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Abstract
Cortical circuits encode sensory stimuli through the firing of neuronal ensembles, and also
produce spontaneous population patterns in the absence of sensory drive. This population activity
is often characterized experimentally by the distribution of multineuron “words” (binary firing
vectors), and a match between spontaneous and evoked word distributions has been suggested to
reflect learning of a probabilistic model of the sensory world. We analyzed multineuron word
distributions in sensory cortex of anesthetized rats and cats, and found that they are dominated by
fluctuations in population firing rate rather than precise interactions between individual units.
Furthermore, cortical word distributions change when brain state shifts, and similar behavior is
seen in simulated networks with fixed, random connectivity. Our results suggest that similarity or
dissimilarity in multineuron word distributions could primarily reflect similarity or dissimilarity in
population firing rate dynamics, and not necessarily the precise interactions between neurons that
would indicate learning of sensory features.

Introduction
Cortical activity, like animal behavior, has a probabilistic character (Rao et al., 2002).
Recordings of single cells have shown that presentation of an identical stimulus can cause
variable responses from one presentation to the next; yet the probabilistic sensory responses
of any one neuron are a manifestation of a more complex distribution of activity at the
population level. Furthermore, even in the absence of sensory stimuli, the cortex produces
unpredictable but structured spontaneous activity that in many ways resembles sensory
responses (Kenet et al., 2003; Fiser et al., 2004; DeWeese and Zador, 2006; Okun and
Lampl, 2008; Luczak et al., 2009; Ringach, 2009; Tkacik et al., 2010). Characterizing the
structure and function of this probabilistic activity is an essential step towards understanding
how neuronal populations process information.
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One of the most intriguing interpretations of the probabilistic nature of neural activity is the
“sampling-based representation” hypothesis (Hoyer and Hyvarinen, 2003; Fiser et al., 2010).
Psychophysical experiments indicate that the brain acquires probabilistic models of the
external environment (Knill and Richards, 1996; Ernst and Banks, 2002; Kersten et al.,
2004; Franklin and Wolpert, 2011; Moreno-Bote et al., 2011). The sampling hypothesis
holds that these models are explicitly represented as probability distributions over neuronal
spikes or membrane potentials, with the parameters of the distribution encoded in synaptic
weights, and learned via experience-dependent synaptic plasticity. This internal model
causes population responses to represent samples from a posterior distribution given a
particular sensory input.

A recent study in primary visual cortex appeared to support this sampling hypothesis
(Berkes et al., 2011). By representing population activity as N-bit binary words, this study
found that word distributions during spontaneous activity are similar to those elicited by
presentation of natural movie clips in adult ferrets, but not in juveniles; furthermore, in
adults, spontaneous word distributions matched those of natural movies but not artificial
drifting gratings. This is indeed what one would expect to find if V1 responses were
generated by a sampling-based internal model of the natural visual world acquired during
development.

Here we show that similarities and differences between cortical word distributions are
dominated not by precise interactions between units (as would be expected from the
sampling hypothesis), but by variations in the dynamics of population rate: the instantaneous
summed activity of all neurons in the population. Fluctuations in population rate are one of
the most prominent features of cortical activity. The strength of these fluctuations varies as a
function of cortical state, from strongly fluctuating activity in synchronized states such as
slow-wave sleep, to steadier activity found in more desynchronized states such as active
behavior (Poulet and Petersen, 2008; Okun et al., 2010). We introduce a simple
phenomenological model for word distributions (the “raster marginals model”),
parameterized by measures of population rate dynamics rather than by precise interactions
between units. This model accounts for similarities between multineuron word distributions
in primary auditory and visual cortex of anesthetized rats and cats, as well as in artificial
networks of integrate-and-fire neurons. It also captures the experimental findings that
appeared to support the sampling hypothesis (Berkes et al., 2011), questioning the use of
multineuron word distributions to characterize the learning of sensory features.

Materials and Methods
Recordings in rat A1

Experiments were performed at Rutgers University in accordance with protocols approved
by the Animal Care and Use Committee. The experimental details and the data used here
were previously described in (Marguet and Harris, 2011). Briefly, male Sprague Dawley rats
were anesthetized with urethane with supplemental doses of ketamine and xylazine. This
anesthesia regime produced robust and well controlled switches between synchronized and
desynchronized states which either occurred spontaneously or were induced by tail pinch,
and could be detected both in the local field potential (LFP) spectrogram and in the
coefficient of variation (CV) of the population rate (see below).

32-contact silicon probes arranged in an 8 tetrode configuration (NeuroNexus Technologies)
were advanced into layers V and VI of the left primary auditory cortex (A1). Signals were
amplified, digitized at 20 kHz and stored for offline analysis. The auditory stimulus
consisted of 30-50 seconds intervals of amplitude-modulated noise. Stimulus presentations
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were separated by intervals of silence of equal duration, in which spontaneous activity was
recorded.

Spikes were detected and visually verified using the programs NDmanager and Neuroscope
(Hazan et al., 2006). In the original study by Marguet and Harris (2011) the spikes on each
tetrode were sorted; here, instead, we followed the analysis methods of Berkes et al. (2011),
and simply accumulated all unsorted spikes from each tetrode.

To quantify cortical state, we adopted the measure of Renart et al. (2010), based on the
coefficient of variation (CV) of the population rate. We considered 10-second intervals of
spontaneous activity and divided them into 200 windows of 50 ms each. For each window,
we determined the population rate, i.e., the total number of spikes on all the tetrodes. We
took the CV of population rate over the 200 windows as the measure of cortical state in that
time interval. We considered values of CV ≥ 1 to indicate synchronized states and CV ≤ 0.5
to indicate a desynchronized state (Fig. 1C).

We analyzed data from 3 animals. In rats 1 and 2 we detected two stable epochs of both
synchronized and desynchronized activity (Fig. 1C); extracting spontaneous and sensory-
evoked data from these four epochs provided 8 segments of activity for our analysis. In rat
3, the amplitude modulated noise stimulus spanned only one period of synchronized and
desynchronized states, however spontaneous activity was recorded in additional periods of
both synchronized and desynchronized states, leading in total to 6 instead of 8 segments.

Recordings in cat V1
Experiments were conducted at the Smith-Kettlewell Eye Research Institute in accordance
with protocols approved by the Institutional Animal Care and Use Committee. The
experimental details and the data used here were previously described in (Benucci et al.,
2009; Busse et al., 2009). Briefly, female cats were anesthetized with ketamine and xylazine
for initial surgery, followed by sodium pentothal and fentanyl for electrophysiological
recordings. The signals from 96-channel multi-electrode (Utah) array were recorded using
the Cerebus 128-channel system (Blackrock Microsystems). The recordings were primarily
from layers II and III. Spikes were detected online by a threshold set to ~3-4 s.d. of the
background noise. The spike waveforms were digitized at 30 kHz and stored for offline
analysis. Only electrodes that detected spiking activity were used in this analysis.

Estimation of the Kullback-Leibler divergence between word distributions
The firing patterns recorded by a multi-electrode array were described by N-bit words,
where a word represents the presence of a spike on each of the N electrodes (N=8 for rat A1;
N=16 for cat V1) in a brief interval (2 ms). In this representation the match between any two
kinds of activity recorded on the same electrodes is quantified by the Kullback–Leibler
divergence (KLdiv, measured in bits/s) between the two distributions of 2N values.

Throughout the paper we use the symmetrized version of KLdiv, given by Ds[P||Q] = (D[P||
Q] + D[Q||P]/2, unless stated otherwise. To estimate KLdiv between experimentally
observed or synthetically generated word distributions, we used the symmetrized form of the
Bayesian, bias-corrected estimator introduced in (Berkes et al., 2011); Eqs. S12 - S14 of
their Supporting Online Material. To express the KLdiv in bits, the value was normalized by
a log(2) factor. To verify that this estimator provides accurate results when the number of
the available samples for each of the two distributions is different, e.g., as in the case of Fig.
1F-H, we used synthetic rasters drawn from pairs of word distributions whose true KLdiv
was computed analytically (data not shown).
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The raster marginals model
The raster marginals model (Fig. 2B) synthesizes a random population raster with a
specified mean firing rate (MFR) for each electrode and a specified population rate
distribution (PRd). To operate, the algorithm must be given: (i), the number of time bins T
of the raster that is to be synthesized; (ii), the total number of spikes Si occurring on
electrode i during this duration for all i between 1 and the number of electrodes N; and (iii),
the total number of time bins ri for which the instantaneous Population Rate (i.e., the total
spike count for that time bin, summed over all electrodes) was i, for all i between 0 and N.

Note that , the total number of time bins. Since it must hold that ,
the model is described by 2N parameters. These parameters determine the two marginals of
a binary matrix of dimension N-by-T, up to a permutation of the columns (Fig. 2B).

In general, there are many different matrices with the given marginals. To construct one, we
can begin with some random matrix that satisfies (iii), and by repeatedly shifting 1s within
the same column from any row i whose sum exceeded Si into a row j whose sum fell below
Sj, bring it to satisfy (ii) as well. An alternative approach is to use Ryser’s (deterministic)
algorithm to construct the canonical matrix with such marginals (Ryser, 1957, 1960;
Brualdi, 2006). Once we have a matrix with the specified marginals, it can be randomized
by repeatedly picking a 2-by-2 sub-matrix in which each row and each column contains 0
and 1, and switching between the 0s and 1s. It is possible to move between any two 0/1
matrices having the same marginals (modulo column permutation) by a sequence of
applications of this operation (Ryser, 1957). Consecutive application of a shift in a randomly
chosen 2-by-2 sub-matrix can be used to get in the limit a uniform distribution over all
matrices with given marginals (Rao et al., 1996). In our particular case of matrices that have
many columns but few rows, this can be significantly sped up by applying the shift
operation in parallel on multiple 2×2 sub-matrices from the same pair of rows.

To the best of our knowledge, the raster marginals model represents the first application to
neuroscience of the combinatorial theory of 0/1 matrices with given marginals. The model is
related to a raster shuffling method in which pairs of spikes in different trains are exchanged
(Luczak et al., 2007; Grun, 2009). There is however an important conceptual difference
between the two – unlike shuffling, the model gets no knowledge about the original raster
beyond the 2N parameters. Thus, one need not be concerned with the potential problem of
some structure in the original data not being destroyed by shuffling. One additional
difference is that shuffling preserves the temporal dynamics of population rate of the
original raster, whereas the model cannot.

For an empirically observed word distribution P, we use  to denote the word distribution
produced by the raster marginals model given the parameters corresponding to P. We use 
for the word distribution constructed by retaining the MFRs of the original data but
assuming each spike train is independent of the others.

Estimating properties of the PRd
In many recordings the population rate distribution (PRd) resembles the lognormal (see
Results). As the support of the lognormal distribution is real numbers greater than 0,
whereas spike counts are integers including 0, to fit a lognormal distribution to the observed
PRds, we shifted the measured spike counts upwards by 1, and further added a ‘noise’ value,
uniformly distributed between 0 and 1, to the number of spikes in each bin. We evaluated
the quality of the shifted lognormal fit by the Kullback-Leibler divergence between the
observed distribution and the fit. Specifically, if P(r) denotes the observed probability to
have r simultaneous spikes in a 2 ms bin and Q(r) is this probability according to the fit, its
quality is given by

Okun et al. Page 4

J Neurosci. Author manuscript; available in PMC 2013 May 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



where the factor of 500 is used to obtain the units of bits/s (from a 2ms bin size), and M is
the maximal number of simultaneous spikes observed at least 30 times in the given block. In
our V1 data M was on average 48 ± 14. The upper limit on r is required because P(r) cannot
be reliably estimated when r is close to 96: as r approaches this value, the occurrence of r
simultaneous spikes becomes increasingly rare.

To estimate the KLdiv between PRds of pairs of recording segments, we used a
symmetrized version of the above formula. We used this direct estimate instead of the
Bayesian bias corrected estimator (used for word distributions) because the number of
different r values does not grow exponentially with N (r is distributed over N + 1 values at
most, whereas w is distributed over 2N values), hence the probabilities can be estimated
accurately from the limited amount of available empirical data.

Several theoretical papers derived an analytical expression for the PRd, e.g., see (Amari et
al., 2003; Macke et al., 2011). However, the assumptions made in these works seem too
restrictive for our application. In our case an additional complication with using these results
arises because the multiunit signal on each electrode consists of spike trains from an
unknown number of neurons surrounding it.

To simulate ferret data according to the raster marginal model (Fig. 7B-D), we used shifted
lognormal PRds with the following parameters:

‘S’ ‘M’

‘Juvenile’ μ=1.5, σ=0.6 μ=2.05, σ=0.6

‘Adult’ μ=2.275, σ=0.8 μ=2.48, σ=0.8

Table 1.

These values are within the same range as those observed in the data from cat V1 (data not
shown). As these values provide PRd for rasters of 96 channels rather than 16, we
downsampled the distribution by computing the expectation for the number of spikes on 16
channels given that there were i spikes in total (for every 96 ≥ i ≥ 0).

Simulations of random recurrent spiking network
To demonstrate that similarity of spontaneous and evoked word distributions can occur
without learning, we simulated a network of 10,000 conductance-based integrate-and-fire
neurons, of which 80% were excitatory and 20% inhibitory. The network was implemented
with the NEST simulator (Gewaltig and Diesmann, 2007), accessed via the PyNN interface
(Davison et al., 2008). The time step of the simulations was 0.1 ms.

The membrane potential V of the neurons followed exponential integrate and fire dynamics
(Brette and Gerstner, 2005; Destexhe, 2009):
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Here Cm is the cell’s capacitance; ge(t) and gi(t) are the total excitatory and inhibitory
conductances due to synaptic input; Ee and Ei are excitatory and inhibitory reversal
potentials); gL is the leak conductance; EL the is resting potential; VT is spike approach
threshold; Δ controls the steepness of approach to spike threshold. Spiking was triggered at
a threshold of −40 mV, following which V was clamped at −70 mV for the following 5 ms.
V was prevented from going below −80 mV by a hard lower bound. The current w in the
above equation models spike-frequency adaptation observed in cortical neurons, and is
governed by:

where τw is the time constant of w, and a controls adaptation strength. After every spike w
increases by b nA.

The neurons were randomly connected with connection probability of 2% between E-E, E-I,
I-E, and I-I pairs. The synaptic conductances were represented by alpha functions, with
excitatory synapses having a peak strength of 6 nS and time constant of τe, while the
corresponding values for inhibitory synapses were 40 nS and τi. The axonal conductance
delays were drawn randomly and uniformly between 0.2 and 3 ms.

To enforce heterogeneity across neurons, some of these parameters (bold in Table 2) were
drawn from Gaussian distributions whose means and standard deviations are specified
below. Parameters were drawn independently of all the others, i.e., there were no
correlations between the different parameters across the network.

We operated the network in two conditions, differing in the amount of the background
excitatory drive and the strength of spike-frequency adaptation. The tonic background
excitation was modeled by noise consisting of Poisson spike trains received by all the
neurons (independent for each of the target neurons), with a rate of 0.33 spikes/s for the first
condition and 1.5 spikes/s in the second condition, delivered via an excitatory synapse with
a peak conductance of 6 nS. The spike-frequency adaptation was stronger in the first
condition (average b = 0.9 nA) than in the second condition (average b = 0.1 nA).

To simulate structured sensory input, every neuron was driven by an external spike train,
delivered via an excitatory synapse with a peak conductance of 6 nS. The spike trains were
synthesized by an inhomogeneous Poisson process whose firing rate was a low-pass filtered
(by convolving with a Gaussian with a time constant of 13.5 ms) white noise, shared by all
the neurons.

To obtain 16 multiunit spike trains we randomly selected a subset of neurons and subdivided
it into 16 groups. The size of each group was randomly sampled from a Gaussian
distribution with μ=20, σ=15.

Results
In this work, we analyzed the structure of multineuron word distributions in rat and cat
sensory cortex. We begin by illustrating how in rat auditory cortex these distributions
depend strongly on brain state. We then introduce a simple model of firing patterns based on
the dynamics of population rate, and we apply this model to the data from rat auditory
cortex, and to data from cat visual cortex. We go on to simulate results that have been
obtained in ferret visual cortex and have been seen as a test of the sampling hypothesis.
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Finally, we examine the behavior of a simple recurrent spiking network with random
connectivity.

Distribution of firing patterns depends on brain state
An implicit assumption of the sampling hypothesis – at least as currently formulated – is that
the activity of the network is determined solely by the interaction of its (sensory) input, and
the synaptic connections of local neurons. While this assumption might apply to early
sensory structures such as the retina (Pillow et al., 2008), it is not the case in cortex, where
changes in brain state rapidly and reversibly change the dynamics of neural activity (Harris
and Thiele, 2011). How do these changes in brain state affect word distributions?

To investigate the factors affecting word distributions in sensory cortex, we analyzed the
joint structure of 8 multiunit spike trains recorded in primary auditory cortex (A1) of rats,
presented with amplitude-modulated frozen noise stimuli, interleaved with periods of silence
of similar duration (see Methods). To experimentally quantify the probabilistic structure of
cortical population activity, we used the method of multineuron word distributions. The
activity of an N-unit population at any instant is captured by a binary “word”, with 0s and 1s
representing silent and active units in each 2 ms time bin (Strong et al., 1998; Schneidman et
al., 2006; Shlens et al., 2006; Yu et al., 2008; Roudi et al., 2009; Ohiorhenuan et al., 2010;
Ganmor et al., 2011a, b; Yu et al., 2011). The structure of population activity over time can
then be summarized as a probability distribution over the set of 2N possible words (Fig. 1A),
and the degree of similarity between two word distributions is quantified by the Kullback-
Leibler divergence (KLdiv, see Methods). Consistent with the idea that spontaneous activity
shares the statistical properties of sensory evoked responses, we found that spontaneous and
evoked word distributions were similar (Fig. 1B).

We then turned to the question of how word distributions are affected by changes in cortical
state. The recordings were performed under urethane anesthesia which produces robust and
clear switches between synchronized and desynchronized states (Clement et al., 2008) (Fig.
1C,D). When we examined spontaneous activity in the synchronized and desynchronized
states separately, we found that word distributions were highly dissimilar (Fig. 1E). In fact,
brain state was the main factor determining the similarity of word distributions. Word
distributions were similar within different epochs of the same state, even if these were many
minutes apart, both during spontaneous activity (Fig. 1F), and during presentation of the
auditory stimulus (Fig. 1G). When we compared the ongoing and evoked word distributions
in the different states, we found that the effect of state change was substantially greater than
the effect of the stimulus (Fig. 1H).

These results indicate that the reason for small overall difference between the word
distribution of ongoing and evoked activities that we had seen when disregarding any state
changes (Fig. 1B), is that these distributions match within each state. To conclude, a period
of spontaneous activity may show similar or different word distributions to a period of
sensory-evoked or spontaneous activity, dependent on cortical state.

A simple model of firing patterns based on population dynamics
What could underlie the difference in word distributions in the synchronized and
desynchronized states? Because the animals were anesthetized, it is implausible that the
changes reflected modification of internal models of auditory statistics, or any other specific
synaptic weight adjustment. Nor could the similarity of spontaneous to evoked activity
within a state reflect a learned model of the artificial and previously unheard stimulus.

We hypothesized that the difference in word distributions could instead be explained by a
change in cortical dynamics, i.e., by the propensity of the network to exhibit globally
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coordinated fluctuations in activity (Fig. 1D) (Curto et al., 2009; Harris and Thiele, 2011).
To measure this propensity, we considered the population rate (i.e., the total number of ones
in each word), computed as a function of time in 2 ms bins. We then computed a histogram
of frequencies of population rate for each data segment, which we term the population rate
distribution (PRd). As with the full multiunit word distribution, the PRd showed a greater
dependence on state than on the presentation of a stimulus (Fig. 2A).

Might similarities in PRd between conditions be sufficient to explain the similarities in word
distributions? To test this hypothesis we developed a combinatorial algorithm to generate
random spike trains that conform to the observed PRd and mean firing rate (MFR) on each
electrode (Fig. 2B). Because this model uses only the summed activity of the population,
rather than interactions between individual spike trains, we termed it the “raster marginals
model”.

We then asked how well the raster marginals model captures the structure of an original
word distribution. The model will provide a poor fit if there exist strong correlations
between specific subgroups of units, not due to fluctuations in population rate (Fig. 2C). On
the other hand, the model should provide a very good fit if population activity is determined
by a single firing rate function, to which all the individual train intensities are proportional.
Physiological data are likely to fall in between these two extremes, and the quality of the
model predictions will depend on the extent that correlations can be predicted by
fluctuations in population rate.

The raster marginals model accounts for distributions of firing patterns in rat A1
To evaluate how well the raster marginals model described empirically observed word
distributions, we divided the data into two halves by randomly assigning each 2 ms bin to
one of them. We used one half of the data to fit model parameters, and the other half of the
data to compare the modeled word distribution to the original word distribution. Consistent
with previous reports (Yu et al., 2008; Ohiorhenuan et al., 2010; Berkes et al., 2011; Yu et
al., 2011), we found that MFRs alone provided a poor approximation for the observed word
distributions, as on their own they do not account for the correlations between the individual
spike trains (Fig 3A). On the other hand, the word distributions produced by raster marginals
model closely matched those of the original data (Fig. 3B). Therefore, in this data set the
fluctuations in population rate dominate the word distributions.

Although the raster marginals model greatly outperforms prediction from MFRs, it still does
not provide a perfect fit to the observed word distributions (red vs. gray in Fig. 3B). To gain
an intuition for the quality of the fit, we examined how well the model predicted correlations
between specific neuronal pairs. Fig. 3C shows the correlation between each pair of spike
trains in the original data plotted against the correlation predicted by the raster marginals
model. The spread of the points around the diagonal indicates the extent to which factors
beyond population dynamics affect pairwise correlations.

Nonetheless, the raster marginals model was sufficient to predict the observed KLdiv
between pairs of word distributions. Indeed, the KLdiv measured from the synthetic rasters
produced by the raster marginals model closely matched the KLdiv measured from the
original data, recapitulating all the effects of cortical state and stimulus presence that we had
observed in the actual data (Figs. 4A,B). To put the model to a further test, we computed the
KLdiv between pairs of word distributions in which one was observed while the other was
synthetic. These KLdiv values were also found to be close to the corresponding values of
KLdiv between pairs of the original word distributions (Fig. 4C), with a small additive offset
approximately equal to the residual distance between the original and model data (cf. Fig.
3B).
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The raster marginals model, however, could not be further simplified. For instance,
producing uncorrelated random spike trains according to MFRs alone did not provide an
accurate prediction (Fig. 4D). Thus, while a model based on firing rates alone is poor at
predicting KLdiv between word distributions, population rate dynamics provides a good
approximation of individual word distributions and can therefore accurately predict KLdiv
between pairs of distributions.

The raster marginals model accounts for distributions of firing patterns in cat V1
To further test the validity of the raster marginals model, we asked if it can also account for
the firing patterns of neurons in the visual cortex. We analyzed a set of acute recordings
from cat V1 made with a 96-channel multi-electrode array (Benucci et al., 2009; Busse et
al., 2009). Every experiment lasted for many hours, during which blocks of specific visual
stimuli were presented, including drifting and flashing gratings, plaids, random bars, natural
movies, and others. In total, we analyzed data from 64 blocks of data (each lasting 14-50
minutes) from 9 animals, yielding 200 pairs of blocks in which word distributions could be
compared. For each animal we selected a random subset of 16 out of the 96 electrodes, and
compared the word distributions in the different blocks across these electrodes. This
procedure was repeated 5 times, producing a total of 1000 comparisons.

In these recordings, the stimulus presentation did make a difference in terms of word
distributions. We compared the activity measured during spontaneous activity with those
measured during responses to gratings and natural movies (Fig. 5A). Similarly to earlier
results in ferret V1 (Berkes et al., 2011), we found that spontaneous word distributions were
more similar to those of natural movies than to gratings (Fig. 5B).

However, this dependence of word distribution on stimulus type was fully explained by the
raster marginals model (Fig. 5C). In fact, the model accurately predicted the measured
KLdiv across all pairs of stimuli in the dataset, not just gratings and natural movies (Fig.
5D). The success of the raster marginals model in explaining this large body of data
indicates that here, as in the data from rat A1 discussed earlier, word distributions primarily
reflect changes in population rate dynamics, rather than interactions between individual
spike trains.

Statistical properties of the PRd
The success of the raster marginals model suggests that in order to understand word
distributions, it is desirable to have a succinct model of the population rate distribution
(PRd). We found that a lognormal distribution – with a further shift to allow for bins of zero
firing rate (see Methods) – provided an accurate fit to the PRd measuredin cat V1
experiments (Fig. 6A). To quantify the quality of the fit, we computed for each block the
KLdiv between the shifted lognormal fit and the actual PRd(see Methods). In 8 out of the 9
animals, we found a good fit between the two in most of the blocks (Fig. 6B).

One of the mathematical motivations for the raster marginals model is the decomposition of
the KLdiv into two parts, one of which depends only on the PRd. In more detail, let P(w)
and Q(w) be two distributions of N-bit words w (for example with P representing the word
distribution for spontaneous activity and Q that evoked by a particular sensory stimulus). Let
r = r(w) denote the total number of spikes (i.e., 1s) in a word w. Since r is fully determined
by w, it holds that

(1)
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The second equality is known as the chain rule for relative entropy (Cover and Thomas,
1991). The above equation implies that the KLdiv is a sum of a component determined
solely by the population rate dynamics (i.e., the PRd) and of a component determined by
differences in the firing patterns across similar levels of population activation in P(w) and
Q(w). Equation (1) has several additional implications, one of which is that D[P(r)||Q(r)] is a
lower bound on D[P(w)||Q(w)]. Fig. 6C shows the relationship between the (symmetrized)
KLdiv of the full word distribution for blocks of cat data, and the (symmetrized) KLdiv of
the PRds. As predicted, the KLdiv of the PRds forms a lower bound for the KLdiv of the full
word distribution. However, the poor match seen in Fig. 6C also indicates a significant
contribution of the conditional KLdiv (the last term in eq. 1). The fact that the raster
marginals model makes a good prediction of KLdiv implies that it accurately approximates
this conditional KLdiv term.

Explaining the apparent effect of development on word distributions
Cortical dynamics changes markedly over development: the juvenile visual cortex exhibits a
state of primarily silent activity punctuated by occasional large population bursts that
changes by adulthood into a more continuous pattern (Colonnese et al., 2010). These
changes in cortical dynamics occur even in dark-reared animals (Golshani et al., 2009;
Rochefort et al., 2009), so they cannot reflect learning of the visual environment. Could
changes in cortical dynamics explain the developmental increase in similarity between
spontaneous and evoked word distributions reported in ferrets by Berkes et al. (2011) (Fig.
7A)?

To answer this question, we used the raster marginals model to construct synthetic word
distributions using parameters derived from previously published reports. According to Fiser
et al. (2004), mean V1 firing rates in juvenile ferrets during periods of ongoing and sensory
evoked activities were 20 and 40 spikes/s, while the corresponding values for adult ferrets
were 60 and 75 spikes/s. We synthesized ‘spontaneous’ and ‘evoked’ activity by allocating
each electrode’s MFR according to a Gaussian distribution with these means, with a PRd
sampled from a shifted lognormal distribution as in our own V1 data (Fig. 7B; see Methods).
Similarly to the ferret data, KLdiv between synthetic ‘juvenile’ word distributions was
several times higher than in synthetic ‘adult’ data (Fig. 7C,D). As in the ferret data,
comparison with synthetic trains computed from MFRs alone confirmed that these
differences did not simply reflect changes in firing rates, but changes in correlation;
however, the success of the raster marginals model indicated that these correlations could
again be explained by population rate dynamics (Fig. 7D, bottom).

Word distributions in a randomly connected network
The above analyses suggest that changes in cortical dynamics, rather than learning-related
synaptic plasticity, underlie the increased match of spontaneous to evoked word
distributions in adult animals. But what could cause these changed dynamics? In adult
animals, changes in cortical dynamics are believed to reflect changes in neuromodulatory
and tonic glutamatergic drive (Harris and Thiele, 2011); across development, changes in
cellular conductances (Kasper et al., 1994; Etherington and Williams, 2011; Guan et al.,
2011) could also contribute to changed dynamics.

To demonstrate how such changes could alter word distributions even without synaptic
weight modifications, we analyzed the joint structure of 16 multiunit spike trains in a
simulated network of randomly connected neurons (Fig. 8A). As usual, we compared
multineuron word distributions measured during spontaneous activity with those measured
during driven activity. To mimic sensory stimulation, this driven activity was obtained by
providing the network with an external spatiotemporally structured input (see Methods).
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With a fixed synaptic weight matrix, we simulated two conditions: one in which neurons
exhibited strong cellular spike-frequency adaptation and received little background
depolarization, and a second condition of weak adaptation and high background rate. As
shown in previous computational models (Compte et al., 2003; Hill and Tononi, 2005;
Holcman and Tsodyks, 2006; Destexhe, 2009), the first condition produced slow global
fluctuations in activity, alternating spontaneously between active periods where recurrent
excitation causes self-sustaining activity (“up states”), and silent periods that occur after
sufficient adaptation has occurred to prevent their continuation (“down states”). Conversely,
the second condition provided a state of more constant population activity.

The results obtained with this fixed artificial network recapitulated the main findings
obtained with actual recordings: a change in the dynamics of population firing rate
determined the match or mismatch between the word distributions seen in spontaneous and
evoked activity. Indeed, while a mismatch between the spontaneous and evoked word
distributions was found in the first condition (Fig. 8B), a close match was observed in the
second (Fig. 8C).

To investigate the role of correlations in producing the KLdivs observed in these
simulations, we again computed the KLdiv between word distributions of the original data
and of synthetic rasters obtained using only the MFRs (Fig. 8D). As with the ferret data and
raster marginals model (Fig. 7), differences between the original data and MFR-only model
indicates the presence of correlations in the network, which became more pronounced in the
second condition. The distinct KLdiv measures within conditions (e.g., gray vs. pink bars)
are qualitatively different from Fig. 7, likely reflecting a difference in the shape of the PRds
produced by the network, when compared to V1 (cf. Fig. 8E and Fig. 6A). Finally, we note
that the raster marginals model provided an accurate approximation for the structure of word
distributions produced by the network (Fig. 8F) and for the KLdiv between pairs of word
distributions in the different conditions (data not shown). We conclude that changes in the
dynamical state of even a randomly connected network can cause a change from low to high
match between spontaneous and evoked activity, without any form of synaptic plasticity.

Discussion
We assessed similarities and differences between probability distributions of cortical
population activity using the Kullback-Leibler divergence (KLdiv) between multiunit word
distributions. KLdiv depended on both cortical state and sensory stimuli. Changes in mean
firing rates were not sufficient to predict the KLdiv between observed word distributions,
indicating that correlations also contributed substantially. Nevertheless, the experimentally
measured KLdiv could be accurately predicted by the raster marginals model, in which all
correlations resulted from population rate dynamics, rather than precise interactions between
cells. A simulated spiking network model of fixed random connectivity could exhibit either
similarity or difference between spontaneous and sensory-evoked word distributions,
according to its cellular parameters. We conclude that similarities and differences in KLdiv
between multiunit word distributions can primarily reflect changes in population dynamics,
rather than the precise interactions between spike trains that would be a hallmark of
learning.

The raster marginals model
It is important to distinguish the raster marginals model from the maximum entropy models
typically used to describe the word distribution structure (Schneidman et al., 2006; Shlens et
al., 2006; Yu et al., 2008; Roudi et al., 2009; Ohiorhenuan et al., 2010; Ganmor et al.,
2011a, b; Yu et al., 2011). In the latter, a distribution is fit that matches specific pairwise or
higher-order correlations, usually requiring at least an order of N2 parameters for a
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population of N neurons. In the raster marginals model, however, correlations are only
produced as a result of population rate dynamics as measured by the summed rate of all
neurons, and the temporal structure of the spike trains is discarded. The simplicity of the
model is reflected by the fact that it uses only 2N parameters.

Because of its simplicity, we do not expect the model to provide an entirely accurate
description of multiunit word distributions: indeed, the match between the word
distributions of the model and original data, while significantly better than for distributions
produced by MFRs alone, was not perfect (Figs. 3B,C and 8F). Nevertheless, the ability of
this simple model to accurately predict the KLdiv between experimental conditions (Figs.
4B, 5D) indicates that KLdiv is dominated by changes in population dynamics as
parameterized by the model. Therefore, the raster marginals model may provide a useful tool
to disentangle genuine higher order interactions from correlations induced by population rate
dynamics.

Sampling-based representation and learning
Theoretical support for the sampling-based representation hypothesis comes from a class of
artificial neural network models (“generative networks”) which produce such a behavior
(Ackley et al., 1985; Dayan et al., 1995; Hinton and Salakhutdinov, 2006; Buesing et al.,
2011; Pecevski et al., 2011). A recent analysis of recordings from ferret visual cortex over
the course of development found a gradual decrease in the KLdiv between the word
distribution of spontaneous and evoked activity, as would be seen across training of a
generative network. Moreover, the spontaneous word distribution in adult ferret V1 was
similar to the distribution during the presentation of natural movies, which presumably
shared statistical structure with the animal’s previous experience, but not of artificial drifting
gratings (Berkes et al., 2011).

Here we provide a potentially more parsimonious explanation for these findings. We show
that similar results can be obtained from the raster marginals model, suggesting that they are
not evidence that a probabilistic model of the environment has been learned and encoded in
synaptic weights, but rather of similar population rate dynamics in the two conditions (Figs.
5A-C and 7). Without replicating the experiments with animals of different ages we cannot
altogether dismiss the possibility that population rate dynamics is not the explanation for the
developmental changes reported in (Berkes et al., 2011). However, if population dynamics
does not account for these findings, one has to conclude that neural population dynamics in
ferret V1 and in the data analyzed here differs in some profound manner. This would be an
important and unexpected finding that would require further investigation.

Our results demonstrate that in auditory and visual cortices as well as simulated recurrent
networks, word distributions reflect not only on the interaction of external inputs with the
synaptic weight matrix, but also dynamical properties of the networks. Such dynamical
properties can change rapidly and reversibly with cortical state (Fig. 1C-E), and be caused
by changes in properties such as cellular adaptation and background input (Fig. 8), which
are in turn controlled by neuromodulatory tone and tonic glutamatergic input (Harris and
Thiele, 2011; Poulet et al., 2012), as well as changing over development (Kasper et al.,
1994; Etherington and Williams, 2011; Guan et al., 2011).

Convincingly demonstrating that learning has occurred by comparing word distributions is
difficult for a number of reasons. First, as the current work shows, word distribution
structure is dominated by population dynamics, whereas learning would be expected to
primarily manifest itself as a change in firing statistics of specific subgroups of neurons.
Therefore, to unveil the effect of learning, it is necessary to quantify the specific pairwise
and higher order interactions between spike trains, beyond those induced by fluctuations in
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population rate. Whereas several computational approaches for doing so exist (one of them
being to measure deviations between observed pairwise correlations and those predicted
from population rate, see Fig. 3C), there is no reason to think that any one of them is of
particular biological significance. The real challenge, however, is not in measuring the
specific interactions, but in showing that their change across conditions is due to learning,
rather than other processes. To demonstrate this point, we have presented several different
examples of processes which are not learning-related but have a profound effect on the
structure of word distribution. In summary, the level of similarity between spontaneous and
evoked activity must be interpreted with caution: its changes need not be a signature of
learning-related modifications in synaptic strength; and high similarity does not imply that a
network has learned a model of the environment.
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Figure 1.
Word distributions in rat A1 are state-dependent. (A) The multiunit spiking activity on 8
tetrodes was converted into a binary matrix whose columns represent the presence of spikes
in consecutive, non-overlapping 2 ms bins. (B) Spontaneous and stimulus-evoked word
distributions are similar when accumulated over the whole data set. The plot shows the
probability of every 8-bit word, with color representing the number of 1s it contains. (C)
Cortical states. Top: spectrogram of LFP on one electrode. Bottom: running coefficient of
variation (CV) of the population rate, computed from 10 s intervals of spontaneous activity
(see Methods). The CV and low frequency power are substantially higher in synchronized-
state epochs (S1 and S2). (D) Example rasters of spontaneous activity during
desynchronized and synchronized states (the position of these intervals within the recording
shown in (C) is indicated by asterisks). The corresponding population rate (spikes / 50 ms
bin) is shown to the right of each raster. (E) The spontaneous word distribution differs
between states. (F) Pseudocolor matrix showing KLdiv between spontaneous word
distributions in each pair of periods. The distributions are similar within states, but different
across states. (G,H) Same plot as in (F), for evoked-evoked and spontaneous-evoked word
distributions.
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Figure 2.
The raster marginals model. (A) Population Rate distribution (PRd) of spontaneous and
evoked activity in each of the recording intervals shown in Fig. 1C. (B) Illustration of the
model. Summing the rows of the raster matrix provides the mean firing rate (MFR) for each
electrode. Summing columns provides the population rate, whose distribution (PRd) is used
by the model. MFR and PRd summarize the raster by 2N parameters, which are used to
produce a synthetic raster (see Methods). (C) Illustration of a correlation structure that
cannot be captured by the model. Left: spike coincidences predominantly occur between
units 1-2 (blue) and 3-4 (green), whereas all other coincidences are rare (gray). Right: in the
output produced by the model, coincident spikes occur between any pair of units.
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Figure 3.
The raster marginals models accounts for the word distribution observations in rat A1. (A)
Fit between the MFR and raster marginals models to the word distribution in epoch S2 of
Fig. 1C. (B) Summary data for the fit of the MFR and raster marginals models to the word
distributions in the eight conditions in each animal (six in one of the rats). The bars represent
the mean KLdiv, error bars represent standard deviation. The gray bars indicate the KLdiv
between two halves of the experimental data. (C) The fit of the MFR and raster marginals
models for the pairwise correlations (across all the conditions and animals). The gray points
showhow well the pairwise correlation measurement from one half of the experimental data
describes the second half.
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Figure 4.
KLdiv between word distributions in rat A1 is captured by the raster marginals model. (A)
The model successfully reproduces the KLdiv measurements in Fig. 1F-H. (B) Ds [P||Q], the

actual KLdiv between word distributions, is plotted vs. , the KLdiv predicted by
the raster marginals model. The plot shows data from all pairs of word distributions in the 3
animals superimposed. The fact that the points fall on the diagonal indicates that the actual

KLdiv (Fig. 1F-H) and predicted KLdiv (A) are very close. (C) Ds[P||Q] vs. . (D)

Ds[P||Q] vs. , the KLdiv predicted by MFR alone, indicating a poor fit.
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Figure 5.
KLdiv between word distributions in cat V1 is captured by the raster marginals model. (A)
Example rasters from three blocks with different kinds of stimuli. (B) Comparison of the
word distributions during spontaneous activity with gratings and natural movies in cat V1.
(C) Comparison of word distributions generated by the raster marginals model using
parameters derived from the same three conditions. Note the close match to the plots in (B).
(D) Observed KLdiv for each pair of blocks vs. KLdiv predicted by the raster marginals
model (red) and the MFRs alone (blue), for data from 9 cats. As with rat data, the raster
marginals model provides an accurate prediction while MFR alone does not.
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Figure 6.
Statistical properties of the PRd. (A) Example of a shifted lognormal fit to PRd of activity in
one block from cat V1 dataset. In this particular example the KLdiv between the actual PRd
and the fit is 20 bits/s. (B) The KLdiv between the shifted lognormal fit and the observed
PRd for each one of the blocks. Circles indicate the median KLdiv for each animal. In 8 out
of the 9 animals PRd is well described by a shifted lognormal distribution. (C) KLdiv of
word distributions is bounded from below by KLdiv of PRds. The panel shows the
relationship of the KLdiv between word distributions of different blocks and the KLdiv
between the corresponding PRds. As in Fig. 5D, we use the 200 available pairs of blocks,
with 5 different (random) selections of 16 out of the 96 electrodes, for a total of 1000 points.
Note that all points are to the right of the equality line, indicating a strict lower bound.
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Figure7.
Changes in population rate dynamics can explain increasing similarity of spontaneous and
evoked word distributions with development. (A) The key experimental findings of (Berkes
et al., 2011). Top: KLdiv between spontaneous spiking activity [S], and activity during
presentation of natural movies [M] in juvenile and adult ferrets. Bottom: KLdiv between the
word distributions in actual data [M or S] and the word distributions predicted by MFR
alone [  or , respectively]. (B) Parameters of the raster marginals model used to reproduce
the data in (A). Top: MFRs on 16 electrodes. The rates of the 16 ‘S’ (‘spontaneous’) spike
trains were drawn from a normal distribution with μ = 20 spikes/s, σ = 15 spikes/s, and μ =
60 spikes/s, σ = 45 spikes/s, for ‘juveniles’ and ‘adults’, respectively. The ‘M’ (‘natural
movie’) rates were obtained by multiplying the spontaneous rate of each spike train by a
coefficient drawn from a normal distribution with μ = 2, σ = 0.5, and μ = 1.25, σ = 0.125,
for ‘juveniles’ and ‘adults’, respectively.Bottom: PRds, taken to be shifted lognormal as in
cat V1 (see Methods). Blue and green points indicate parameters used to create synthetic
‘juvenile’ and ‘adult’ rasters, respectively. (C) Comparison of the spontaneous and evoked
word distributions produced by the model for the ‘juvenile’ (top) and ‘adult’ (bottom)
conditions. (D) Summary statisticsfor the raster marginals model, shown in the same format
as (A). Error bars represent standard deviations over 100 repeats, one of which is shown in
(B-C).
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Figure8.
Spontaneous and input-driven word distributions in a randomly-connected recurrent spiking
network can shift from a mismatch to a match upon change in intrinsic properties of the
network. (A) Schematic of the network, containing 80% excitatory and 20% inhibitory
neurons. (B) In condition 1, background depolarization is weak and firing adaptation of the
excitatory neurons is strong. In this condition, the spontaneous and evoked word
distributions produced by the network substantially differ. (C) In condition 2, background
depolarization is strong and adaptation weak. In this condition, spontaneous and evoked
word distributions are similar. (D) Same analysis as in Figs. 7A,D (bottom) for spiking
network data (S - spontaneous, Id - input driven). (E) PRd for spontaneous (left) and
external input driven (right) conditions in the spiking network. Note that the PRds for
spontaneous and evoked activity differ greatly for condition 1, but not for condition 2. (F)
Same analysis as in Fig. 3B for spiking network data. Error bars represent standard
deviations over the 4 conditions in which we examined the network dynamics (spontaneous
and input-driven, in conditions 1 and 2).
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Table 2

Cm membrane capacitance 0.2 nF

Ee excitatory reversal potential 0 mV

Ei inhibitory reversal potential −80 mV

τm membrane time constant 10 ± 3.3 ms

gL leak conductance Cm/τm

EL resting potential −70 ± 3 mV

VT spike approach threshold −50 mV

Δ steepness of approach to spike threshold 2.5 ± 0.8 mV

a adaptation strength 1.00 ± 0.33nS

b postspike adaptation current (for excitatory
neurons)

0.9± 0.3 or 0.10± 0.03nA

b postspike adaptation current (for inhibitory
neurons)

0

τw adaptation time constant 600 ± 200 ms

τe time constant of excitatory synapses 5.0 ± 1.7 ms

τi time constant of inhibitory synapses 10.0 ± 3.3ms

J Neurosci. Author manuscript; available in PMC 2013 May 28.


