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Abstract

The combination of cinchona-alkaloid-derived primary amine and AuI–phosphine catalysts 

allowed the selective C–H functionalization of two adjacent carbon atoms of pyrroles under mild 

reaction conditions. This sequential dual activation provides seven-membered-ring-annulated 

pyrrole derivatives in excellent yields and enantioselectivities.
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Although gold catalysis and organocatalysis have rapidly grown since the turn of the 

millennium and emerged as powerful tools in the general field of catalysis, examples of the 

combination of gold and organocatalysis in sequential and cooperative tandem reactions 

exploiting complementary activation modes are still scarce.[1-3] Recently, we reported the 

asymmetric synthesis of tetracyclic indole derivatives containing seven-membered rings by 

the merger of a thioamide-based organocatalyst with a AuI catalyst to effect two consecutive 

Friedel–Crafts-type reactions on unsubstituted indole substrates (Scheme 1a).[4]

Due to the immense importance of the indole core, major emphasis has been given to the 

development of asymmetric Friedel–Crafts reactions involving indole derivatives. Pyrrole is 

another electron-rich heteroaromatic compound, core of which is found in many natural 

products.[5,6] One attractive aspect of pyrrole chemistry that is unseen in indole substrates is 

the inherent nucleophilicity on the C2 position, which stands in contrast to indoles having a 

classical C3 nucleophilic site. Because Michael-type reactions of pyrroles usually gives 2,5-

dialkylated products, it is difficult to monofunctionalize pyrrole substrates (Scheme 1c).[7] 

To avoid this problem, we wanted to selectively functionalize two adjacent sites on the 

pyrrolic heterocycle by using two different catalytic modes of activation to generate new 
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annulated pyrrole derivatives in a one-pot reaction, which is quite difficult to achieve by 

using conventional methods.

Therefore, we report a new asymmetric one-pot dual catalytic protocol that uses primary 

amine and AuI catalysis to access 2,3-annulated pyrroles containing a seven-membered ring 

(Scheme 1b). This method is intriguing, because medium-sized rings are difficult to 

synthesize by conventional organocatalytic methods.[8] Moreover, a publication 

documenting a AuI-catalyzed 7-endo-dig cyclization mode on pyrrole substrates is not 

known to date. Such cyclization modes have only been known to occur when platinum or 

AuIII catalysis was utilized.[9] To the best of our knowledge, the method described herein is 

the first known example of an asymmetric one-pot operation, in which pyrroles act as a 

double nucleophile, hence augmenting the operational efficiency of this protocol.

To achieve the annulated pyrrole targets, we first focused on the optimization of the Friedel–

Crafts-Michael-type reaction. For the 1,4-addition of pyrrole to enone 2a, primary amines 4–

6 derived from amino acids and cinchona-alkaloid-derived amines 7–10 together with 

trifluoroacetic acid (TFA) as additive were employed (Scheme 2).[10,11] The primary amines 

4–6 showed poor to good conversions with good enantioselectivity values, whereas the 

reactions with the primary amines 7–10 were finished within one day and provided 

comparable or better enantioselectivity values.

The catalyst 10 gave the highest enantioselectivity value, and further optimization was 

carried out by screening different solvents (Table 1). It turned out that the choice of the 

solvent did not have any crucial influence on the yield or the observed enantioselectivity 

values. However, we were able to obtain better yields and slightly improved 

enantioselectivities at higher dilution and lower temperature. Under these conditions, the 

amount of dialkylated pyrrole was low, and no other by-products could be observed. This 

fact is remarkable, because most known methods on 1,4-additions of pyrroles mainly give 

dialkylated products.[5] We did not investigate the influence of different acids or different 

amounts of acid, because no beneficial effect was observed in related pyrrole 1,4-

additions.[12]

After having optimized the Michael addition, we directed our focus on the cyclization step 

by screening various gold(I) complexes (Figure 1). We observed that all gold catalysts 

promoted the cyclization reaction of the Friedel–Crafts product 3 in toluene, generally 

within 30 min and in excellent yields (Table 2). Only the triazole–gold complex 16 showed 

lower reactivity due to its higher stability and the strong coordination of the triazole ligand 

to the gold center (Table 2, entry 6).[13] Although there was no huge difference in terms of 

yields, using the Echavarren-type catalysts 12–14 resulted in a cleaner isomerization without 

the formation of unwanted by-products (Table 2, Entry 2-4).[14]

It is known from the literature that amines might deactivate gold(I) complexes by 

coordination to the vacant binding site.[3e-g,k,15] However, the active catalyst can be 

regenerated upon addition of acidic additives. As was expected, we did not observe any 

conversion of 3 under the reported conditions when only organocatalyst 10 was present 

(Table 2, entry 12). On the contrary, the reaction was completed within 30 min, if 30 mol% 
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TFA was also present, and the product 17a was obtained in excellent yields (Table 2, entry 

13).

Thus, it was not necessary to add any further additives, because the same amount of TFA 

had to be already added in the Michael addition. In an additional control experiment, we 

could show that TFA does not catalyze the cycloisomerization, because no product could be 

observed after 24 h (Table 2, entry 11). In addition, other metal catalysts containing 

platinum or copper also failed to promote this reaction, although those metals are strongly 

associated with the activation of alkynes (Table 2, entries 8–10).

With the optimized conditions in hand, a variety of substituted enones and pyrroles were 

used to demonstrate the flexibility of the reported method (Scheme 3). To our delight, we 

obtained good to excellent yields and enantioselectivity values for all enones tested, 

tolerating electron-withdrawing, as well as electron-donating, groups (EWG and EDG, 

respectively; 17a–f). Likewise, 2-aryl-pyrroles can also be used for this reaction, albeit with 

slightly lower yields and enantioselectivity values (17g–l). Apparently, the increased steric 

bulk introduced by the additional aryl group on pyrrole seems to hamper the transition state 

in the enantioselective step. In addition, we observed that the products are less stable to acid 

and heat than the products, which are derived from unsubstituted pyrrole, thus leading to 

lower yields. Further, we investigated if the method could be extended to enones with 

terminal alkynes and trimethylsilyl (TMS) protected alkynes. Although both substrates 

reacted smoothly in the Michael addition, no desired product could be isolated after the 

gold-catalyzed cycloisomerization.[16]

The absolute configuration was assigned by X-ray crystal-structure analysis of (R)-17b 
(Figure 2).[17] The absolute configuration of the other products was assigned assuming a 

uniform reaction pathway. To demonstrate the practicability of this protocol, we conducted 

the asymmetric synthesis of 17b on a larger scale with slightly lower yields, but improved 

enantioselectivity (Scheme 4). The product was converted to the corresponding alcohol by 

reduction with sodium borohydride at −78°C to give a mixture of two diastereomers 18 in 

good yield (Scheme 4).

Although we still lack further information on the mechanism, a plausible reaction pathway is 

depicted in Scheme 5. The organocatalytic reaction is driven by the formation of the 

iminium ion by condensation of the TFA salt of the primary amine 10 and the enone 2a. 

This LUMO activation of the substrate facilitates the nucleophilic attack of pyrrole. The 

observed stereoselectivity can be attributed to the covalent bonding between the enone and 

the primary amine, as well as hydrogen bonding between pyrrole and the quinuclidine 

backbone of the catalyst with trifluoroacetate as mediator.[12]

After hydrolysis, the intermediate 3 can enter the gold-catalyzed cycle. In consent with the 

reported literature, we believe that the mechanism for the gold-catalyzed step can be 

rationalized by an initiating 6-endo-dig cyclization of the more nucleophilic C2 position of 

pyrrole to the internal alkyne.[9,18] The alkyne is activated by coordination via the π-acidic 

AuI complex 20 to form a non-aromatic spirocyclic intermediate 21, which undergoes fast 

rearrangement to the seven-membered ring 22 followed by rearomatization and 
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protodeauration. Thus, the final products 17 seem to be derived from a 7-endo-dig 

cyclization.

In summary, we have developed a convenient one-pot asymmetric synthesis of annulated 

pyrroles based on a rare 7-endo-dig cyclization, thus functionalizing two adjacent carbon 

atoms on pyrrole by direct C–H functionalization. The combination of a cinchona-alkaloid-

derived primary amine and a AuI–phosphine catalyst gave excellent yields and 

enantioselectivity values, which are rarely achieved in pyrrole chemistry.

Experimental Section

Typical procedure

Freshly distilled pyrrole (69 μL, 1.00 mmol) was added to a solution of 9-amino(9-deoxy)epi 

cinchonine (10; 29 mg, 0.20 mmol), TFA (16 μL, 0.15 mmol), and enone (0.5 mmol) in 

toluene (3 mL) at 0°C. The reaction mixture was stirred at 0°C, and the progress of the 

reaction was monitored by TLC analysis. After completion, a suspension of AgNTf2 (10 mg, 

0.10 mmol) and catalyst 13 (13 mg, 0.10 mmol) in toluene (1 mL) was added to the reaction 

mixture at room temperature. After complete conversion, the crude product was directly 

subjected to flash chromatography (silica, n-pentane/diethyl ether).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
AuI catalysts employed for the cyclization.
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Figure 2. 
X-ray crystal structure of (R)-17 b.
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Scheme 1. 
Strategy comparison between current work and our recently reported annulations of indoles.
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Scheme 2. 
Catalyst screening for the Friedel–Crafts Michael-type reaction.
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Scheme 3. 
Scope of the sequential Michael addition/cyclization reaction.
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Scheme 4. 
Large-scale synthesis of compound 17b followed by reduction to the alcohol 18.
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Scheme 5. 
Plausible reaction mechanism.
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Table 1

Optimization of the reaction conditions for the Friedel–Crafts Michael-type reaction.
[a]

Entry Solvent [mL] t [h] Yield [%]
[b]

ee [%]
[c]

1 CHCl3 (1.5) 16 56 91

2 CH2Cl2 (1.5) 15 59 87

3 toluene (1.5) 21 60 88

4 PhCl (1.5) 21 61 87

5 toluene (3.0) 21 70 91

6 CH2Cl2(3.0) 24 68 91

7
[d] CHCl3 (3.0) 65 89 93

8
[d] toluene (3.0) 65 95 93

[a]
General reaction conditions: 2a (0.5 mmol), pyrrole 1a (1.0 mmol), 10 (20 mol %), TFA (30 mol%), rt.

[b]
Yield of isolated 3.

[c]
Determined by HPLC analysis on a chiral stationary phase.

[d]
The reaction was performed at 0 °C.
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Table 2

Optimization studies for the gold-catalyzed cyclization.
[a]

Entry Catalyst Additive t [h] Yield [%]
[b]

1 11/AgNTf2 – 0.5 89

2 12/AgNTf2 – 0.5 89

3 13/AgNTf2 – 0.5 99

4 14 – 0.5 92

5 15/AgNTf2 – 0.5 96

6 16 – 30 76

7 AgNTf2 – > 24 –

8 CuI – > 24 –

9 Cu(OTf)2 – > 24 –

10 PtCl2 – > 24 –

11 – 30 mol % TFA > 24 –

12 13/AgNTf2 20 mol % 10 > 24 –

13 13/AgNTf2 20 mol % 10, 30 mol % TFA 0.5 96

[a]
General reaction conditions: 2 (0.3 mmol), AgNTf2 (10 mol%), toluene (1.7 mL), rt.

[b]
Yield of isolated 17a.
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