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Summary
TRPC channels are the Canonical (C) subset of the transient receptor potential (TRP) proteins
which are widely expressed in mammalian cells. They are thought to be primarily involved in
determining calcium and sodium entry and have wide-ranging functions that include regulation of
cell proliferation, motility and contraction. The channels are modulated by a multiplicity of
factors, putatively existing as integrators at the plasma membrane. This review considers the
sensitivities of TRPC channels to lipids that include diacylglycerols, phosphatidylinositol
bisphosphate, lysophospholipids, oxidized phospholipids, arachidonic acid and its metabolites,
sphingosine-1-phosphate, cholesterol and some steroidal derivatives, and other lipid factors such
as gangliosides. Promiscuous and selective lipid-sensing have been detected. There appear to be
close working relationships with lipids of the phospholipase C and A2 enzyme systems, which
may enable integration with receptor signaling and membrane stretch. There are differences in the
properties of each TRPC channel that are further complicated by TRPC heteromultimerisation.
The lipids modulate activity of the channels or insertion in the plasma membrane. Lipid
microenvironments and intermediate sensing proteins have been described that include caveolae,
G protein signaling, SESTD1, and podocin. The data suggest that lipid-sensing is an important
aspect of TRPC channel biology enabling integration with other signaling systems.
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Introduction
There are seven mammalian genes encoding Transient Receptor Potential Canonical (TRPC)
proteins and all of them are expressed in humans except for TRPC2 (Flockerzi, 2007, Nilius,
2007, Venkatachalam and Montell, 2007, Abramowitz and Birnbaumer, 2008, Yildirim and
Birnbaumer, 2007). Like voltage-gated K+ channels they are thought to form channels by
gathering as a group of four around a central ion pore, either using the same type
(homomultimeric channels) or a mixture of TRPs (heteromultimeric channels). Initial
studies suggested that TRPC1/4/5 and TRPC3/6/7 multimerize as exclusive subgroups,
consistent with the observation that these TRPCs cluster in amino acid sequence
comparisons. However, subsequent studies have suggested more flexibility (Strubing et al.,
2003) and that other subtypes of TRP (e.g. TRPP2, TRPV4) may be incorporated (Bai et al.,
2008, Ma et al., 2010, Tsiokas et al., 1999). The exact compositions of native TRPC-
containing channels remain important unsolved problems.
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TRPC channels are permeable to the cations Ca2+, Na+ and K+. They are not voltage-gated
(i.e. they do not require a change in membrane potential to open) but they are often voltage-
sensitive (i.e. their activity is modulated by voltage). They may display significant
constitutive activity (Nichols et al., 2007, Xu et al., 2008, Dietrich et al., 2003) but are most
often stimulated or inhibited by a range of chemical or protein factors (Abramowitz and
Birnbaumer, 2008). They are emerging as polymodal ion channels that are sensitive to a
multiplicity of activators and inhibitors, suggesting that they may serve as integrative
sensors of complex chemical signals (Abramowitz and Birnbaumer, 2008, Zeng et al.,
2004). Importantly, although different cells express different relative amounts of each
TRPC, it seems that all mammalian cell types express most (if not all) of the TRPCs,
suggesting that TRPC channels serve generic cell functions. For example, several TRPCs
have been linked positively or negatively to cell migration, including an interesting
reciprocal relationship between TRPC5 and TRPC6 through Rac1 and RhoA proteins
respectively (Greka et al., 2003, Xu et al., 2006, Tian et al., 2010, Chaudhuri et al., 2008,
Fabian et al., 2008).

Numerous specific functions of TRPCs in physiology and disease are starting to emerge,
with examples that include roles of: TRPC1 in neointimal hyperplasia, cardiac hypertrophy,
angiogenesis, and saliva secretion (Kumar et al., 2006, Seth et al., 2009, Jho et al., 2005, Yu
et al., 2010, Liu et al., 2007b); TRPC2 in pheromone sensation (Yildirim and Birnbaumer,
2007); TRPC3 in pancreatitis, heart failure and NFKB activation (Kim et al., 2009,
Kiyonaka et al., 2009, Smedlund et al., 2010); TRPC4 in gastrointestinal motility and blood
pressure regulation (Tsvilovskyy et al., 2009, Freichel et al., 2001); TRPC5 in fear
responses, regulation of matrix metalloprotease secretion from fibroblast-like synoviocytes
and degranulation of mast cells (Riccio et al., 2009, Xu et al., 2008, Ma et al., 2008); and
TRPC6 in familial focal segmental glomerulosclerosis, hypoxic pulmonary vasoconstriction,
pulmonary hypertension, oesophageal cancer and angiogenesis (Winn et al., 2005,
Weissmann et al., 2006, Hamdollah Zadeh et al., 2008, Shi et al., 2009).

This review addresses the topic of TRPC channel sensitivities to lipids as components of
specific membrane environments or as active intracellular or intercellular signaling
molecules. It explores the hypothesis that a function of TRPCs is to serve as integrators of
lipid environments and signaling. An abridged summary is provided (Fig 1) but it is a
simplification of the available information and so should be considered alongside the text
below. The reader is referred to published review articles for general background on lipid
structures, classification and signaling pathways, bilayer structures, and lipid relevance to
disease (Fahy et al., 2005, Sanchez-Mejia and Mucke, 2010, Fukami et al., 2010, Marrink et
al., 2009, Maxfield and Tabas, 2005, Wymann and Schneiter, 2008).

Phosphatidylinositol phosphates (PIP2 and PIP3)
Phospholipase C (PLC) enzymes are stimulated by G proteins and receptor tyrosine kinases
to generate key messengers such as inositol 1,4,5-trisphosphate (IP3) and diacyglycerols
(DAGs) from phosphatidylinositol 4,5-bisphosphate (PIP2). PIP2 is not only the source of
IP3 and DAGs but also a key regulator of protein activity in its own right, as its local
concentration depletes in response to receptor stimulation and target proteins contain PIP2-
responsive elements. Phosphatidylinositol-3,4,5-trisphosphate (PIP3) is generated by the
action of PI 3-kinase on PIP2, feeding into the Akt signaling pathway.

In heterologous expression studies TRPC6 was found to be stimulated by PIP2 or PIP3, with
PIP3 showing the highest affinity (Tseng et al., 2004, Kwon et al., 2007). It bound
phosphoinositides directly at a site in the C-terminus, competing with calmodulin (Kwon et
al., 2007). Mutations in TRPC6 that decreased PIP3 binding suppressed channel activity, as
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did an Akt-PH domain that acted as a PIP3 sponge (Kwon et al., 2007). Other TRPC
proteins were also found to bind phosphoinositides, especially TRPC1 (Kwon et al., 2007).
PIP2 or PIP3 were subsequently found to stimulate endogenous channels containing TRPC1
in vascular smooth muscle cells (Saleh et al., 2009), whereas PIP2 inhibited endogenous
TRPC6 or TRPC6/7 channels (Ju et al., 2010). Optimal receptor-activation of TRPC6 was
suggested to require depletion of PIP2 and generation of DAG (Large et al., 2009). The
PTEN phosphatase, which generates PIP2 from PIP3, was found to regulate TRPC6 surface
expression independently of its phosphatase activity (Kini et al., 2010).

PIP2 inhibited TRPC4α but had no effect on TRPC4β channel (Otsuguro et al., 2008).
Several other phosphoinositides had no effect or stimulated TRPC4α. Evidence was
provided for PIP2 interacting with the C-terminus of TRPC4α and effects depended on the
actin cytoskeleton and the PDZ-binding motif of TRPC4 (Otsuguro et al., 2008). In one
study, PIP2 stimulated TRPC5 channel activity in excised inside-out patches yet agents that
caused PIP2 depletion had stimulatory effects on whole TRPC5 channel currents, as if PIP2
normally inhibited TRPC5 (Trebak et al., 2009). In another study it was observed that PIP2
had no effect other than to slow the rate of TRPC5 channel desensitization following
receptor activation (Kim et al., 2008).

A screen of a human aorta cDNA library revealed SESTD1 as a binding partner of TRPC4
and TRPC5 (Miehe et al., 2010). SESTD1 is a previously unrecognized protein that binds PI
mono- and diphosphates and phosphatidic acid but not phosphatidylcholine,
phosphatidylserine or PI (Miehe et al., 2010). Binding of PIP2 was shown to be Ca2+-
dependent. SESTD1 associated with the channels at the calmodulin/IP3 binding domain and
was suggested to be required for efficient receptor-activation of the channels.

The data suggest that there are divergent and complex effects of PIP2 on TRPC channels. In
several cases the functional consequences require clarification and this situation is made
more difficult by evidence that TRPC heteromultimerisation in native cells complicates the
net effect of PIP2. Effects may occur through direct binding or intermediate proteins such as
SESTD1.

Diacylglycerols (DAGs)
DAGs are composed of two covalently-linked fatty acids and may be formed from various
sources, one of which is PIP2. Early studies searching for activators of TRPC channels
identified DAGs as activators of the TRPC3/6/7 subgroup of TRPCs (Hofmann et al., 1999).
TRPC2 was also activated by DAGs (Lucas et al., 2003). DAGs are now being used
routinely as activators of these subclasses of TRPC channel. Various DAGs have been found
to be effective, including 1-stearoyl-2-arachidonyl-sn-glycerol and the related 2,4-
diacylphloroglucinols (Hofmann et al., 1999, Aires et al., 2007, Leuner et al., 2010). DAG
activation of TRPC6 was not prevented by protein kinase C inhibitors, suggesting it was
independent of protein kinase C and a relatively direct effect on the channel (Hofmann et al.,
1999). Based on computational analysis of amino acid sequences and mutagenesis studies,
an N-terminal section of TRPC3/6/7 has been proposed as a DAG-sensing domain, although
as a regulator vesicle fusion (van Rossum et al., 2008).

The concentrations of exogenous DAGs required to stimulate the channels are relatively
high but effects are suggested to be relevant to endogenous DAGs because there is also
activation by DAG lipase inhibitors (Hofmann et al., 1999). There is, nevertheless, evidence
of synergism with IP3, potentially conferring greater sensitivity to DAG (Albert and Large,
2003). Intriguingly, the effect of PIP2 on TRPC6/7 but not TRPC6 channels was overcome
by IP3 (Ju et al., 2010). The receptor-activation of TRPC3/6/7 channels by agonists at G
protein-coupled receptors is an effect that therefore arises, at least in part, because of G-
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protein or receptor tyrosine kinase stimulation of PLCβ/γ leading to degradation and thus
depletion of PIP2 and generation of DAGs and IP3, all of which impinge on the channels to
varying degrees.

TRPC1 is not thought to be directly activated by DAGs although this TRPC is difficult to
study on its own because trafficking to the plasma membrane is poor in the absence of other
co-expressed factors (e.g. other TRP proteins). It has been activated by DAGs when co-
expressed with TRPC3 (Lintschinger et al., 2000). It is, however, also described that TRPC1
was phosphorylated via protein kinase C (which is activated by DAGs) and that endogenous
TRPC1-containing channels were stimulated as a consequence (Ahmmed et al., 2004, Saleh
et al., 2008). TRPC4 and 5 readily traffic to the plasma membrane but, in contrast to
TRPC3/6/7, are not activated by DAG (Hofmann et al., 1999, Venkatachalam et al., 2003).
There is, nevertheless, a suggestion that TRPC5 forms part of a DAG-activated channel with
TRPC3 (Liu et al., 2007a). Furthermore, desensitization following receptor-activation of
TRPC4/5 occurred via protein kinase C-dependent phosphorylation (Venkatachalam et al.,
2003, Zhu et al., 2005). Similarly, protein kinase C inhibited TRPC3 (Trebak et al., 2005)
and TRPC6 (Bousquet et al., 2010), suggesting that DAGs have stimulatory (direct) and
inhibitory (indirect via protein kinase C) effects on these channels.

Therefore, DAGs acutely and directly stimulate some of the TRPCs but they also activate or
inhibit TRPCs by triggering protein kinase C-dependent phosphorylation.

Lysophospholipids
Lysophospholipids such as lysophosphatidylcholine (LPC) are generated by enzymatic
action of phospholipase A2 (PLA2) enzymes on phosphatidylcholine and other related
substrates. LPC was first shown to be a stimulator of TRPC5 (Flemming et al., 2006). There
is partial insight into the mechanism of this effect. Chemically, the effect lacked head-group
specificity because replacement of choline with inositol (to generate LPI) did not affect
activity (Flemming et al., 2006). In contrast, the length of the carbon side-chain was
important, suggesting necessity of solubilisation of the lysophospholipid in the lipid bilayer.
Because of this solubilisation property, exogenous LPC has detergent effects on lipid
bilayers (hence ‘lyso’ indicating cell lysis). However, activation of TRPC5 occurred at low
(sub-detergent) concentrations of LPC and it was characterized by the distinctive current-
voltage relationship (I-V) of TRPC5, showing that the effect reflected TRPC5 channel
activity rather than non-specific bilayer disturbance.

LPC is a ligand at certain G protein-coupled receptors (Ishii et al., 2004) but stimulation of
TRPC5 by LPC did not require G protein signaling (Flemming et al., 2006). Furthermore,
LPC activated TRPC5 in excised outside-out membrane patches in the absence of GTP,
suggesting that it acted relatively directly at the channel. Consistent with negative data from
convex membrane curvature experiments (Beech et al., 2009), LPC applied to the inner face
of the lipid bilayer also activated TRPC5 (Flemming et al., 2006); that is, the effect of LPC
on TRPC5 lacked polarity - acting similarly whether applied to the outside or inside of the
membrane. This result is consistent with a model where membrane-spanning elements of
TRPC5 containing a lipid interaction site that is accessible from either side of the
membrane, conferring on the channel a sensitivity to changes in lipid composition of the
bilayer. Alternatively TRPC5 activity may be influenced by specific membrane fluidity
changes that occur with the introduction LPC.

TRPC6-containing channels were found to be stimulated by LPC in endothelial cells
(Chaudhuri et al., 2008). The I-V of the stimulated current lacked the distinctive rectification
of TRPC channels but responses were reduced when TRPC6 expression was suppressed or
prevented, suggesting TRPC6 was involved but not alone. Compelling biochemical evidence
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was presented for forward trafficking of TRPC5 in response to LPC-evoked TRPC6-
dependent Ca2+-entry. In these cells, TRPC5 expression at the plasma membrane was
initially low, which might explain why there was no obvious stimulation of TRPC5 in the
absence of TRPC6.

Stimulation of TRPC channels by LPC has biological importance in endothelial cell
migration (Chaudhuri et al., 2008). It may also have wider importance. Human monocytes,
for example, showed Ca2+ entry in response to LPC that was independent of G-protein and
phospholipase C signaling and dependent on LPC carbon chain length (Yun et al., 2004).
Human monocytes express TRPC5 and other TRPCs (Liu et al., 2007a). The
pharmacological profile of the LPC-activated current in monocytes was similar to that of
TRPC6 (Schilling and Eder, 2009). A role of TRPC activation by LPC has been suggested in
erectile dysfunction (So et al., 2005). Moreover, LPC is a major component of oxidized low-
density lipoprotein (oxLDL), which may explain the Ca2+-influx and apoptosis induced by
oxLDL in vascular smooth muscle cells (Ingueneau et al., 2008). Various endogenous non-
selective cationic channels have been found to be stimulated by LPC but it is not yet clear if
they are explained by TRPC channels (Smani et al., 2004, Schilling and Eder, 2009).

Therefore, lysophospholipids stimulate TRPC channels, apparently relatively directly. The
effects are relevant to endogenous concentrations of lysophospholipids and may be
important in wide-ranging biological phenomena, both in terms of intracellular and
extracellular signaling.

Oxidised phospholipids
PAPC (1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine) is a common
component of cell membranes. Its susceptibility to oxidation leads to bioactive oxidation
products called oxidized phospholipids, which include POVPC (1-palmitoyl-2-oxovaleroyl-
phosphatidylcholine) and PGPC (1-palmitoyl-2-glutaroyl-phosphatidylcholine). These lipids
constitute a diverse family of signaling lipids that accumulate during oxidative stress,
apoptosis and necrosis, and are often associated with inflammatory conditions such as
rheumatoid arthritis and atherosclerosis. There are also suggestions of physiological roles
for oxidized phospholipids that include pattern recognition in innate immunity. Although the
importance of oxidized phospholipids is increasingly established, the initial reception and
signaling mechanisms have been poorly understood. A recent study revealed that these lipid
factors are stimulators of TRPC5 or TRPC5-containing channels (Al-Shawaf et al., 2010).

Low micromolar concentrations of PGPC and POVPC stimulated TRPC5 expressed in HEK
293 cells (Al-Shawaf et al., 2010). Relevance to endogenous TRPC5-containing channels
was found in vascular smooth muscle cells where the oxidized phospholipids evoked
TRPC1/5 channel activity without causing Ca2+-release. The effect was functionally
relevant to cell migration. Surprisingly, given the chemical similarity to LPC, the actions of
PGPC and POVPC depended almost completely on G-protein (Gi/o) signaling (Al-Shawaf et
al., 2010). Previously identified G protein-coupled receptors for oxidized phospholipids
were not involved, suggesting that the effects occurred via a previously unrecognized
receptor or independently of receptors but nevertheless requiring G protein function. In our
experience, these oxidized phospholipids are amongst the best TRPC5 (or TRPC1/5)
activators, having an advantage that the activation occurs without complications from Ca2+-
release (Al-Shawaf et al., 2010).

Arachidonic acid and its metabolites
Arachidonic acid is a polyunsaturated fatty acid of lipid bilayers that is generated by
phospholipase enzymes and is the precursor for many active metabolites. There are reports
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that TRPC channels are modulated by arachidonic acid and some of its metabolites. Basora
et al reported direct activation of TRPC6 by arachidonic acid and its metabolite 20-
hydroxyeicosatetraenoic acid (20-HETE) (Basora et al., 2003). The I-V of the stimulated
current resembled that of TRPC6 only at high 20-HETE concentrations and, surprisingly, no
Ca2+-entry was evoked by 20-HETE despite the fact that current was observed (Basora et
al., 2003). Inoue et al also reported TRPC6 stimulation by 20-HETE, in this case with a
distinct TRPC6 I-V (Inoue et al., 2009). Furthermore, dependence of hypotonic- or 2,4,6-
trinitrophenol-stimulated TRPC6 on cytosolic phospholipase A2 (PLA2) activity was
identified (Inoue et al., 2009). Relationships of TRPC channels to arachidonic acid
metabolites have also been suggested by other studies. Ben-Amor et al reported block by
anti-TRPC1 antibody of Ca2+ entry evoked by 5,6-epoxyeicosatrienoic acid (5,6-EET) in
human platelets (Ben-Amor et al., 2006) and Fleming et al reported surface trafficking of
TRPC6 in response to 11,12-EET and pulmonary vasoconstriction evoked by 11,12-EET
was less in lungs from TRPC6 gene-disrupted mice (Fleming et al., 2007). A stable urea
EET analogue has been suggested to act through TRPC channel modulation (Liu et al.,
2011) and 15-HETE has been observed to stimulate TRPC1 expression (Li et al., 2010).

Wu et al suggested contribution of endogenous TRPC4 to arachidonic acid-evoked Ca2+-
entry in HEK 293 cells (Wu et al., 2002). We have, however, found no activation by
arachidonic acid of the related TRPC5 channel over-expressed in HEK 293 cells (Flemming
et al., 2006, Beech et al., 2009). TRPC5 is stimulated by the arachidonic acid metabolite
prostaglandin E2, but acting through the EP1 G protein-coupled receptor (Tabata et al.,
2002). TRPC7 has been suggested to be required for induction of apoptosis by prostaglandin
E2 in leukaemia cells (Foller et al., 2006).

In summary, arachidonic acid metabolites have importance as stimulators of TRPC
channels, most notably of TRPC6 channels.

Sphingosine-1-phosphate (S1P)
S1P is generated from sphingosine, which derives from sphingomyelin, a constituent lipid of
microdomains in the plasma membrane. TRPC5 was stimulated by S1P (Xu et al., 2006).
S1P applied to the intracellular surface stimulated TRPC5 in inside-out membrane patches.
TRPC5 was, therefore, suggested to be an intracellular target for S1P but without known
physiological importance. Potentially related is the observation by that S1P bound to a
putative TRPC3-PLCγ1 intermolecular domain that also interacted with PI phosphates,
although the functional relevance of this binding was not determined (van Rossum et al.,
2005). Unlike for LPC, the extracellular effect of S1P on TRPC5 occurred via a G protein
(Gi/o) signaling pathway (Xu et al., 2006), further illustrating the significance of TRPC
activation via receptors that have lipids as their ligands. S1P receptors are widely expressed,
including in HEK 293 cells often used for TRPC5 over-expression. S1P had no effect on
TRPC5 studied in excised outside-out patches without GTP in the pipette, showing that S1P
(unlike LPC) had no direct extracellular effect on TRPC5. The extracellular S1P effect on
TRPC5 was found to be functionally important in cell motility (Xu et al., 2006). Therefore,
S1P is an example of a lipid factor that activates TRPC channels via a G protein signaling
pathway (Xu et al., 2006), in some ways similar to the action of oxidized phospholipids (Al-
Shawaf et al., 2010) but involving Ca2+-release also. Suggested intracellular actions of S1P
could be biologically important but remain relatively little explored.

Cholesterol and derivatives (steroids)
Cholesterol is a constituent sterol lipid of the plasma membrane. Its depletion with methyl-
β-cyclodextrin has been shown to suppress store-operated Ca2+ signals and ionic current
linked to TRPC1 (Bergdahl et al., 2003, Kannan et al., 2007, Alicia et al., 2008). Similarly,
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cholesterol-loading of cells was found to have a positive effect on signals relating to TRPC3
(Graziani et al., 2006). TRPC1 has been associated with cholesterol-containing caveolae and
other lipid rafts (Lockwich et al., 2000) and suggested to function as a component of store-
operated channels only when linked to STIM1 in lipid rafts (Alicia et al., 2008). Several
studies have linked TRPC1 with caveolins (Ingueneau et al., 2008, Bergdahl et al., 2003,
Lockwich et al., 2000, Remillard and Yuan, 2006). An elegant study (Huber et al., 2006)
showed enhancement of TRPC6 by the cholesterol binding protein podocin, dependent on
cholesterol binding by podocin which localizes specifically to the slit diaphragm of the
kidney and is present at the inner leaflet of the bilayer. Cholesterol depletion with methyl-β-
cyclodextrin inhibited the effect of podocin on TRPC6.

Cholesterol is the precursor for steroid hormones such as the neuroactive steroids which are
synthesised in the brain, adrenal glands and gonads (Compagnone and Mellon, 2000).
Example neuroactive steroids are pregnenolone sulphate and allopregnanolone. Specific
types of neuroactive steroid have inhibitory actions at TRPC5, strengthening the emerging
idea that TRP channels have unique steroid sensing capabilities (Wagner et al., 2008,
Majeed et al., 2010). TRPC5 was found to be negatively modulated via a rapid non-genomic
mechanism (Majeed et al., 2011). The channels were inhibited by pregnenolone sulphate,
pregnanolone (or its β-sulphated form), progesterone or dihydrotestosterone. There was a
small effect of 17β-oestradiol but no effect of pregnenolone, allopregnanolone or cortisol.
Rapid and reversible effects of progesterone were shown in excised membrane patches.
Sensitivity to pregnanolone but not its stereo-isomer allopregnanolone suggested the
existence of a specific binding site. Endogenous TRPC1/5 channels were also inhibited by
progesterone, albeit at a relatively high concentration. A prior study suggested that TRPC2,
which is not expressed in humans, is activated by sulphated steroids from the urine, with
importance for odor sensation of rodents (Nodari et al., 2008).

The data suggest dependence of TRPC channels on cholesterol and modulation of TRPC
function by localization to lipid rafts. Furthermore, it is emerging that TRPC channels show
highly specific and potentially unique steroid-sensing capability leading to inhibition of
channel function.

Gangliosides and other lipid factors
Using an intracellular Ca2+ assay for HEK 293 cells conditionally over-expressing TRPC5
we investigated additional lipid factors as potential acute activators (Beech et al., 2009).
Several lysophospholipids were activators, including the important signaling lipid
lysophosphatidic acid (LPA) but not lysophosphatidylethanolamine or phosphatidylcholine.
Platelet-activating factor (PAF) and lyso-PAF (which is inactive at PAF receptors) were
activators at 3 μM concentration; both are chemically similar to LPC. Sphingosine,
sphingomyelin, ceramide and ceramide-1-phosphate (C1P) were not stimulators of the
channels but sphingosylphosphorylcholine (SPC) was, by contrast, a strong activator.
Cerebrosides, sulphatides and anandamide (an arachidonic acid metabolite) failed to activate
but gangliosides and psychosine were modest activators. Gangliosides are
glycosphingolipids containing sialic acid. It was found that cross-linking of the GM1
ganglioside with multivalent ligands stimulated endogenous TRPC5-containing channels via
α5β1 integrin (Wu et al., 2007); the effect was important in neuronal growth cone
formation. We did not find a stimulatory effect of C1P on TRPC5 but it was recently
reported that ceramide kinase and TRPC1 colocalise in cavealae (Hinkovska-Galcheva et al.,
2008), raising the possibility that endogenous TRPC complexes are sensitive to C1P.
Furthermore, in a human leukaemia T cell-line, Ca2+-entry evoked by Δ9-
tetrahydrocannabinoid (a lipid-soluble plant-derived cannabinoid) was suppressed when
TRPC1 was down-regulated by RNA interference (Rao and Kaminski, 2006); the effect

Beech Page 7

Acta Physiol (Oxf). Author manuscript; available in PMC 2013 August 07.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



occurred through cannabinoid G protein-coupled receptors. Therefore, there is an emerging
breadth to the spectrum of lipids that modulate TRPC channels but also evidence of
specificity.

Relationships to receptor agonists, membrane stretch and anaesthetics
As indicated above, common down-stream effects of agonist binding to receptors are
activation of PLC and PLA2 enzymes, which affect local concentrations of PIP2, DAGs,
arachidonic acid metabolites etc. Therefore, a consequence of lipid-sensitivity of TRPC
channels is that they are modulated, often positively, by a plethora of G protein-coupled or
tyrosine kinase receptor agonists. Related to such effects may be the reported stimulatory
effects of membrane deformation or stretch on TRPC channels and the suggested relevance
to myogenic tone in arteries (Welsh et al., 2002, Gomis et al., 2008, Maroto et al., 2005).
Myogenic tone, for example, is associated with elevated levels of DAG, arachidonic acid
metabolites and oxidative stress factors such as hydrogen peroxide (Hill et al., 2009).
Stretch-activation of TRPC6 has been suggested to arise because of sensitivity of G protein-
coupled receptors and associated signaling pathways to membrane deformation, leading to
downstream effects on TRPC6 activity (Mederos y Schnitzler et al., 2008, Inoue et al.,
2009).

In part, anaesthetics modulate ion channel function by disturbing the lipid bilayer.
Therefore, lipid-sensitivity of TRPC channels may confer sensitivity to anaesthetics, as
occurs with other ion channels. TRPC5 was found to be sensitive to general anaesthetics
with the dominant net effect being inhibition of channel function (Bahnasi et al., 2008). The
study included the surprising finding that TRPC5 stimulated by LPC was resistant to the
intravenous anaesthetic propofol where as TRPC5 stimulated by gadolinium was strongly
inhibited. It was suggested that propofol may not directly inhibit TRPC5 but instead
compromised a signaling pathway that was necessary for TRPC5 activation by the
lanthanide (Bahnasi et al., 2008). The data suggest a complex relationship between
anaesthetics and TRPC5. It is not known if other TRPC channels are sensitive to
anaesthetics.

Summary and conclusions
TRPCs have emerged as a class of proteins that form lipid-sensing cationic channels.
Understanding remains elementary but, in some instances, we may start to consider them as
lipid ionotropic receptors or lipid sensors through intermediate proteins. It should be
recognized, nevertheless, that TRPC channels also exhibit constitutive activity (Dietrich et
al., 2003, Nichols et al., 2007, Xu et al., 2008) and can be modulated by non-lipid factors
that include extracellular acid, toxic metal ions, intracellular Ca2+, hydrogen peroxide and
redox proteins (Xu et al., 2008, Semtner et al., 2007, Naylor et al., 2011, Graham et al.,
2010, Zeng et al., 2004, Strubing et al., 2001, Schaefer et al., 2000, Hui et al., 2006, Shi et
al., 2004). Therefore, although TRPC channels are responsive to lipid factors, they may not
depend on them.

Figure 1 gives an abridged summary of knowledge of lipids and additional factors that
modulate TRPC5 or TRPC6, providing comparisons for these two example TRPCs that have
been studied relatively intensely. However, it should be recognized that the diagrams overly
simplify the situation and so they should be studied alongside the main text of this article
and the original research publications. While other TRPCs may show similar characteristics
(e.g. TRPC4 like TRPC5, TRPC3 like TRPC6), there are also important differences, and
incorporation of TRPC1 and other heteromultimeric assemblies may have significant
impact. Nevertheless, some impressions can be gained from the diagrams: The clearest
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distinctions between the channels are the activation of TRPC6 but not TRPC5 by DAG and
arachidonic acid metabolites; in both cases there is evidence of promiscuity but also
selectivity; the lipid profiles are consistent with intricate relationships of TRPCs with PLC
and PLA2 enzymes; and, although not absolute, it is emerging that TRPC5 may be more
associated with cell migration and proliferation where as TRPC6 is more associated with
cell contraction and stability.

It seems clear that TRPC channels are capable of sensing various important lipids, enabling
them to respond to these lipids as part of signaling events or to integrate with dynamic lipid
environments of physiological or pathological contexts. Despite the technical difficulties of
such studies, further investigation of TRPC modulation by lipids will be important. In many
cases, knowledge of the lipid-sensing profile of a TRPC channel is limited or there is
information only about a TRPC over-expressed in a cell-line rather than endogenously as a
heteromultimeric complex. In most cases the mechanism of action of the lipid is unknown or
superficially understood. Potential for synergy between actions of lipids and other factors
has been under-explored.
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Figure 1. Abridged schematics for regulation of TRPC5 (left) and TRPC6 (right) channels by
lipids in simplified mammalian cells
See the main text for details. Examples of regulation by other factors are included but are
not exhaustive. Abbreviations not provided in the main text are: Gd3+, gadolinium; Pb2+,
lead; rTRX, reduced thioredoxin;OxPLR, putative oxidized phospholipid receptor (identity
unknown); H2O2, hydrogen peroxide; chol., cholesterol; podo., podocin; AA, arachidonic
acid. Gi/o and Gq/11 are different types of GTP-binding protein. The integral PLC and PLA2
enzymes are not shown. TRPC6 may also be stimulated through receptor tyrosine kinase
(Ge et al., 2009, Hamdollah Zadeh et al., 2008). Tian et al should be consulted for the
proposed distinction of TRPC5 coupling to cell movement and TRPC6 to contraction (Tian
et al., 2010). Vesicular trafficking of TRPC5 has been described in response to growth
factors (Bezzerides et al., 2004).
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