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Abstract

Acetylcholine (ACh) is a neuromodulatory transmitter implicated in perception and learning under 

uncertainty. This study combined computational simulations and pharmaco-

electroencephalography in humans, to test a formulation of perceptual inference based upon the 

free energy principle. This formulation suggests that acetylcholine enhances the precision of 

bottom-up synaptic transmission in cortical hierarchies by optimising the gain of supragranular 

pyramidal cells. Simulations of a mismatch negativity paradigm predicted a rapid trial-by-trial 

suppression of evoked sensory prediction error (PE) responses that is attenuated by cholinergic 

neuromodulation. We confirmed this prediction empirically with a placebo-controlled study of 

cholinesterase inhibition. Furthermore – using dynamic causal modelling – we found that drug-

induced differences in PE responses could be explained by gain modulation in supragranular 

pyramidal cells in primary sensory cortex. This suggests that acetylcholine adaptively enhances 

sensory precision by boosting bottom-up signalling when stimuli are predictable, enabling the 

brain to respond optimally under different levels of environmental uncertainty.
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Software Note
All the simulations reported in this paper are available in the DEM toolbox of SPM http://www.fil.ion.ucl.ac.uk/spm/. The inversions 
can be simulated for different drug effects by changing DEM_demo_MMN.m {Placebo: M(1).hE = 4; M(1).hC = exp(−4)} or 
{Galantamine: M(1).hE = 6; M(1).hC = exp(−6)}.
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Introduction

The Helmholtzian notion of the brain as a statistical inference machine (Hemholtz 1866, von 

Helmholtz 1962) can be realised – under free energy formulations of perceptual inference – 

as a neurobiologically plausible implementation of predictive coding. In this framework, the 

brain entails a generative model of its environment that reproduces the hierarchical and 

dynamic generation of sensory input. Neuronal responses are proposed to reflect inference 

on the (hidden) causes of sensory stimuli that enable the brain to predict its sensations 

(Mumford 1992; Rao and Ballard 1999: Friston 2010).

The implicit Bayes-optimal recognition requires statistical distributions over hidden states 

and the environment to be encoded by neuronal activity in cortical hierarchies; where these 

representations are updated until they mirror real-world statistics through accurate 

predictions of sensory input. To weight hierarchical predictions with greater or lesser 

importance, optimal inference assigns greater or lesser precision (inverse variance) to 

different hierarchical levels.

One candidate mechanism, for signalling precision is neuromodulation: acetylcholine (ACh) 

is well equipped to influence low-level auditory processing through modulating postsynaptic 

gain. Traditional views of ACh as a non-specific modulator of arousal that responds – 

through extra-synaptic volume-transmission – to enhanced sensory and task demands 

(Giovannini, Rakovska et al. 2001, Hasselmo and McGaughy 2004, Pepeu and Giovannini 

2004, Dani and Bertrand 2007) are being rethought on the basis of improved (multi-region) 

microdialysis recordings in animal studies. These data suggest a selective cholinergic 

modulation of sensory cortex (Nelson, Sarter et al. 2005, Sarter, Hasselmo et al. 2005, 

Benarroch 2010, Hasselmo and Sarter 2010, Fadel 2011).

Under the free energy formulation, see Figure 1, ACh and other neuromodulators encode 

changes in the precision of (certainty about) prediction errors in sensory cortical hierarchies 

(Friston 2008). Each level of a processing hierarchy sends predictions to the level below, 

which reciprocate bottom-up signals. These signals are prediction errors that report 

discrepancies between top-down predictions and representations at each level (Kiebel, 

Daunizeau et al. 2009). This recurrent message passing continues until prediction errors are 

minimised throughout the hierarchy. The ensuing Bayes optimal perception rests on 

optimising precision at each level of the hierarchy that is commensurate with the 

environmental statistics they represent. Put simply, to infer the causes of sensory input, the 

brain has to recognise when sensory information is noisy or uncertain and down-weight it 

suitably in relation to top-down predictions (Yu and Dayan 2005, Deco and Thiele 2009). In 

this work, we address cholinergic neuromodulation as a candidate for optimising precision: 

first we simulate (Bayes-optimal) neural responses to sequences of repeated stimuli, under 

different levels of sensory precision (modulatory gain). We then compare simulated 

neuronal responses to empirical event related responses from an EEG study, using an 

oddball paradigm and a pharmacological (cholinergic) manipulation. The simulations and 

empirical results suggest that ACh biases perception towards bottom-up sensory processing 

– by boosting prediction errors at the lower (sensory) levels of the hierarchy (see Figure 1). 
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The empirical responses – and associated changes in postsynaptic gain – provide strong 

support for a specific role of ACh during perceptual inference under uncertainty.

Materials and Methods

Simulating Brain Responses using Variational Free Energy Minimisation

Predictive coding schemes (Rao and Ballard 1999) invoke recurrent neural message passing 

to simultaneously predict sensory stimuli and report prediction errors (e.g., to account for 

‘pop-out’, figure-surround responses in visual cortex; (Lamme 1995, Zipser, Lamme et al. 

1996)). The free energy framework places predictive coding in a more general setting, using 

dynamic and hierarchical generative models of hidden environmental states (causes of 

sensory inputs) and an approximate posterior density on the states and parameters of the 

generative model, encoded by synaptic activity and weights respectively. This approximate 

posterior (recognition) density is updated to maximise the evidence for the generative model 

(Kiebel, Daunizeau et al. 2009). Mathematically, this optimisation involves minimising a 

variational free energy bound on log evidence (henceforth free energy) which, when 

minimised, provides a recognition density that approximates the true posterior – this is also 

known as approximate Bayesian inference. Crucially, the process of free energy 

minimisation – in networks implementing predictive coding – can be used to predict the 

neuronal dynamics one would expect to measure using EEG – see Figure 1 (Friston and 

Kiebel 2009). Here, we will use dynamic causal modelling to test the theoretical 

assumptions about the neurobiological mechanisms that support Bayes-optimal inference in 

an oddball task.

To produce quantitative predictions about this inference, we generated auditory stimuli in 

blocks of different frequencies. We then simulated how the brain would respond to the 

stimuli if it minimised free energy using a neuronally plausible predictive coding scheme. In 

brief, this scheme encodes beliefs about the world by associating synaptic activity with 

expected states of the world, causal structure (parameters controlling transitions among 

states) with synaptic connection strengths and the precision (inverse variance) of random 

fluctuations of hidden states with synaptic gain: see (Friston 2008) for details. By assuming 

these beliefs are encoded with a Gaussian density, the expected states, parameters and 

precision can be optimised in a fairly straightforward way using a gradient descent on free 

energy – which is also known as Bayesian filtering (c.f., Kalman filtering). This Bayesian 

filtering or predictive coding can be formulated in terms of Bayesian updates that are driven 

by precision-weighted prediction errors. Mathematically, precision increases the influence of 

prediction errors, when they are precise. In neurobiological terms, it is generally assumed 

that prediction errors are encoded by pyramidal cells in the superficial layers of cortex that 

receive top-down predictions from deeper laminae in higher regions (Mumford 1992, 

Cauller 1995, Bar 2003). The precision weighting of these prediction errors units depends on 

their postsynaptic gain (c.f., Kalman gain). By changing the precision (synaptic gain) at a 

particular level of cortical hierarchy one can simulate the effects of manipulating cholinergic 

neuromodulation at this level, on the ensuing inference (Figure 1).
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In more detail, we assume that the hierarchical nature of cortical organisation (Felleman and 

Van Essen 1991) implies a hierarchical model of the sensorium that can be described by a 

set of stochastic differential equations of the following general form:

(1)

These equations model how sensory data of generated causes v, from level i enter as inputs 

to lower levels, eliciting changes in hidden states at that level x(i−1). These hidden states then 

produce further hidden causes that cascade through lower hidden states to the bottom of the 

hierarchy that generates sensory input y(t). These hidden variables (causes and states) could 

correspond to things like the motion of objects in the visual field. The functions f and g that 

determine how hidden variables conspire to produce sensations have parameters θ that 

represent causal structure in the world (Friston 2005). These variables and their motion are 

subject to Gaussian random fluctuations ω(i) with log-precision γ(i).

Given the form of the generative model (Equation 1) one can write down the differential 

equations for predictive coding or Bayesian filtering in terms of prediction errors on the 

hidden variables.

(2)

Equation (2) can be derived fairly easily by computing the free energy for the hierarchical 

model in Equation (1) and using its gradients, perform a generalised descent. In neural 

network terms, Equation (2) says that error-units  receive predictions from the same 

hierarchical level  and the level above . Conversely, conditional expectations 

(encoded by the activity of state units) are driven by prediction errors from the same level 

 and the level below . This is the essence of recurrent message passing between 

hierarchical levels to suppress free energy or prediction error: see Friston (2008) for a more 

detailed discussion. Equation (2) shows how precision Π(i) plays an important role in 

weighting the influence of prediction errors at any level of the hierarchy. In other words, by 

Moran et al. Page 4

J Neurosci. Author manuscript; available in PMC 2014 November 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



changing the precision on the prediction errors, we can bias inference towards sensory 

information or top-down (empirical) prior beliefs.

To simulate perceptual inference one simply integrates Equation (2), to see how the 

predictions and prediction errors respond to sensory input. To simulate an oddball paradigm, 

we generated a stream of auditory tones according to a roving design (cf. Haenschel et al. 

2005; Figure 2): this comprised mini-blocks of pure tones (up to 10 repetitions in length). 

The onset of a tone is caused by a Gaussian bump function, that peaked at 100 ms. This 

hidden cause (v)(1) perturbed two dynamic hidden states  controlling the 

amplitude and frequency of auditory stimuli. The hidden states were mixed using parameters 

θf to drive their motion and were mapped, using parameters θg to the amplitude and 

frequency of auditory stimuli. This model was used to simulate tones of different 

frequencies (by changing the parameter C in Equation 3). We simulated a change from a 

high tone to a low tone, with ten repetitions: d1-d10. State noise was assumed to be zero 

mean with a log-precision of 16. This generative model can be written in the form of 

Equation 1 as

(3)

To simulate neuronal responses, we assumed that the brain was equipped with the same 

hierarchical model used to generate the stimuli, but did not know the parameter controlling 

frequency modulation over peristimulus time (the C parameter above). The brain must 

therefore learn this parameter over successive repetitions. This learning also corresponds to 

a gradient descent on free energy and – under the simple linear model above – reduces to 

associative plasticity (see Friston 2008 for details). Using the generative model in Equation 

(3), we simulated neuronal responses using Equation (2). This effectively updates posterior 

beliefs about the current stimulus using prediction errors (Figure 1). Crucially, these 

Bayesian updates involve not only the parameters responsible for generating sensory 

predictions but also the precision encoding the uncertainty about those predictions.

We used a veridical prior for the presentation of a high frequency tone (C = 4), then 

presented ten tones at a frequency using C=1 (d1-d10). After the scheme had observed each 

tone, the prior expectation about the unknown parameter was updated to the posterior 

expectation – similarly for the priors on the precision of sensory noise. We simulated the 

neuronal responses using the precision weighted prediction errors of tone frequency 

(  in Figure 1; upper panel). Assuming that prediction errors are reported by 

superficial pyramidal cells – that are the principal contributors to electrophysiological 

measurements – we can treat the precision weighted prediction errors as event related 

potentials (ERPs).
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To model a placebo condition we used a Gaussian prior on the sensory log precision (Figure 

1): , with p(γ) = N(μt−1, exp(−4)) where μt−1 is the posterior expectation of 

the sensory log-precision following the previous trial (starting with a log precision of 4). To 

model the effects of Galantamine we used a prior with a higher mean and log-precision: p(γ) 

= N(μt−1 + 2, exp(−4+2))). In other words, we assumed that Galantamine increases both the 

brain’s prior expectation about the precision of sensory input and the confidence about that 

expectation (Figure 1; upper panel). In terms of the underlying neurobiology, we propose 

that this increase in sensory precision is mediated by an associated neuromodulatory gain 

effect (Figure 1; lower panel); where greater ACh levels enhance postsynaptic responses in 

the superficial layers of primary auditory cortex.

As a point of comparison for the empirical data, we also simulated two alternative ways in 

which Galantamine might affect sensory precision: the first “straw-man” alternative 

assumed Galantamine reduced sensory precision; i.e., p(γ) = N(μt−1−2, exp(−(4–2))). The 

second alternative assumed that Galantamine had no effect on precision updating. In this 

case, we assumed that the log precision remained at its initial value, i.e., p(γ) = N(4, 

exp(−4)). Having produced predictions for ERPs in this oddball paradigm, under different 

assumptions about the effect of Galantamine, we then measured real ERPs using the same 

paradigm:

Subjects and pharmacological manipulation

We studied 13 right-handed, healthy volunteers (5 female, aged 25 ± 7 yrs), using a within-

subject crossover placebo-controlled double-blind design. Subjects attended on two sessions, 

exactly one week apart. Prior to drug administration, a baseline electrocardiogram (ECG) 

was performed to exclude cardiac conduction abnormalities. One hour prior to the EEG 

study, subjects were given either a tablet containing 8 mg of Galantamine or a multivitamin 

placebo. Tasks began ~45 min after EEG preparation. Galantamine increases the availability 

of ACh in cholinergic synapses by competitive inhibition of acetylcholinesterase – the 

enzyme responsible for its breakdown. Galantamine also enhances cholinergic 

neurotransmission by sensitizing nicotinic receptors (it both increases the probability of 

channel opening induced by acetylcholine and slows down receptor desensitization) (Coyle 

and Kershaw 2001, Samochocki, Höffle et al. 2003). Following an oral dose, the peak 

plasma concentration is attained within 2 hours, and declines with a half-life of about 7 

hours (Huang, Lasseter et al. 2002).

Subjects were paid for their participation and consented to all procedures, which were 

conducted in accordance with the Declaration of Helsinki (1991) and approved by the local 

Ethics Committee.

Task and EEG acquisition

EEG recordings were made in a quiet dimly-lit room using a 128-channel Biosemi system. 

Electrical signals were digitized at a sampling rate of 512 Hz. Auditory stimuli were 

presented binaurally over headphones. The stimuli comprised a structured sequence of pure 

sinusoidal tones, with a roving or sporadically changing frequency (Figure 2). This roving-

oddball paradigm (Garrido, Friston et al. 2008) comprises mini-blocks of 6 – 10 tone 
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repetitions at frequencies of 500, 550, 600, 650, 700, 750 or 800 Hz. At the end of each 

mini-block the frequency changed pseudo-randomly to another frequency. The duration of 

each tone was 70 ms, with 5 ms rise and fall times. On average, 180 stimuli for each 

repetition order were presented to each subject. Subjects were instructed to fixate on a 

central cross presented on a computer screen and perform an incidental visual task – in 

which they were required to make a button-press whenever the central fixation cross 

changed from grey to white or white to grey: this occurred pseudo-randomly every 2 – 5 

seconds. Subjects were not asked to attend to the auditory stimuli, since this type of auditory 

oddball paradigm elicits mismatch potentials that are automatic or pre-attentive (Garrido, 

Kilner et al. 2009, Näätänen, Astikainen et al. 2010).

Data pre-processing and statistical analysis

EEG data were epoched offline to obtain 400 ms epoch’s corresponding to −100 ms to 300 

ms peristimulus time. The epoched data were bandpass filtered from 1 – 40 Hz, down-

sampled to 200 Hz and re-referenced to the nasion. The data were corrected for artefacts by 

thresholding (at 100 mV) and averaged according to repetition position in the mini-block. 

The first presentation, d1, (the deviant) the second presentation d2 and so on, to the last 

possible presentation d10 (the standard) were averaged over stimulus frequency. The event 

related responses were subsequently baseline corrected (the analysis routines used for the 

present study are available in the academic freeware SPM8;http://www.fil.ion.ucl.ac.uk/

spm/).

For our sensor level analysis, one electrode was selected from a fronto-central region 

((Garrido, Kilner et al. 2007) channel C21). Event related potentials corresponding to trials 

d1, d2 and d10 were averaged over subjects for each drug condition (Figure 3c) and plotted 

with the standard error of the mean. A mismatch negativity was seen in the grand-averaged 

data – most prominently in trial d1 at 150 ms for both placebo and Galantamine conditions. 

The repetition suppression of the MMN was characterised with a repeated measures 

ANOVA, using the mean evoked response from 140 to 160 ms as the repeated measure.

Source reconstruction

To define the prior location of electromagnetic sources for a subsequent DCM analysis, 

multiple sparse priors were used to estimate the cortical source of the mismatch negativity 

(Friston, Harrison et al. 2008). A tessellated cortical mesh template surface in canonical 

Montreal Neurological Institute (MNI) anatomical space (http://www.bic.mni.mcgill.ca/

brainweb) as implemented in SPM8, served as a brain model to estimate the current source 

distribution (Mattout, Henson et al. 2007). This dipole mesh was used to calculate the 

forward solution using a spherical head model. The inverse solution was calculated for 

deviant (d1) and standard (d10) trials for conditions of placebo and Galantamine separately. 

Multiple sparse priors employ several hundred patches of activation that are iteratively 

reduced until an optimal number and location of active patches are found, using a greedy 

Bayesian search (Friston, Harrison et al. 2008). Source activity measures were then 

interpolated into MNI voxel space and analysed using statistical parametric mapping – at the 

between subject level – in the usual way (Kilner, Kiebel et al. 2005): A contrast of evoked 

signal strength, for standard relative to deviant auditory responses (d10 – d1) was computed 
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for the placebo condition. This simple main effect of repetition (deviance), was computed at 

p < 0.05 uncorrected – using a two sample t test across subjects – and used as an inclusive 

mask (the MMN mask) for a test of the orthogonal interaction between repetition and drug 

condition ([d10 − d1]placebo – [d10 −d1]Galantamine). Note that we report uncorrected results 

at p < 0.05 because these analyses only served to identify candidate sources in the 

subsequent DCM analysis. We observed a significant drug effect within the MMN mask in 

the middle temporal gyri bilaterally (Figure 4b).

Dynamic Causal Modelling

In DCM, event related potentials are modelled as the response of a dynamic input-output 

system to exogenous (experimental) inputs (David, Kiebel et al. 2006, Kiebel, David et al. 

2006). The DCM generates a predicted ERP as the response of a network of coupled sources 

to sensory (thalamic) input – where each source corresponds to a neural mass model of 

several neuronal subpopulations. For each source, we used a model based on the canonical 

microcircuit; Figure 4c (CMC model in DCM for ERPs:http://www.fil.ion.ucl.ac.uk/spm/). 

This ensemble model is based on a mesoscopic circuit description of cat primary visual 

cortex, which represents the cardinal features of functional macrocolumns throughout the 

cortical sheet (Douglas and Martin 2004, Bastos, Usrey et al. 2012). Each source includes 

four neuronal subpopulations: infra- and supragranular pyramidal cell populations, a 

granular layer of stellate cells, and an inhibitory interneuron population. Each subpopulation 

has its own (intrinsic) dynamics modelled by standard neural mass equations. The sources 

and their interactions are fully specified by these equations that are formally related to 

neural mass models in the simulation literature (Breakspear, Roberts et al. 2006, Rodrigues, 

Chizhov et al. 2010). The differential equations describe the evolution of hidden neuronal 

states (membrane potentials and currents) in the subpopulations comprising each source. 

The form of these equations can be found in previous papers (David, Kiebel et al. 2006, 

Garrido, Kilner et al. 2007, Garrido, Friston et al. 2008, Kiebel, Garrido et al. 2008, Garrido, 

Kilner et al. 2009). In brief, a convolution operation transforms the average density of pre-

synaptic input arriving at the population into an average postsynaptic membrane potential; in 

turn, a sigmoidal function transforms the average membrane potential of the population into 

its average firing rate. The sensitivity or gain of each subpopulation to its afferents is 

controlled by a lumped parameter which induces self-inhibition – this parameter is a lumped 

representation of the effect of several currents, including voltage-gated potassium currents, 

calcium-gated potassium channels and slow recovery from inactivation of the fast sodium 

current. These currents cause the firing rate to fall for a given membrane potential mediating 

a reduction in postsynaptic gain.

These models have been validated using animal electrophysiological recordings (Moran, 

Stephan et al. 2008, Moran, Jung et al. 2011). Crucially the parameters of the model can be 

inferred from empirical data, using standard Bayesian inversion techniques (Kiebel at al 

2006). This involves supplementing the neuronal model with a conventional electromagnetic 

forward model to map source activity to sensors (Kiebel, David et al. 2006). Given priors 

over the source locations, non-invasive ERPs can then be used to estimate the parameters of 

the neuronal model (Garrido, Kilner et al. 2007). This enables one to test – using 

pharmacological manipulations – which synaptic or coupling parameters are affected when 
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changing the levels of specific neurotransmitters, such as increasing the level of 

acetylcholine with Galantamine in this study. Extrinsic connections in these models follow 

the same rules on which predictive coding schemes are based: forward connections from 

superficial pyramidal cells synapse on granular layer IV and deep cell layers, while 

backward connections from deep pyramidal cells terminate outside layer IV (Felleman and 

Van Essen 1991).

This CMC model (Figure 4c) was used to model explicitly the laminar specificity of forward 

and backward connections that are central to predictive coding – where forward connections 

convey prediction errors to higher levels and backward connections send predictions back to 

lower areas. The CMC thus allows us to test formal hypotheses, or models, regarding the 

effects of Galantamine. Namely, the drug could alter (i) the influence of prediction errors on 

their targets; instantiated as a change in forward connection strengths, or (ii) the precision of 

prediction errors; instantiated as a change in the gain of superficial pyramidal cells encoding 

prediction errors or (iii) the influence of predictions; instantiated as a change in the strength 

of backward connections. We specified a model space along these dimensions, resulting in a 

model space with 10 competing hypotheses (figure 5A), each of which could potentially 

explain the differences in the ERP to the largest oddball response (d1) for Galantamine 

relative to placebo. In comparing these DCMs – using Bayesian model comparison – we 

hoped to show that Galantamine increased the gain of superficial pyramidal cells early in the 

auditory hierarchy.

For computational expediency, DCMs were fitted to sensor data following dimensionality 

reduction to eight channel mixtures or spatial modes. These were the eight principal modes 

of a singular value decomposition of the channel data between 0 and 250 ms, over trial types 

of interest. Interestingly, DCMs are inverted using exactly the same variational scheme 

(variational Laplace) that underlies predictive coding (Friston et al 2007). After model 

inversion or optimisation, the variational free energy can then used as an approximate log 

model evidence for Bayesian model comparison.

Results

In brief, we found a remarkable correspondence between simulations of Bayes optimal 

sensory learning and the empirical responses – at the level of scalp EEG and within the 

network of sources generating EEG signals. In what follows, we describe simulated (Bayes 

optimal) responses that, we suppose, underlie mismatch negativity (MMN) responses 

elicited during the roving auditory oddball paradigm (Haenschel, Vernon et al. 2005). We 

simulated EEG responses to unexpected or deviant auditory tones that gradually become 

“standard” tones, under placebo and Galantamine. We then report the empirical findings, in 

light of the simulations, focusing on the repetition suppression of responses over time – in 

sensor space – and the underlying synaptic mechanisms – in source space.

Simulating Perception under Placebo and Galantamine

To simulate the processing of auditory stimuli in the roving oddball paradigm, we first 

generated auditory stimuli, using a model of the auditory environment with two levels of 

causal dynamics (Equation 3). We then applied Bayesian filtering (Equation 2) to these 
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sensory data and harvested the precision-weighted prediction errors generated over 

peristimulus time, for successive tone presentations.

Figure 3a (left) shows the (precision weighted) prediction error in the placebo condition for 

the first deviant. A large precision-weighted prediction error is observed with a late 

deflection at around 150 ms (blue curve). This almost disappears on the second trial (green 

curve), which has a form similar to d10 (red curve). In other words, the first deviant stimulus 

produces large amplitude prediction errors that are boosted by an inappropriately high 

precision – established by the preceding sequence of predictable standards. This produces 

the mismatch negativity. After the first deviant, sensory precision is reduced (by the high 

prediction errors in the previous trial), rendering subsequent prediction errors less precise 

and thereby attenuating neuronal responses. These simulation results suggest a type of one-

shot learning or repetition suppression – where the brain responds to a new tone with a 

precise prediction error and then reduces the precision of subsequent error-related responses 

– as precision is updated and new parameters of the generative model are learned. Under 

Galantamine (Figure 3a right), the high a priori precision on the sensory prediction error 

increases the response elicited by the first presentation of a new tone (blue curve), and 

attenuates the reduction of precision on subsequent presentations – leading to larger 

responses at the second deviant (green curve) and a more protracted repetition suppression 

of subsequent responses.

To quantify this repetition suppression, we summed the prediction error over 140-160 ms 

(where MMNs are typically observed) of peristimulus time for each trial and computed the 

difference for each repetition, compared to d10 (defined as the standard). These differences 

correspond to a simulated MMN with arbitrary units (a.u.) (Figure 3b). For the placebo 

MMN, when comparing trial d10 and trial d1, we observe a MMN of 8.1 a.u. that reverses 

polarity and reduces in size to −1 a.u. on trial d2. The MMN effect then gradually increases 

again to baseline (−0.1 a.u.) for d9. In contrast, Galantamine increases the amplitude of the 

MMN and slows its decline (Figure 3b): Comparing trial d10 and trial d1, we observe a 

difference of magnitude of 34 a.u. which remains positive at 2.5 a.u. on the subsequent trial, 

d2. The MMN effect decreases slowly to a baseline for d9. It is this quantitative difference 

in the MMN at the first and subsequent repetitions of a deviant stimulus that we hoped to 

observe empirically:

Allowing Galantamine to change precision in other ways produced very different response 

profiles. Our first alternate hypothesis was that Galantamine reduced – rather than increased 

– sensory precision. This assumption resulted in a reduced MMN response of 2.9 a.u. 

(d10−d1) that reduces polarity on d2 to −0.5. Our null hypothesis was that Galantamine 

precluded precision updates. This produced a very different profile, driven by slower 

changes in extrinsic connections that underlie learning. Here the MMN on the second trial 

d2 (7.2 a.u.) was greater than on d1 (6.7 a.u.).

Empirical Evoked Brain Responses and the MMN under Placebo and Galantamine

To compare our simulation-based predictions to empirical MMN responses, we examined 

sensor level evoked responses. We selected a fronto-central electrode (channel C21) 

typically found to express the MMN and computed the grand-averaged responses for the 
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placebo and Galantamine conditions (Figure 3c). These responses exhibited the same form 

of repetition suppression that we saw in the simulations – with trial d2 (green curve; Figure 

1c) more similar to d10 (red curves) and a deflection at around 150 ms for the first oddball 

tone (blue curves). We used the MMN effect (between 140 and 160 ms; defined here for the 

real data as the deviant – standard) to test for statistical differences between the two drug 

conditions:

As shown in Figure 3c, we observed an MMN in response to the onset of a deviant tone at a 

time commensurate with previous studies – at ~150 msec. For each of the 13 subjects, we 

then quantified nine subject-specific MMNs (averaged over 140 – 160 ms) for each drug 

state by computing the difference between d10 and d1 to d9 (Figure 3d) as in the 

simulations. We entered these differences into a repeated-measures ANOVA and found both 

a significant effect of repetition (p < 0.001) and a significant effect of drug (p < 0.05). 

Although we did not observe a significant drug × repetition interaction, we did find a 

significantly greater MMN under drug compared to placebo on the first and second 

presentation of a new tone (d1 and d2 relative to d10; p < 0.05, two-sample, one-tailed t test; 

Figure 3d). Furthermore, we observed an overall profile for the drug condition that is very 

similar to the simulated MMN when Galantamine enhanced precision. Our empirical results 

show an enhanced MMN on Galantamine at d1 compared to placebo that persists at d2, 

while the placebo MMN reverses in polarity after the first oddball (Figure 3d). These 

empirical response profiles are inconsistent with either of the alternative models of 

Galantamine effects (Figure 3b).

Optimal changes in synaptic efficacy and gain

Under our biological implementation of Bayes-optional perception, model parameters (like 

C in Equation 2) are encoded by the strength of extrinsic connections between brain regions; 

while log-precisions are encoded by the gain of prediction error units (i.e. intrinsic excitation 

of supragranular pyramidal cells). Our precision estimates show biphasic changes, where the 

initial oddball coincides with a high precision estimate (d1 = 5.1 a.u.) that undergoes a large 

reduction (d2 = 2.1 a.u.) and a subsequent rebound (d10 = 4.7 a.u.); Figure 4a (left). From 

Figure 3a, we see that the corresponding evoked responses reflect these estimates of 

precision, because they are based on precision-weighted prediction errors. In the 

Galantamine simulations (Figure 4a – right), however, there was a profound difference in 

the log-precision updates, compared to placebo. The log-precision at the first deviant was 

higher (8.1 a.u.) and remained relatively high after the second tone repetition (d2 = 6.1 a.u.), 

reaching a minimum at d3 (Figure 4a). This difference in the optimisation of (cholinergic) 

precision or gain is reflected in the simulated evoked responses (Figure 3a), with enhanced 

and prolonged precision-weighted prediction errors over repetitions, compared to placebo. 

Neurobiologically, this would correspond to a qualitative difference in the changes in gain 

of superficial pyramidal cells encoding prediction error – a prediction we assessed 

empirically using dynamic causal modelling:

DCM results and their relationship to theoretical predictions

In this section, we focus on the synaptic mechanisms producing the repetition suppression in 

sensor space described above. To address this, we model the generation of evoked responses 
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in source space using DCM and parameterise this model in terms of coupling strengths and 

postsynaptic gain that have a direct interpretation in relation to the above simulations.

The locations of electromagnetic (dipolar) sources in our DCM were based on a contrast of 

source-localised event related potentials that tested for drug effects. After source localisation 

on a canonical mesh, we tested for a simple main effect of repetition (d10 – d1) in the 

placebo condition and found bilateral effects in middle temporal gyri (left MTG: x = −66, y 

= −30, z = −4; right MTG: x = 64, y = −16, z = −18) and inferior frontal gyri (left IFG: x = 

−46, y = 40, z = 2; right IFG: x = 36, y = 48, z = −2), (Figure 4b). Using the results of this 

contrast as an inclusive mask, we then tested for an interaction of repetition and drug – 

identifying a significant interaction in middle temporal gyri bilaterally (left MTG: x = −60, 

y = −14, z = −18, right MTG: x = 62, y = −14, z = −18; Figure 3b). We used the local 

maxima of the simple main effect in bilateral frontal cortex and the local maxima of the 

interaction in bilateral middle temporal gyrus as our prior source locations for the DCM. We 

also included primary auditory cortex bilaterally (left A1: x = −42, y = −22, z =7; right A1: 

x = 46, y = −14, z = 8), as per Garrido et al. (Garrido, Friston et al. 2008). This ensured that 

all levels of auditory network processing tones were included (Figure 4). This three-level 

hierarchy is consistent with previous models of the MMN (Garrido, Kilner et al. 2007, 

Garrido, Kilner et al. 2007, Garrido, Friston et al. 2008, Garrido, Kilner et al. 2009, Garrido, 

Kilner et al. 2009). To test for the predicted differences in placebo and Galantamine, we 

focused on the first presentation of the deviant (d1), because this is not confounded by 

sensory learning – under the different drug conditions – in subsequent repetitions. Our 

hypotheses (models) allowed for the Galantamine to exert its effects at different locations in 

the predictive coding hierarchy: (i) forward connections from superficial pyramidal cells 

reporting prediction errors; (ii) postsynaptic gain at superficial pyramidal cells encoding the 

precision of prediction errors and (iii) backward connections from deep pyramidal cells 

reporting predictions (Figure 5a). For completeness we included models in which 

Galantamine increased the gain of deep pyramidal cells (blue in Figure 5a). In detail, we 

compared ten models of grand-averaged ERPs (average seven subjects), where Galantamine 

changed (bilaterally): the gain of deep pyramidal cells in primary auditory cortex (model 1); 

the gain of superficial pyramidal cells in primary auditory cortex (model 2); the gain of deep 

pyramidal cells in MTG (model 3); the gain of superficial pyramidal cells in MTG (model 

4); the gain of deep pyramidal cells in IFG (model 5); the gain of superficial pyramidal cells 

in IFG (model 6); forward connections to MTG (model 7); forward connections to IFG 

(model 8); backward connections to MTG (model 9) and backward connections to primary 

auditory cortex (model 10) – see Figure 5a. Figure 5b shows the results of a Bayesian model 

comparison – showing that the evidence for model 2 is greatest, with very strong evidence 

relative to the next best model – model 6 (log Bayes Factor = 153). This means that the 

effect of Galantamine can be best explained as a change in the gain of superficial pyramidal 

cells in primary auditory cortex. The direction of this effect is shown in Figure 5c and 

suggests that Galantamine enhances the gain in these bilateral sensory sources with a 

posterior probability of nearly 100%. The fits to the empirical data under the best model are 

presented in Figure 5d.
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In summary, there is a remarkable convergence between the predictions of Bayes-optimal 

inference and learning under uncertainty and the empirical results obtained with a roving 

mismatch negativity paradigm. This convergence was both phenomenologically, in terms of 

repetition suppression at the sensor level, and mechanistically, in terms of underlying 

changes in synaptic gain at the source level (as inferred by dynamic causal modelling). 

These results are consistent with a key role for acetylcholine in modulating the gain of 

superficial pyramidal cells in early sensory regions that may encode prediction error in 

predictive coding formulations of hierarchical inference.

Discussion

In this work, we have used a psychopharmacological study to test specific and formal 

predictions about the effect of cholinergic manipulations on event-related responses and 

their repetition suppression. These predictions rest on a Bayes-optimal formulation of 

perceptual inference and learning that can be implemented in a neuronally plausible way. In 

brief, our results are consistent with a role for ACh in setting the gain of prediction error 

units implied by predictive coding in the brain. Neurobiologically, our DCMs represent 

postsynaptic gain via a parameter that determines the intrinsic excitability of a 

subpopulation (Moran, Kiebel et al. 2007). In predictive coding formulations of free energy 

minimisation, this gain corresponds to the precision of prediction errors. By assigning ACh 

the role of signalling sensory precision, we have shown how its augmentation can reduce 

adaptation to surprising stimuli in sensory cortices. Our simulations and empirical results 

suggest that when stimuli are repeated in a predictable way, the statistical regularity leads to 

an adaptive increase in the expected precision of sensory prediction errors. This could be 

mediated (in part) by increased cholinergic neurotransmission that is suppressed after an 

unpredicted or surprising (deviant) stimulus. This withdrawal of a neuromodulatory boost 

leads to a rapid repetition suppression during successive presentations of the same (initially 

surprising and then increasingly predictable) stimulus. Several intracellular processes may 

underlie such repetition suppression, including slow after-hyperpolarizing currents (sIAHP) 

that are mediated by calcium dependent potassium channels and decrease neuronal 

excitability and firing rate: for a review, see (Faber and Sah 2003). Importantly, 

acetylcholine modulates this process; e.g., by activation of muscarinic receptors suppresses 

sIAHP through a cGMP-dependent mechanism (Krause and Pedarzani 2000). This activation 

may maintain a high postsynaptic gain and facilitate oscillatory activity, with a shift towards 

higher frequencies (desynchronisation) in the power spectra of neuronal recordings 

(Liljenstrom and Hasselmo 1995).

In summary, pharmacologically augmenting cholinergic neuromodulation appears to boost 

event related responses to deviant stimuli and attenuate their subsequent repetition 

suppression. Using precision-weighted prediction errors from our Bayes optimal (predictive 

coding) scheme, we could predict suppression of the MMN response under the different 

drug conditions (Figure 3). Moreover, dynamic causal modelling of a temporo-frontal 

network suggested that the observed differences in event-related responses can be attributed 

to cholinergic gain modulation of supragranular pyramidal cells in early auditory cortex 

(Figure 5). In short, these findings suggest that acetylcholine mediates the representation of 

precision and acts to facilitate the bottom-up signalling of sensory information (through 
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precise prediction errors). In the long-term this type of analysis may be applied to empirical 

data alone, to inform the computational consequences of pathophysiological changes. For 

example, if a DCM analysis reveals particular changes in directed extrinsic connections or 

intrinsic gain, one may be able to map this to changes in perceptual prediction error 

processing; e.g., in neuropsychiatric disorders such as schizophrenia (Marr 2010, Adams, 

Perrinet et al. 2012).

Previous theoretical circuit level proposals have suggested that ACh supports learning and 

memory processes by switching the cortex from a ‘read-out’ to ‘read-in’ mode – providing 

an enhancement of sensory-evoked afferent responses and suppression of internal cortical 

processing (Hasselmo and McGaughy 2004). This proposal is consistent with the current 

study. Microdialysis measures of ACh in behaving animals support this view – with 

increases observed in modality-specific sensory cortex and hippocampus during the 

acquisition of novel, behaviourally-relevant stimuli. Indeed, it has been demonstrated in the 

auditory domain that a sensory “memory” relies upon cholinergic modulation (Miasnikov, 

Chen et al. 2008). Similarly, in human studies with cholinergic agonists, the specificity of 

perceptual learning for behaviourally-relevant features is enhanced (Rokem and Silver 

2010), while validity effects in spatial cueing tasks are diminished (Bentley, Husain et al. 

2004, Vossel, Thiel et al. 2007, Thiel and Fink 2008), indicative of selective boosting of 

stimulus-related information. Our analysis of the simulated and empirical responses 

recapitulates some of these established ideas about the role of cholinergic signalling in 

perception and attention. Our findings fit comfortably with previous theoretical and 

empirical accounts; namely, that ACh boosts bottom-up signals in response to uncertainty 

(Yu and Dayan 2002, Yu and Dayan 2003, Bentley, Husain et al. 2004). In short, there is a 

wealth of theoretical and empirical evidence for a computational role of ACh in promoting 

the influence of sensory evidence in perception and attention – which our study supplements 

with a functional anatomy at the systems level.

One of the key features of the responses elicited by the roving paradigm is a repetition 

suppression – following a deviant stimulus – that recovers with subsequent presentations 

(see Figure 3). This profile has been reported previously in intrinsic (within-source) DCM 

connections exhibiting biphasic changes that were much faster than changes in extrinsic 

(between-source) connections (Garrido, Kilner et al. 2009). We extend these findings to 

show that this short-term plasticity may be modulated by ascending neuromodulatory 

systems. Previous research has shown that MMN responses are enhanced following 

cholinergic stimulation, particularly nicotinic stimulation in healthy controls (Baldeweg, 

Wong et al. 2006) and patient populations (Engeland, Mahoney et al. 2002). We simulated 

these electrophysiological responses by weighting prediction errors – during recognition 

dynamics – more highly under the influence of Galantamine. This results in exaggerated and 

prolonged MMN like responses over repetitions of a new stimulus. Crucially, this effect can 

be simulated easily, when sensory precision remains higher for longer periods.

Given the ability to characterise the putative neuronal implementation of predictive coding 

schemes using DCM (Garrido, Friston et al. 2008), we tested whether the sensitivity or gain 

of neuronal populations encoding prediction error was increased in human subjects by 

pharmacological enhancement of ACh. ACh has long been known to enhance the firing of 
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cortical pyramidal neurons (Krnjevi and Phillis 1963), inducing a decrease in spike 

frequency adaptation via several mechanisms – including the reduction of hyperpolarizing 

potassium currents (Benardo and Prince 1982, Cole and Nicoll 1984, Huang, Morielli et al. 

1993). This effect was modelled in our dynamic causal models via a gain parameter that 

enhanced the excitability of supragranular pyramidal cells (through decreased self 

inhibition).

Our DCM analysis helps to resolve previous ambiguities regarding the effects of ACh on 

top-down vs. bottom-up processing in human neuroimaging experiments. Using standard 

univariate analyses, the neural network responsible for these – possibly reciprocal – 

adjustments under ACh has remained unclear (Thiel and Fink 2008), given the difficulty of 

specifying how a “bottom-up” enhancement and “top-down” reduction would manifest in 

measurements of brain responses such as fMRI. Our DCM results suggest that under 

cholinesterase inhibition, sensory cortices respond to incoming stimuli with exaggerated and 

prolonged trial-by-trial responses at superficial pyramidal cells – that are the source of 

bottom-up or forward projections. This enhanced bottom-up effect is mediated via tonic 

increases in ACh in our simulations and experiments. It is possible that other brain regions, 

such as the prefrontal cortex or insula, modulate cholinergic afferents – in a phasic fashion – 

through inputs to the basal forebrain (Sarter, Parikh et al. 2009). This would represent top-

down control of facilitation of bottom-up inputs. This type of precision modulation; i.e., 

state induced changes in sensory precision, can be included in generalised Bayesian schemes 

to provide a compelling metaphor for attentional modulation (Feldman and Friston 2010).

In general, hierarchical inference using empirical Bayes, as implemented in our simulations, 

provides a mechanism by which neural circuits can selectively up-weight and down-weight 

particular features in the sensorium. When making perceptual inferences about the states of 

the world and their causes, the brain should up-weight reliable sensory evidence by 

increasing the precision of signals from lower-level cortical regions; e.g., primary sensory 

areas. For people familiar with statistical procedures this is nothing more than weighted least 

squares, where noisy data are down weighted. The framework of Yu and Dayan (Yu and 

Dayan 2002) proposes that ACh modulates uncertainty about high-level representations. We 

show here an equivalent and complementary effect, where ACh boosts bottom-up sensory 

evidence in the auditory hierarchy. The resulting adaptive sensory bias may be implemented 

via gain control in a manner suggested by previous physiological accounts of cholinergic 

modulation. Of course, our EEG measurements do not allow us to characterise the source of 

cholinergic modulation per se – e.g. between prefrontal regions and basal forebrain 

cholinergic neurons, which may serve as a route through which enhanced precision is 

initiated.

In summary, the proposition that neuromodulators encode the precision or predictability of 

environmental states is supported here by empirical evidence that sensory regions respond 

with enhanced gain under cholinergic enhancement – producing exaggerated and prolonged 

mismatch responses that localise to superficial pyramidal populations encoding prediction 

error (Mumford 1992).
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Figure 1. 
Simulating predictive coding through free energy minimisation: Algorithmic Components & 

Proposed Neurobiological Implementation

Upper Panel: free energy, F(y,μ) =−ln p(y|m) + D[q(x,v,θ,γ|μ) ||p(x,v,θ,γ|y,m)] bounds the 

surprise about sensory inputs y(t) and – when optimised with respect to some sufficient 

statistics μ(t) – yields a recognition density q(x, v,θ,γ|μ) over unknown quantities that 

approximates the true posterior density p(x,v,θ,γ|y,m) , under some generative model m ⊃{f, 

g}. The sufficient statistics (generally posterior means) of unknown quantities are obtained 

in a relatively straightforward way using a (variational Bayes) coordinate descent where, 

optimising the unknown variables becomes (generalised) Bayesian filtering. This leads to 

update equations similar to variational expectation maximization (Ghahramani and Beal 

2000) but equipped with a moving frame of reference for the time varying states and causes: 

see (Friston 2008) for details. Lower panel: the ensuing Bayesian filtering or predictive 

coding scheme suggests two distinct populations – corresponding to state units and error 

units, where changes in the activity of state units (encoding predictions) are linear functions 

of precision-weighted prediction errors. This linearity suggests that precision weighted 

prediction errors are conveyed by driving forward connections (e.g., mediated by AMPA 

receptors). Conversely, the prediction errors are nonlinear functions of top-down and lateral 

predictions from the state units, which implies modulatory backward connections (e.g., 

mediated by a mixture of NMDA, GABA and AMPA receptors) (Friston 2005). Crucially, 

the potency of ascending prediction errors depends upon the posterior expectations about 

precision, which act to control the postsynaptic gain of prediction error units. We will test 

whether cholinergic modulation by Galantamine enhances the precision of prediction errors 

in early sensory cortex. This proposition has been motivated theoretically in (Friston 2008, 

Friston 2009, Feldman and Friston 2010). The DCM used in this paper distinguishes activity 

in two subpopulations of pyramidal cells (supra and infragranular) and their respective 

excitability or gain.
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Figure 2. 
Paradigm and Perception

This schematic illustrates the roving oddball paradigm (a) used in both the simulations and 

empirical study. After the presentation of a deviant tone, the expected precision of sensory 

information falls due to the profound prediction errors elicited by an unpredicted (deviant) 

stimulus – d1. With subsequent repetitions of the same stimulus, the stimulus becomes more 

predictable and confidence or precision recovers. Posterior confidence is illustrated with the 

grey bars in the lower panel (b) and is determined by the sensory precision expected. 

Crucially, event related responses are assumed to report precision-weighted prediction 

errors. This means that the monotonically decreasing prediction error – with repetition – is 

modulated by precision to produce a characteristic mismatch negativity (precise prediction 

error) that almost disappears after presentation of the first deviant.
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Figure 3. 
EEG Responses: Simulated and Measured

a. Simulated ERPs evoked by tones whose frequency deviates from preceding tones (d1) 

and are repeated until the tenth presentation (d10). These ERPs are the precision weighted 

prediction errors (Figure 1) of sensory data encoding the frequency of the tone (y2). Left: 

Simulated precision-weighted prediction error under placebo (illustrated are d1: blue, d2: 

green and d10: red). The agent learns the tone frequency over successive repetitions, 

resulting in a reduction in the size of the evoked responses. Right: A similar profile is 

observed under Galantamine, with elevated priors on sensory precision. Evoked responses 

are higher in magnitude and sustained for longer (d2). b. Top panel: Simulated mismatch 

response (d10 – dn), where d10 is set as the standard and d1-d9, a parametric deviant. The 

MMN is taken from the ERPs illustrated in a. It is simply the difference between simulated 

evoked responses (precision-weighted prediction errors) between standards and deviants 

summed from 140-160 msec (shaded areas). Left: the placebo MMN shows a rapid one-shot 

learning, with a smaller MMN on d1 and a reversal in MMN polarity on d2, which returns to 

close to 0 at d9. Right: Galantamine MMNs are prolonged and have greater magnitude for 

all trials. Bottom panel: Two alternate MMN effects under different Galantamine models: 

(left) where Galantamine reduced sensory precision and (right) where Galantamine prevents 

precision updating over trials. c. Scalp EEG measurements of auditory evoked potentials. 

Grand averaged waveforms from a single fronto-central electrode (C21), for the presentation 

of the first deviant tone in a sequence (d1), second tone (d2) and final tone (d10), averaged 

across tones of all frequencies, under placebo (left) and Galantamine (right). MMN effects 

are evident in both drug conditions ~150msec. d. The MMN effect across all 9 tone 

repetitions (d10 – dn). The MMN effect was significantly different across repetitions and 
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drug state. In particular both d1 and d2 induced MMNs were greater on Galantamine than on 

placebo.
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Figure 4. 
Synaptic effects: Simulated and Measured

a. Simulated changes in precision parameter estimates. Left: the updates to precision 

parameters that encode sensory log-precision, exhibit a phasic learning profile, with high 

values on the first deviant presentation that are attenuated markedly by the second 

presentation. The third and successive presentations result in increased precision as the agent 

becomes more certain of its predictions. Right: In the Galantamine simulations, higher 

precisions are encoded with higher certainty and exhibit a different optimisation, whereby 

high precision during the first oddball drops on the second tone, but to a level greater than 

under placebo. b. Left: Source localised simple main effect of deviant (d10-d1), rendered 

onto a canonical cortical surface and thresholded at p<0.05 uncorrected. The local maxima 

in frontal vertices were used as prior source locations in the DCM analysis. The image 

served as a mask on tests for drug × repetition interactions. Right: bilateral activation was 

found in middle temporal gyrus (p <0.05 uncorrected within mask) for the interaction. c. The 

canonical microcircuit used to model intrinsic connections among subpopulations within 

each source in the neural mass model. Purple and blue highlight the intrinsic connections 

that were modulated by Galantamine in the dynamic causal modelling reported the next 

figure.
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Figure 5. 
Network Modulation by Galantamine

a. Models tested to discover where Galantamine boosted event related responses. These 

modelled an effect of Galantamine on either the gain of deep pyramidal cells (blue shading), 

the gain of superficial pyramidal cells (red shading) or extrinsic long-range connections (red 

arrows). b. Bayesian model comparison revealed very strong evidence in favour of model 2 

(compared to second best performing model). Model 2 model the effects of Galantamine as 

a gain modulation of supragranular pyramidal cells in bilateral primary auditory cortex. c. 

The direction of the gain effect – under Galantamine relative to placebo – shows enhanced 

gain at supragranular pyramidal cells with a posterior probability = 1 (shown with 95% 

Bayesian confidence intervals). d. Fitting the DCM to empirical data shows a high 

correspondence across peristimulus time and channels for both placebo and galantamine 

responses.
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