil et al., 2010). Chains were initialized
at the MAP parameter values, and advanced using a Metropolis-Hastings step method. A
barrage of diagnostics, including traceplots, Geweke’s diagnostic (Geweke, 1992), and
autocorrelation analyses, was used to assess convergence and mixing. From these
diagnostics, we found that minimum chain lengths of 120000 samples, with a 20000-sample
burn-in and 20x thinning were sufficient for a reasonable characterisation of the posteriors.
As always for MCMC methods, longer and parallel chains would improve the representation
of the posteriors; nevertheless, the observed results satisfied the above diagnostics, and are
therefore used here to provide an approximate measure of the error bounds on the contrast
kernels. When illustrated in figures, and for computing statistics, these error bounds are
summarized in terms of credible intervals, a Bayesian analogue of confidence intervals
(Carlin and Louis, 2009).

Priors on nonlinearity parameters
Priors were chosen for simplicity of form, rather than analytic tractability. From Equations
(6)–(9), we see that each parameter θ  {a, b, c, d} is the sum of a contrast-independent
term, θ0, and a contrast-dependent term, weighted by θ1. Rather than placing priors directly
on these terms, it was more convenient to reparameterize the model as follows.

The contrast in segment k and frequency f, skf, could only take on binary values. In the all-

low-contrast segment, when skf = 0 f, it follows from Equation (15) that θk = θ0. In the all-

high-contrast segment, when skf = 1 f, we use the fact that the contrast kernel, , is
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normalized (from Equation (16)) to find that θk = θ0 + θ1. Defining these two values as θlow
and θhigh respectively, we can rewrite Equation (15) as:

(18)

Thus the parameters {alow, blow, clow, dlow} describe the output nonlinearity in the all-low-
contrast segment, and the parameters {ahigh, bhigh, chigh, dhigh} describe the output
nonlinearity in the all-high-contrast segment. In each segment, the value of θk typically lies

between θlow and θhigh, depending on the projection of skf onto  (although θk can take on

more extreme values when some of the coefficients of  are negative).

For each θ, identical priors were placed on each of θlow and θhigh. The respective priors
were primarily chosen to satisfy three purposes: to enforce a set of hard constraints, namely
that a, b and d all be positive; to apply some regularization, i.e. to ensure that b, c and/or d
did not grow excessively large; and to provide a suitable set of initial conditions for MAP
fitting. As a result, the priors were relatively broad, with data-driven hyperparameters.

For each unit, we defined a set of intermediate statistics on the binned stimulus-response

data, ( ):

where Nj is the number of bins (here, 20), and Nk = NS, the number of segments.

In turn, the priors P(θlow) = P(θhigh) were defined via:

(19)

(20)

(21)

(22)

where exponential distributions are given in terms of their scale parameters, β.

The L-BFGS-B algorithm used to minimize the negative log posterior allows the explicit
specification of parameter boundary values; for the exponentially distributed variables, a
lower bound of 1 × 10−15 was provided.
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Finally, for those models where only a subset of the nonlinearity parameters were contrast-
dependent, θ1 = 0 was enforced, such that θhigh = θlow.

Priors on contrast kernels
As discussed in the results, three different approaches to the values of SCKs were taken. In
the first approach, the kernels were allowed to take any real value; in the second approach,
they were constrained to be positive; in the third approach, they were fixed at particular
values.

Priors were placed on the coefficients of the unnormalized contrast kernels, . As these

were normalized via Equation (16) to give , the scale of the respective priors was not
important.

When real-valued kernels were used, the prior on λ(θ) was chosen to be a spherical

Gaussian, with . When positive-valued kernels were used, the prior on

each coefficient was chosen as . In this latter situation, as for the positive
nonlinearity parameters, the L-BFGS-B algorithm bounded each coefficient below at a value
of 1 × 10−15.

When real-valued contrast kernels were used, it was possible for the denominator of

Equation (16) to approach zero, giving untenable values of . As a result, the minimization
algorithm occasionally yielded zero-division errors. When this occurred, the algorithm was
reset with a new initial value. This discontinuity also meant that the algorithm was more
likely to get stuck in local minima of the negative log posterior, requiring a larger number of
repeated fittings from random initial conditions.

Model success
In order to compare different models for the firing rate behaviour of auditory cortical
neurons, we made use of the strategy developed by Sahani and Linden (2003). For each unit,
the amount of its total response variance that can be explained is bounded by the signal
power (SP). Model success should therefore be measured as the percentage of signal power
explained (%SPE). This is the percentage reduction in the SP from fitting the model, and is
equivalent to:

(23)

By subdividing the data for each unit into a training and prediction dataset, one can obtain
two values for %SPE for that unit. The %SPE from the training data is inflated as a result of
overfitting to the noise in the training data. Thus %SPEtraining provides an upper bound for
the model performance. The %SPE from the prediction data is expected to be lower, since it
tests the generalisability of the model to new data. Thus %SPEprediction provides a lower
bound for the model performance.

Since these two measures diverge as a function of noise ratio, a suitable method for
measuring the model’s predictive power from the population data is to extrapolate from the
two sets of estimates of model success above to those for a hypothetical zero-noise neuron
(Sahani and Linden, 2003; Ahrens et al., 2008a). The resultant upper and lower estimates
bound the true predictive power of the model, i.e. that which would be obtained in the limit
of zero noise. Bounds of model prediction power reported here come from linear

Rabinowitz et al. Page 10

J Neurosci. Author manuscript; available in PMC 2013 February 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



extrapolations to the zero case. Where only a single value is cited (as in the figures), this is
the lower bound.

To correct against sampling biases, we cross-validated the results across ten different
partitions of the data. The %SPE values reported here are medians across these ten
partitions. The same set of partitions were used for fitting all models to the same unit.

Results
Our primary objective was to determine the spectrotemporal window within which changes
in stimulus contrast inform changes in neuronal gain. To do so, we designed a set of stimuli,
known as Random Contrast Dynamic Random Chord (RC-DRC) sequences (Fig. 1). This
provided an ensemble of stimulation conditions, each with a different profile of contrast
statistics.

We recorded from 168 units in the primary auditory cortex (A1) and anterior auditory field
(AAF) of three anesthetized ferrets, while presenting RC-DRCs. These areas were identified
on the basis of their location on the middle ectosylvian gyrus and the tonotopic organization,
which is organized approximately dorso-ventrally across the gyrus (Nelken et al., 2004;
Bizley et al., 2005). Amongst this set of units, we identified 77 units which responded
reliably to the RC-DRCs, as measured via a maximum noise level criterion (see Materials
and Methods).

Spectral contrast kernels
We constructed a class of models to analyse units’ responses to the RC-DRCs (Equations
(5)–(9); Fig. 2). These build upon linear-nonlinear (LN) models, which have previously been
used to characterize the relationship between stimuli and neuronal responses (Chichilnisky,
2001; Simoncelli et al., 2004). As in a standard LN approach, we modelled units’ responses
as a two stage process: first, a reduction of the dimensionality of stimulus space, by filtering
the ongoing (log) spectrogram through a spectrotemporal receptive field (STRF); second, a
nonlinear transformation stage, by passing the filtered stimulus through a static output
nonlinearity. Our models expanded upon this schema by allowing the parameters of the
output nonlinearity — and therefore its shape — to change over time. In particular, we
enabled these parameters to change as a function of stimulus statistics. Because the RC-
DRC stimuli were constructed by defining a matrix of contrast statistics, which varied over
frequency and time, we modelled the changes to the nonlinearity parameters via a set of
spectrotemporal contrast kernels (STCKs). Each STCK filters the ongoing contrast profile of
the sound, σtf, in the same way that the STRF filters the ongoing spectrogram, Ltf.

The most general model of this scheme has a large of number of parameters. We therefore
began by making a few key simplifications. First, we assumed that spectrotemporal contrast
kernels could be separated into a spectral component and a temporal component, in the same
way that it is often reasonable to make separable approximations to cortical STRFs (see
above). Thus, we first fitted spectral contrast kernels (SCKs), and later temporal contrast
kernels (TCKs).

Our second simplification was to consider, for each parameter of the output nonlinearity,
whether that parameter showed evidence of being dependent on stimulus contrast. This was
motivated by our previous results (Rabinowitz et al., 2011) which showed that changing the
global stimulus contrast primarily produced changes in gain (here, the d parameter of the
nonlinearity) and the stimulus inflection point (here, the c parameter). Finally, further
reductions in the parameter load could be made by sharing contrast kernels between multiple
parameters.
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To assess the validity and utility of such simplifications, we fitted a range of SCK models to
the responses of the cortical units. For each model and unit, we measured the fit quality,
together with its ability to predict responses outside of the training dataset. These were
quantified as the percentage of stimulus-locked response variance that the model explained
in each of the two datasets (Equation (23)). Previous authors have demonstrated that the
measured values of such quantities depend on the trial-to-trial reliability of units’ stimulus-
evoked spiking patterns: for less reliable (i.e. noisier) units, fitted models are more likely to
capture noise in the training dataset, and therefore make poorer predictions (Sahani and
Linden, 2003). We thus followed Sahani and Linden’s lead, and assessed model
performance across the population of cortical units by extrapolating from the set of scores to
an idealized, zero-noise unit. This produced two estimates of the model’s predictive power:
an upper bound, from the model’s fit quality on the training sets, and a lower bound, from
the model’s ability to predict outside the training sets (Ahrens et al., 2008a). This process is
illustrated in Figure 3A for the lower bounds.

As a baseline, we fitted simple (separable) STRF and LN models to each unit. These models
were fitted to data that were pooled across all segments of the RC-DRCs, and therefore did
not take into account changes in contrast from segment to segment. The predictive power of
the STRF model was 42.4–43.4%, while the predictive power of the LN model was 60.2–
62.2%. Adding an output nonlinearity considerably improves model performance.

Including a full set of independent SCKs for each nonlinearity parameter also improved
model predictions (Fig. 3). This a/b/c/d–model (see Materials and Methods for naming
conventions) had a prediction score of 62.7 – 70.1%. However, we found that we could
substantially further improve the models’ predictive performance by adding constraints to
reduce the degree of overfitting. First, we found that the parameters a and b did not
generally change with contrast. Fixing these to be contrast-independent (i.e. fitting the c/d–
model) yielded better prediction performance of 65.6 – 70.1%. In turn, the spectral contrast

kernel for the c parameter, , and the spectral contrast kernel for the d parameter, , were
generally highly correlated with each other (median correlation coefficient of

). We therefore constrained these two contrast kernels to be identical (the
cd–model). This outperformed the other SCK models, with a prediction score of 66.2 –
70.1%. On a unit-by-unit basis, the cd-model outperformed the standard LN model for 62/77
units; this improvement was significant for 48 of these units (Wilcoxon signed-rank test on
N = 40 cross-validated scores, p < 0.01).

According to the cd–model, 72/77 units decreased their gain as contrast increased. The
extent of gain changes can be quantified as the ratio Gd = dhigh/dlow (see Equation (18)),
which measures the proportional dilation of the output nonlinearity along the x-axis as a
result of switching from the all-high-contrast condition to the all-low-contrast condition. A
histogram of Gd values for the population of units is shown in Figure 4A. The median Gd
was 1.92, which is in good agreement with our previous observations (Rabinowitz et al.,
2011). As expected, units with larger Gd tended to experience the greatest improvements in
model prediction by including the spectral contrast kernel (Fig. 4B; Spearman correlation of
0.40; p < 0.001).

In summary, the most parsimonious model for capturing contrast-dependent changes to
units’ firing behaviour is the cd–model of Equation (11). As contrast is varied, auditory
cortical neurons’ output nonlinearities undergo a slope change and a horizontal shift. These
changes can be described as a linear function of the spectral profile of contrast. In the
sections which follow, we concentrate exclusively on the cd–model.
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The shape of SCKs
We next asked what the spectral contrast kernels looked like. Examples of SCKs fitted to
cortical units’ responses are shown in Figure 5. The most striking aspect of the SCKs is their
similarity in shape to the STRF frequency kernels, kf. For the frequencies in the excitatory

component of the receptive field of these units, the weights of the SCK, , match almost
precisely the weights of kf. As the best frequency (BF) and bandwidth of kf change across

these units, so the BF and bandwidth of  change too.

There was generally a good correlation between units’ gain SCKs, , and the frequency
component of their linear STRF kernels, kf; across units, the median correlation coefficient

was .

These kernels thus reveal an important aspect of contrast gain control: the same frequency
channels whose level changes additively contribute to a cortical unit’s firing rate also
divisively contribute to its gain. In these bands, an increase in tone level increases the unit’s
firing rate, while an increase in the contrast of the tone level distribution of these bands
decreases the unit’s gain. In turn, the relative size of the gain change produced by varying
the contrast in a particular band is roughly proportional to the size of the change in firing
rate produced by increasing the level of the band.

Contrary to this pattern, we found that when units had strong inhibitory sidebands in their
STRF — i.e. when there were coefficients of kf, nearby to the BF, which were negative —
the SCKs often had positive, rather than negative, coefficients for these same frequencies
(e.g. Fig. 5E-G). In these bands, an increase in tone level decreases the firing rate of the
neuron; however, an increase in the contrast of the tone level distribution of these bands also
decreases the gain of the neuron.

These qualitative observations capture the major trends we observed. Amongst those units
which deviated somewhat from this pattern, some had slightly wider SCKs, and others
slightly narrower than the excitatory band of the STRF. In addition, not all of the units with

inhibitory sidebands produced significantly non-zero  coefficients at the sidebands (e.g.
Fig. 5H). Finally, approximately 20% of units (17/77) produced noisy, random-shaped
contrast kernels. Amongst this last group, the SCK models still produced reasonable
prediction scores; the results for these units are discussed in more detail below.

Simplifying SCKs
It is clear from the examples of Figure 5 that the most salient features of the gain SCKs are
their large, positive coefficients in a localized region of frequency space. As mentioned
above, these coefficients are often also positive in the inhibitory sidebands. Increasing the
contrast of any of these bands thus yields a decrease in neuronal gain. However, very few

 coefficients across the set of models appeared to be genuinely negative, such that high
contrast in these bands would lead to an increase in neuronal gain.

Although 45% of all  coefficients were fitted to negative values, these values were
typically small in magnitude. They were also generally not significant: the marginal
posteriors on these coefficients rarely had all their weight below zero. In total, according to a

95% credible interval criterion, 7% of  coefficients across all units were significantly
negative; according to a 99% credible interval criterion, only 3% of κf coefficients were
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significantly negative. These values compare with 19% and 13% for significantly positive κf
coefficients.

Thus, the coefficients of SCKs were rarely negative, and were generally larger in magnitude
when the STRF frequency kernel was larger in magnitude. As a result, rather than describing

a correlation between the coefficients of units’  and their kf (as above), there was

actually a better correlation between  and the absolute value of the STRF frequency

kernel, |kf| for each unit, with a median correlation coefficient of .

There is reason to suspect that none of the coefficients of the gain contrast kernel should be

negative. In principle, negative  values indicate frequency bands for which high contrast
would cause an increase in neuronal gain. This may not be possible under certain
mechanistic implementations of contrast gain control. To test this possibility, we enforced

the constraint that coefficients of  must be positive. Examples of the resulting kernels are
shown in Figure 6A-H. This model provided even better predictions than using real-valued

(i.e. unconstrained) , with a prediction score of 67.1–69.9% (Fig. 6I). The constrained-
positive cd-model was, in total, the best predicting SCK model, and outperformed the
standard LN model for 68/77 units. This improvement was significant for 52 of these units
(p < 0.01). Thus, it is likely that negative values in the unconstrained contrast kernels reflect
an overfitting of the parameter values to the small sample of conditions presented.

As mentioned above, a number of units’ gain contrast kernels were noisy, with little

observable structure when  was unconstrained. For all but five of these units,

constraining  yielded contrast kernels which more closely resembled the units’
respective STRF frequency kernels. Constraining the coefficients of the gain kernels to be
positive therefore reveals an underlying structure to the kernels of noisier units.

A striking feature of the constrained-positive kernels is that across all units that gave reliable

responses to RC-DRCs, the correlations between the coefficients of  and |kf| are even

stronger than for the unconstrained models, with a median . This suggests

that one may be able to approximate the gain contrast kernels simply as . We
implemented this as an additional set of models. These showed that when the SCK was fixed
in this manner rather than fitted, the model performance was only slightly impaired relative
to fitting an SCK, as shown in Figure 6I. Almost identical prediction scores were obtained

when we fixed  to be a rectified version of kf, indicating that the contribution from the
inhibitory sidebands to the model success was small. Finally, as a control, we also tested
three alternative models: one with κf = kf, i.e. without the absolute value; a second where κf
= |H(kf)|, i.e. as the magnitude of the Hilbert transform of kf (which produced wider
bandwidth SCKs); and a third where we ignored all spectral information and assumed a
constant SCK (κf = 1/NF). In all three cases, the model performed substantially worse.
These data are summarised in Figure 6I.

The usefulness of the approximation  is important. As this experiment
demonstrates, the number of contrast conditions needed to estimate gain contrast kernels is
large, making it a time-consuming process. On the other hand, including gain changes leads
to substantial increases in model performance. When using the approximation, only two
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additional variables beyond the standard out-put nonlinearity need to be estimated (c1 and
d1), which can be done quickly using only two contrast conditions. Thus, greatly improved
models of the responses of auditory cortical neurons can be readily implemented using this
approach.

Temporal contrast kernels
Just as the SCKs reveal how units integrate the spectral pattern of stimulus contrast to
determine their gain, TCKs reveal how units integrate the recent history of stimulus contrast
to the same effect. To map cortical units’ TCKs, we fixed their SCKs, and fitted models to
the neuronal responses immediately following each segment transition.

Examples of temporal contrast kernels, , are shown in Figure 7A-D. As for the temporal
component of these units’ STRFs, the units were most sensitive to the contrast in the most
recent 50–100 ms of stimulation, and retained a weak dependence on the contrast statistics
further back in history.

Including the temporal contrast kernel for gain changes led to an overall improvement in the
model predictive power. For the responses during these transition periods, the prediction
scores were 43.1% for the STRF model, 59.7% for the linear-nonlinear model, 64.3% when
only the SCK was considered, and 67.3% when the full STCK was implemented (Fig. 7F).
The STCK outperformed the LN model for 72/77 units, of which 54 were significant
(Wilcoxon signed-rank test on N = 100 cross-validated scores; p < 0.01).

Simplifying TCKs
A secondary goal of this work is to develop simple approximations to contrast kernels that
can be applied without requiring the time-consuming exploration of stimulus space
attempted here. We therefore considered a number of simplifications to the TCK model. The
success of each of these simplifications is summarized in Figure 7G.

We noted that the population mean of the TCKs, shown in Figure 7E, followed an
approximately exponential decay, with a time constant of τ = 86 ms. We therefore fitted a

simplified, single-parameter TCK model to each unit, , where τH is the
time constant (Fig. 7H). The median time constant fitted to the 77 units was τH = 117 ms.
The model performed well compared with fitting a full TCK, with a score of 67.2%. We also
considered whether, for the purposes of parsimony, a single time constant could be used for
all units within the population. By fixing τH at different values, we found that the most
predictive model had τH = 85 ms, with a prediction score of 67.1%. There was, however, a
reasonably broad range of τH values between 80 – 120 ms which gave similarly respectable
scores (Fig. 7I).

Finally, in the same way that the SCKs could be approximated, up to a normalisation
constant, as the absolute value of the frequency component of the STRF, so too the TCKs
could be approximated as the absolute value of the temporal component of the STRF. This
produced a prediction score of 67.2%. Thus the absolute value of the STRF provides an
excellent approximation for the spectrotemporal contrast kernel of a cortical neuron.

Discussion
The goal of this study was to determine the spectrotemporal windows within which stimulus
contrast modulates the gain of auditory cortical neurons. We therefore constructed a
stimulus set that provided an ensemble of different contrast conditions (Fig. 1), and
investigated how cortical units’ response properties changed under these conditions (Fig. 2).
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We were able to estimate the relative contributions of the contrast in different frequency
bands and different time bins to the gain of individual units, via their spectrotemporal
contrast kernels (STCKs).

We found that the spectral components of these kernels (the SCKs) typically place their
weight on the same frequency bands that contribute to a neuron’s STRF (Fig. 5). Thus, when
a neuron’s firing rate is linearly sensitive to the level variations in a particular band, then it
is also divisively sensitive to changes in the contrast of that band. Not only are SCKs co-
extensive with the frequency component of the STRF, but they are also matched in
magnitude: the extent to which a band’s contrast contributes to a neuron’s gain is
approximately proportional to the extent to which that band’s level contributes to the
neuron’s firing rate (Fig. 6I). Neurons with narrow tuning curves are sensitive to contrast in
a narrow frequency window, whereas the gain of neurons with broad tuning curves can be
influenced by contrast over a similarly broad frequency range. Curiously, the spectral region
whose statistics determine gain includes a neuron’s inhibitory sidebands: high contrast in the
sidebands also reduces neural gain.

The temporal component of these kernels (the TCKs) could be fitted reasonably well by an
exponential curve, with a time constant of ~ 85 ms. Similar to the SCKs, the TCKs could
also be approximated well as the absolute value of the time component of the corresponding

STRF (Fig. 7). Thus, a simple approximation of the gain contrast kernel is . In
sum, cortical neurons integrate stimulus contrast and level fluctuations over a similar
spectrotemporal window, albeit to different effects. This is summarized in Figure 8.

Little contribution to the gain from remote spectral and temporal regions
This study considerably extends a preliminary estimation of contrast kernels presented in
Rabinowitz et al. (2011). There, we attempted a coarse, population-level characterization of
auditory cortical neurons’ SCKs, and found that neurons’ gain depended predominantly on
the contrast in spectral regions local to units’ best frequencies. This is confirmed by the
results presented here.

Although our previous study ruled out strong contributions to the gain from frequency bands
outside the neurons’ STRFs, we did find evidence for weak contributions from these bands,
suggesting that gain control in the auditory cortex is, to some extent, dependent on global
statistics. In the present study, however, we found that the gain kernels were largely
restricted to the frequency bands present in the STRF.

Stimulus design may explain this discrepancy. In Rabinowitz et al. (2011), we categorically
divided frequency bands into local and remote groups, in a way that may have
underestimated the range of frequency bands which additively contributed to the STRF. Our
approach here circumvented this problem by being non-categorical. On the other hand, the
subset of contrast space explored here may have been insufficient to reveal the contributions
from remote bands, which could be weak (or superadditive) and only detectable as a
compound effect. These results therefore bound the magnitude of extra-classical receptive
field contributions to neuronal gain.

The match between the domains of SCKs and linear STRFs is consistent with previous
findings on forward suppression: in general, the more a sound matches a neuron’s preferred
stimulus, the more it suppresses subsequent responses (Calford and Semple, 1995; Brosch
and Schreiner, 1997; Reale and Brugge, 2000; Zhang et al., 2005; Scholl et al., 2008). The
match between TCKs and STRFs, however, initially seems at odds with the long timescales
of adaptation previously reported in the auditory cortex (Ulanovsky et al., 2004; Wehr and
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Zador, 2005; Asari and Zador, 2009). The contrast kernel models therefore capture only a
fast component of this adaptation, much like the rapid luminance and contrast gain control
identified in the retina (Enroth-Cugell and Shapley, 1973; Baccus and Meister, 2002). It is
possible we did not see slower adaptation components because our DRCs switched contrast
rapidly: in the retina, the timescale and parameters of stimulus dynamics directly impact on
the timescale of slow contrast adaptation (Wark et al., 2009).

The similarity between the domains of STCKs and STRFs suggest that both phenomena
share some common source. However, our results can only partially constrain this
mechanism. The shape of STRFs depends on complex interactions between excitation and
inhibition (Wallace et al., 1991; Budinger et al., 2000; Winer et al., 2005; Liu et al., 2007;
Wu et al., 2008; Moeller et al., 2010). Gain control could therefore be explained by a
combination of excitatory and/or inhibitory inputs (Chance et al., 2002; Murphy and Miller,
2003; Katzner et al., 2011), the action of intrinsic currents (Abolafia et al., 2010), or the
activation of local layer six neurons with similar tuning, as recently observed in V1 (Olsen
et al., 2012). Given the rapidity of the TCKs, our results are unlikely to be fully described by
cortical synaptic depression, which appears to operate at longer timescales (Wehr and Zador,
2005). Gain control may have subcortical origins (Malmierca et al., 2009; Anderson et al.,
2009), provided these combine in a similar manner to the way they produce cortical STRFs.
It may be possible to evaluate the relative likelihood of these mechanisms by comparing
STRFs and STCKs under different stimulation conditions since STRFs are known to change
under different stimulus contexts (Theunissen et al., 2000; Blake and Merzenich, 2002;
Valentine and Eggermont, 2004; Woolley et al., 2005; David et al., 2009; Schneider and
Woolley, 2011).

Implications for modelling
The contrast kernel models advanced in this work provide considerably better predictions of
neurons’ responses compared with STRF and LN models. They capture ~ 20% of the
residual variance not explained by the LN model. Since STCKs can be approximated well
from the absolute value of the STRF, this model requires only two additional parameters
beyond the LN-model (and hence six parameters beyond the STRF). The model presented in
Figure 8 thus provides a simple and powerful way of extending existing models for the
responses of auditory cortical neurons, capturing these neurons’ sensitivity to patterns of
stimulus contrast.

The gold standard for models such as these is to be able to predict responses of auditory
neurons to natural stimuli (Wu et al., 2006). Studies which have estimated receptive field
models using synthetic stimuli have repeatedly found that the models do not generalize well
to natural sounds (Theunissen et al., 2000; Rotman et al., 2001; Machens et al., 2004; David
et al., 2009). One compelling reason for this is that natural sounds likely engage nonlinear
coding mechanisms, which may not be activated within the spaces of synthetic stimuli such
as DRCs or ripples (Theunissen et al., 2000; Woolley et al., 2006; David et al., 2009).
Furthermore, the linear approximations made during model construction are sensitive to the
statistics of the subspace of stimuli explored (Christianson et al., 2008). Since natural scenes
vary in their statistics over time, it is likely that including time-varying gain control will
improve the predictions of STRF-based models.

One particular difficulty in extending these models to other domains is knowing how to
measure stimulus contrast. For the synthetic stimuli we used here, the contrast was specified
by design; we therefore used the stimulus parameters as input into the models. For arbitrary
sounds, an algorithm for estimating σtfh would need to be specified; provided this algorithm
makes broadly consistent measurements of the stimulus parameters that we used here, we
anticipate that the benefits of including gain control will be considerable.
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Gain control and divisive normalization
One form in which gain control is often cast is that of divisive normalization. In the abstract,
this is a gain standardization process by which an initial set of responses — usually the
result of information fed forward from earlier brain areas — is rescaled. The scaling factor
takes the form of a local response normalizer: the activity of each neuron is divided by the
pooled activity over other neurons in a local neighbourhood (Heeger, 1992; Carandini et al.,
1997). There is considerable evidence for normalization in a large number of systems,
including V1 (Heeger, 1992; Carandini et al., 1997; Rust et al., 2005), extrastriate visual
cortex (Miller et al., 1993; Recanzone et al., 1997; Missal et al., 1997; Simoncelli and
Heeger, 1998; Britten and Heuer, 1999; Heuer and Britten, 2002; Zoccolan et al., 2005),
superior colliculus (Basso and Wurtz, 1997), and the Drosophila antennal lobe, which
mediates olfaction (Olsen et al., 2010), as well as in multi-sensory integration (Ohshiro et
al., 2011).

There remains considerable debate as to what combination of cellular and circuit
mechanisms actually mediates divisive normalization in the visual system (Carandini and
Heeger, 2011). Nevertheless, it has proved to be a powerful idea for advancing our
understanding of the computations actually being performed by a given system.
Normalization promotes efficient coding, not only by shifting stimulus representations to
use more of the neurons’ dynamic range, but also by encouraging decorrelated, higher-
entropy representations of natural signals (Ruderman and Bialek, 1994; Olshausen and
Field, 1996; Brady and Field, 2000; Fairhall et al., 2001; Schwartz and Simoncelli, 2001).
Theoretical work has also argued for a role for normalization in other computations, such as
decoding (Deneve et al., 1999; Ringach, 2010) and marginalization (Beck et al., 2011).

If we consider a network implementation of gain control, our result that κ ≈ |k| demonstrates
that auditory cortical neurons have gain pools which share similar spectrotemporal
sensitivity profiles. Thus, just as many systems appear to construct representations that are
invariant to the normalized statistic, including visual representations in V1 that are contrast-
invariant (Albrecht and Hamilton, 1982; Heeger, 1992; Busse et al., 2009; Ringach, 2010),
velocity representations in MT that are spatial-pattern-invariant (Heeger et al., 1996;
Simoncelli and Heeger, 1998), and odor representations in the antennal lobe that are
concentration-invariant (Luo et al., 2010; Olsen et al., 2010), so it appears that the auditory
cortex builds representations of sounds that are partially invariant to their spectrotemporally
local contrast.
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Figure 1.
Stimuli used to estimate contrast kernels, and their statistics. A, Schematic of a Random-
Contrast Dynamic Random Chord (RC-DRC) stimulus. The stimulus comprises a sequence
of chords, which change every 25 ms. The elements of the chords are pure tones, whose
levels are drawn from one of the distributions shown in C. The color grid shows the sound
level (Ltf) of a particular tone frequency at a particular time. B, The 38 s DRC stimulus
shown in A is comprised of 12 segments in which the contrast in different frequency bins,
σtf, is either high (red) or low (yellow). C, Tone level distributions for low (yellow) and high
(red) contrast segments. D, Level as a function of time for the 2.4 kHz tone over a 9 s
period, i.e. a cross-section of A. This shows the transition from a segment where this tone’s
level distribution was low contrast (yellow), to a segment where it was high contrast (red), to
a third segment where it was low contrast again (yellow).
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Figure 2.
Schematic of the contrast kernel model. A, The relationship between stimulus and neuronal
response. The sound input is represented by its spectrogram, Ltf (top), and by its contrast
profile, σtf (bottom). As in a standard linear-nonlinear model, the neural response is
determined by convolving the spectrogram with a linear spectrotemporal kernel (kfh), and
passing the output of this operation (xt) through a static output nonlinearity (here, a 4-
parameter sigmoid, denoted by the blue curve), to produce the predicted spike rate ( ). The
model developed here extends this by allowing each of the four parameters of the output
nonlinearity (a through d, as shown in C) to change over time, depending on the statistics of
recent stimulation. The evolution of each parameter θ  {a, b, c, d} over time is determined

by convolving the contrast profile of the sound, σtf with a linear contrast kernel, . The
effects of this on the shape of the output nonlinearity are illustrated in D-E. B, All
spectrotemporal receptive fields and contrast kernels are assumed to be separable in

frequency and time, such that  and . This allows contrast kernels to
be fitted in two stages: the spectral component (SCKs) in Figures 3–6, and the temporal
component (TCKs) in Figure 7. C, The parameters of a sigmoidal static nonlinearity: a, the
minimum firing rate; b, the output dynamic range; c, the stimulus inflection point; d, the
(inverse) gain. D, An illustration of the effect of a contrast kernel for the nonlinearity
parameter a, which sets the minimum firing rate of the output nonlinearity. Top left: a

contrast kernel  is shown. Top right: the contrast profile of an example stimulus. Middle
right: as a result of changing contrast, the parameter a changes with time. Bottom right: the
effective shape of the output nonlinearities at different times, due to the changing value of a.
These shifts would be combined with the contrast-dependent changes to the other
nonlinearity parameters, b, c, and d, such as shown in E. E, Effect of a contrast kernel for
the nonlinearity parameter d, which sets the (inverse) gain of the output nonlinearity. This
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neuron decreases its gain when there is high contrast anywhere within a relatively broad

region demarcated by .
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Figure 3.
Including spectral contrast kernels (SCKs) in models of neural responses improves their
predictive power over the linear-nonlinear model; this is further improved by simplifying the
model. A, Model predictive power, as measured in Sahani & Linden (2003). Model names
are defined in Materials and Methods in the main text. For each model, scatter plots show
the cross-validated prediction scores across all 77 units. These are calculated as the
percentage of the unit’s signal power (%SPE) captured by the model on the prediction
dataset, and shown as a function of the normalized noise power in the unit’s responses. Grey
line shows the extrapolation of prediction scores to an idealized zero-noise unit, producing a
lower bound on the model’s overall predictive power over the population of auditory cortical
units. The upper bound on predictive power has been omitted for clarity. B, Summary of
predictive powers for the models in A. Solid bars show the lower bound (as plotted in A)
from cross-validation; error bars show the upper bound from the training data set. Although
adding a full set of contrast kernels (a/b/c/d) leads to a modest improvement in prediction
scores over the linear-nonlinear (LN) model, the large number of parameters in the full
model leads to overfitting. Rendering a and b contrast-independent reduces overfitting, and
improves prediction scores (the c/d model). The best-performing model is the cd model,
with a shared contrast kernel between c and d. C, Comparison between prediction scores for
the LN model and for the STRF model, on a unit-by-unit basis. D, Comparison between the
LN model and cd-model on a unit-by-unit basis.
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Figure 4.
Gain model: contrast-dependent gain changes across the population of A1/AAF units. A,
The majority of units decreased their gain as contrast was increased, as expected. This is
measured here by the ratio Gd = dhigh/dlow. B, The larger a unit’s contrast-dependent gain
changes, the greater the improvement in model predictive power over the standard linear-
nonlinear model. The (non-parameteric) Spearman correlation coefficient between Gd and
model improvement was 0.40 (p < 0.001).
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Figure 5.
Gain spectral contrast kernels (SCKs), for 8 example units. These are fits of the cd-model,

with contrast-independent a and b, and a shared, real-valued SCK, , for c and d. Left:
STRF for each unit. Middle: static output nonlinearities for each unit, when estimated under
the all-high-contrast condition (magenta), and the all-low-contrast condition (cyan), showing
the gain change between the two conditions. Right: SCK for each unit. The black line shows

the MAP estimate for ; the red filled region, bounded by the grey lines, shows a 95%
credible interval for the posterior distribution over these coefficients. The red shading
increases in darkness with probability. The blue line and blue diamonds show the frequency

component of the linear, separable STRF, kf. Both kf and  have been normalized by the
respective standard deviations to facilitate visual comparison. A-D exemplify how kf and

 align in best frequency and bandwidth. E-G (but not H) show examples where 
covers the inhibitory sidebands of the receptive field.
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Figure 6.
Approximations to the cd-model. A-H, Gain SCKs when coefficients were constrained to be
positive. This shows the same 8 units as shown in Figure 5. Again, the frequency component

of the STRF, kf (blue), approximately matches the gain SCK,  (black line and red area).
I, Model predictive power for the cd-model with constrained coefficients; as in Figure 3B,
solid bars show prediction scores, and error bars show training scores. When the contrast
kernel coefficients are unconstrained ; right), the model performance is better than the
linear (STRF) and linear-nonlinear (LN) models (left). Restricting the coefficients of the
SCK to be positive (κ > 0) reduces overfitting and improves prediction scores. Excellent
approximations are provided by fixing the SCKs as either the absolute value of the STRF
frequency kernel (κ = |k|), or the rectified value (κ = |k|+). Models which do not perform as
well include fixing the the contrast kernel as the STRF frequency kernel (κ = k), fixing it as
the magnitude of the Hilbert transform of the STRF frequency kernel (κ = |H(k)|), or
assuming that it is constant with respect to frequency (κ = 1). These still out-perform the
simple linear-nonlinear (LN) model. Dashed lines are shown at the model performance
values for the LN model and the constrained-positive cd-model.
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Figure 7.
Temporal contrast kernels (TCKs). A-D, Left panels show the TCKs for four example units.

As in Figures 5 and 6, red area shows the gain TCK, , while blue line and diamonds
show the temporal component of the STRF, kh. Right panels compare the STRF, kfh, with

the full spectrotemporal contrast kernels, , as per Figure 2. E, Mean of the contrast time

kernels from the 77 cortical units, . This shows the approximately exponential shape of
the time kernels. The mean contrast kernel had a fitted time constant of 86 ms. F, Model
predictive power. Including a history component to the contrast kernels (κfh) improves the
performance of the model, compared with the assumption that only the current contrast
matters (κf). Prediction scores for the simple STRF model and the linear-nonlinear (LN)
model are shown for comparison. Note that this is fitted over a different dataset from that
used in Figures 3–6, so the values of %SPE in this figure do not match those presented
previously. G, Model predictive powers for a range of TCK models. In order, from left to
right, these models are the following: (κf), no history dependence, i.e. κh = δh0; (τ),
exponential model with time constant τH fitted (see H); (85 ms), exponential model with τH
fixed at 85 ms (see I); (> 0), κh constrained to be positive; , κh allowed to take on any
real value; (|kh|), κh approximated as the absolute value of the STRF time kernel. Dashed
horizontal lines show the model predictive power for the κf and the > 0 models. Note that
allowing the coefficients of the TCK to be real-valued (the  model) led to considerable
overfitting; the > 0 model is thus the STCK model considered in the main text (see Materials
and Methods). H: Fits of the time constant τH for the exponential model for all 77 units. The
median time constant was 117 ms. I: Model predictive power for the exponential model
when τH was fixed, rather than fitted. Abscissa denotes the fixed value of τH, ordinate as in
G. The horizontal dashed lines are as in G. The most predictive model had τH = 85 ms.
Thus, three different measures of the time course of gain changes (in E, H, and I) give
roughly consistent answers.
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Figure 8.
Summary of results. We find that the gain changes undergone by cortical neurons in
response to complex patterns of stimulus contrast can be captured by this simplified contrast
kernel model. The neural response is determined by convolving the spectrogram with a
linear spectrotemporal kernel (kfh), and passing the output of this operation (xt) through a
static output nonlinearity, to produce the predicted spike rate ( ). The minimum and
maximum firing rate of the output nonlinearity are fixed, but the stimulus inflection point (c)
and the (inverse) gain (d) change over time, depending on the statistics of recent stimulation.
The evolution of c and d over time is determined by convolving the contrast profile of the

sound, σtf, with a single contrast kernel, , as in Equation (11). Finally, the contrast kernel

can be approximated as . This model captures 20-25% of the residual variance not
explained by the LN model by adding only a further two parameters.
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