
IQ-TREE: A Fast and Effective Stochastic Algorithm for
Estimating Maximum-Likelihood Phylogenies

Lam-Tung Nguyen1,2, Heiko A. Schmidt1, Arndt von Haeseler1,2, and Bui Quang Minh*,1

1Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna,
Medical University of Vienna, Vienna, Austria

2Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna,
Vienna, Austria

Abstract

Large phylogenomics data sets require fast tree inference methods, especially for maximum-

likelihood (ML) phylogenies. Fast programs exist, but due to inherent heuristics to find optimal

trees, it is not clear whether the best tree is found. Thus, there is need for additional approaches

that employ different search strategies to find ML trees and that are at the same time as fast as

currently available ML programs. We show that a combination of hill-climbing approaches and a

stochastic perturbation method can be time-efficiently implemented. If we allow the same CPU

time as RAxML and PhyML, then our software IQ-TREE found higher likelihoods between

62.2% and 87.1% of the studied alignments, thus efficiently exploring the tree-space. If we use the

IQ-TREE stopping rule, RAxML and PhyML are faster in 75.7% and 47.1% of the DNA

alignments and 42.2% and 100% of the protein alignments, respectively. However, the range of

obtaining higher likelihoods with IQ-TREE improves to 73.3-97.1%.

Keywords

phylogenetic inference; phylogeny; maximum likelihood; stochastic algorithm

Introduction

Phylogenetic inference by maximum likelihood (ML) is widely used in molecular

systematics (Felsenstein 1981, 2004). It involves the estimation of substitution model

parameters, branch lengths and tree topology. These parameters are usually estimated one

after another with the tree topology being the main parameter of interest. While efficient

numerical methods for estimating substitution model parameters and branch lengths on a

© The Author 2014.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://
creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium,
provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
*Corresponding author:minh.bui@univie.ac.at.

Supplementary Material
Supplementary figures S0–S3 and tables S1 and S2 are available at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).

Europe PMC Funders Group
Author Manuscript
Mol Biol Evol. Author manuscript; available in PMC 2015 January 01.

Published in final edited form as:
Mol Biol Evol. 2015 January ; 32(1): 268–274. doi:10.1093/molbev/msu300.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://www.mbe.oxfordjournals.org/
http://www.mbe.oxfordjournals.org/

fixed tree exist (Yang 2000), finding the optimal tree topology is an NP-hard combinatorial

optimization problem (Chor and Tuller 2005). Therefore, one has to rely on search heuristics

to find the “best” tree.

ML tree searches apply inter alia local tree rearrangements such as nearest neighbor

interchange (NNI), subtree pruning and regrafting (SPR), or tree bisection and reconnection

(TBR) to improve the current tree (Guindon and Gascuel 2003; Swofford 2003; Stamatakis

2006). Here, only modifications that increase the tree likelihood (“uphill” moves) are

allowed. Such approaches are prone to be stuck in local optima (e.g., Swofford and Olsen

1990). The problem becomes more severe if the local tree rearrangement method can only

generate a small number of trees in neighborhood of the current tree. As a result, SPR

algorithms often find trees with higher likelihoods than those that are based on NNI

(Morrison 2007; Whelan and Money 2010; Money and Whelan 2012). TBR is not often

used due to its high computational demand.

Stochastic algorithms were developed to overcome the problem of local optima encountered

by hill-climbing algorithms. Current ML implementations of stochastic algorithms allow

“downhill” moves (Salter and Pearl 2001; Vos 2003; Vinh and von Haeseler 2004) or

maintain a population of candidate trees (Lewis 1998; Zwickl 2006; Helaers and

Milinkovitch 2010) to avoid local optima. However, in terms of both likelihood

maximization and computation time such implementations have been found not to perform

as well as SPR-based hill-climbing algorithms (Stamatakis 2006; Morrison 2007). The large

variety of techniques makes it difficult to combine them into effective and efficient

stochastic algorithms. While the possibilities to enhance a hill-climbing algorithm are

limited, the potential to improve the effectiveness and efficiency of stochastic algorithms is

not yet fully explored.

New Approaches

This article presents a fast and effective stochastic algorithm for finding ML trees. The core

idea is to perform an efficient sampling of local optima in the tree space. Here, the best local

optimum found represents the reported ML tree. To this end, we combine elements of hill-

climbing algorithms, random perturbation of current best trees, and a broad sampling of

initial starting trees. Comparative analyses for many large DNA and amino acid (AA)

multiple sequence alignments retrieved from TreeBASE (Sanderson et al. 1994) showed that

our new search strategy often achieves higher likelihoods compared with RAxML

(Stamatakis 2006) and PhyML (Guindon et al. 2010).

Results

Benchmark Setup

Here, we compared the performance of our approach (implemented in IQ-TREE 1.0) with

the default tree searches implemented in PhyML 3.1 and RAxML 7.3.5. To that end, we

downloaded multiple sequence alignments from TreeBASE (Sanderson et al. 1994; accessed

December 1, 2012) fulfilling the following criteria. First, the number of sequences must be

between 200 and 800 for DNA and between 50 and 600 for AA alignments. Second, the

Nguyen et al. Page 2

Mol Biol Evol. Author manuscript; available in PMC 2015 January 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

alignment length must be at least four (or two) times the number of sequences in DNA (or

AA) alignments. Third, the proportion of gaps/unknown characters must be less or equal

than 70%. Identical sequences were discarded from the alignments keeping only one. We

obtained 70 DNA and 45 AA alignments (see supplementary tables S1 and S2,

Supplementary Material online). The DNA alignment lengths range from 976 to 61,199

sites. The AA alignment lengths were between 126 and 22,426 sites.

For all programs, we used GTR (general time reversible; Lanave et al. 1984) and WAG

(Whelan and Goldman 2001) models for DNA and AA alignments, respectively. Rate

heterogeneity followed the discrete Γ model (Yang 1994) with four rate categories, where

relative rates are computed as the mean of the portion of the Γ distribution falling in the

respective category. To avoid numerical discrepancies between different likelihood

implementations, we used PhyML to compute the log-likelihoods of the final trees based on

parameters produced by each program. We note that, for 92% of the trees the differences in

log-likelihoods recomputed by IQ-TREE and PhyML are smaller than 0.01 and the maximal

difference is 0.05 (supplementary fig S0, Supplementary Material online). All analyses were

performed on the Vienna Scientific Cluster (VSC-2, vsc.ac.at).

Comparison with Equal Running Times

As RAxML and PhyML are considered as the two high-performance ML tree-inference

programs, we first benchmarked IQ-TREE by restricting the running time of IQ-TREE to

that required by each RAxML and PhyML run. This is done to study how efficiently IQ-

TREE uses its search time compared with the other programs. For each alignment, we ran

RAxML ten times and PhyML once (because the default tree search in PhyML is

deterministic). Subsequently, we ran IQ-TREE ten times for each alignment with restricted

CPU time. Then, we compared for each alignment the average log-likelihood of trees

produced by IQ-TREE with those by the other two programs.

Figure 1 (and supplementary fig. S1, Supplementary Material online) displays the pairwise

log-likelihood difference distributions for IQ-TREE versus RAxML (fig. 1a and b) and

PhyML (fig. 1c and d). Trees inferred with IQ-TREE for DNA alignments had in 87.1% of

the instances a higher likelihood than RAxML-trees or PhyML-trees (fig. 1a and c).

Although these percentages are identical, the alignments for which IQ-TREE found better

trees if compared with RAxML or PhyML are not the same (see supplementary fig. S1,

Supplementary Material online). For 12.9% of the alignments, RAxML or PhyML found

better trees.

For the AA alignments, IQ-TREE found higher likelihoods in 62.2% if compared with

RAxML (fig. 1b) and in 66.7% if compared with PhyML (fig. 1d). Contrary to DNA we

observed 22.2% of the alignments where RAxML and IQ-TREE found trees with negligible

log-likelihood differences (<0.01). This number is 13.3% when comparing PhyML with IQ-

TREE. In only 15.6% and 20% of the AA alignments, RAxML and PhyML performed better

(with respect to tree log-likelihoods) than IQ-TREE, respectively.

We note that the distributions in figure 1a, c, and d are skewed to the right. Thus, our tree

search strategy sometimes leads to substantially better likelihoods.

Nguyen et al. Page 3

Mol Biol Evol. Author manuscript; available in PMC 2015 January 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

In summary, based on the analysis of a large collection of alignments, we demonstrate that

IQ-TREE shows higher likelihoods in approximately three-quarters of the analyzed data.

The improvement is almost the same compared with RAxML or PhyML. Because we fixed

IQ-TREE’s running time to the time the other programs needed, we conclude that the

employed search strategy explores tree-space more efficiently.

Comparison with Different Running Time

We now discuss the performance of IQ-TREE if the CPU time is not determined by RAxML

or PhyML but rather by the default stopping rule (see Materials and Methods). Thus, we

compared the differences in CPU times and the differences in log-likelihoods (fig. 2 and

supplementary fig. S2, Supplementary Material online). Again, the analyses were based on

average of ten independent IQ-TREE and RAxML runs. Figure 2 is organized like figure 1

(RAxML vs. IQ-TREE results in the first row, PhyML vs. IQ-TREE results in the second

row, DNA alignments left column, and AA alignments right column).

By allowing variable CPU time, the number of the alignments for which IQ-TREE found

higher-likelihood trees than RAxML or PhyML increases. For 97.1% of the DNA

alignments, the likelihood is improved compared with RAxML (fig. 2a) with the maximal

average log-likelihood difference of 109.5 (TreeBASE ID: M7964). For two DNA

alignments, IQ-TREE obtained trees with lower likelihoods than RAxML with log-

likelihood differences up to −8.9 (M2534).

This success in finding higher likelihoods comes at a cost; IQ-TREE required longer CPU

times than RAxML for 75.7% of the DNA alignments. However, the situation is

complicated; the differences in average CPU times are highly variable, and for some

alignments, one program is much faster than the other. For example, for the alignment

M7024 IQ-TREE needed 4.2 h more than RAxML to finish, whereas RAxML required 8.3 h

more to find an optimal tree for M14582. To finish all ten repetitions for the 70 DNA

alignments, IQ-TREE needed 2,020 CPU hours (~87 CPU days), whereas RAxML needed

1,870 CPU hours (~78 CPU days). This is an average CPU time difference of less than 13

min per run.

Figure 2b displays the results for the 45 AA alignments. For ten AA alignments (22.2%, cf.

supplementary fig. S2b, Supplementary Material online), IQ-TREE and RAxML inferred

trees with likelihood differences smaller than 0.01 for all ten runs. For 73.3% of the AA

alignments, IQ-TREE obtained higher likelihoods than RAxML with a maximal log-

likelihood difference of 21.9 (M11012). And for only 4.4% of the AA alignments, the

results were in favor of RAxML, with a maximum log-likelihood difference of −8.9

(M3114). In terms of computing time, IQ-TREE obtained the result faster than RAxML in

57.8% of the AA alignments, whereas RAxML was faster in 42.2%. In total, IQ-TREE

needed 2,042 CPU hours to complete all 450 runs, whereas RAxML required 2,380 CPU

hours. This is an excess of 16.6% compared with the CPU time of IQ-TREE. Thus, on

average RAxML needed 45 CPU minutes more per run. The runtime ratios between IQ-

TREE and RAxML range from 0.6 to 3.2 for DNA and from 0.5 to 1.9 for protein

alignments.

Nguyen et al. Page 4

Mol Biol Evol. Author manuscript; available in PMC 2015 January 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Finally, figure 2c and d displays the results of IQ-TREE and PhyML for the DNA and AA

alignments, respectively. IQ-TREE obtained higher likelihoods than PhyML for 91.4% of

the DNA and 77.8% of the AA alignments. PhyML obtained higher likelihoods in 8.6% and

2.2% for DNA and AA, respectively. Notably, the maximal log-likelihood differences in

favor of IQ-TREE were 280.5 (M4794) and 621.1 (M8630) for DNA and AA, respectively.

The maximal differences in favor of PhyML were and −6.3 (M9143) and −0.27 (M8175) for

DNA AA, respectively.

With respect to computing times, PhyML was faster in 47.1% of the DNA and for all AA

alignments, whereas IQ-TREE was faster in 52.9% of the DNA alignments. PhyML spent

357 and 61 CPU hours for all DNA and AA alignments, respectively, compared with the

average CPU times for IQ-TREE of 202 and 204 h for all DNA and AA alignments,

respectively. However, in the shorter runtime PhyML produced lower likelihoods for 77.8%

of the AA alignments. The runtime ratios between IQ-TREE and PhyML range from 0.3 to

2.5 (DNA) and from 2 to 7.5 (protein).

In addition, we ran PhyML ten times per alignment using a random starting tree and SPR

search strategy. Supplementary figure S3, Supplementary Material online, shows the results.

In terms of computing time, PhyML ran slower than IQ-TREE for 98.6% DNA alignments

but faster than IQ-TREE for 100% AA alignments. With respect to log-likelihoods, IQ-

TREE produced higher likelihoods than PhyML for 88.6% DNA and 93.3% AA alignments

(an increase by 2.8% for PhyML on DNA, but a decrease by 15.5% on AA). Hence, IQ-

TREE performed better than PhyML under both the default and random starting tree

options.

Discussion

We have combined well-known phylogenetic and combinatorial optimization techniques

into a fast and effective tree search algorithm. The success of IQ-TREE results from two

factors: The new tree search strategy helps to escape local optima and, thus, leads to trees

with high likelihood and the phylogenetic likelihood library (Flouri et al. 2014) reduces the

time for the likelihood computation. Given the same amount of computing time, the efficient

IQ-TREE implementation of hill-climbing and stochastic NNI operations (see Materials and

Methods) computed trees with higher likelihood than RAxML or PhyML in the majority of

cases (up to 87.1% of the benchmark data). This improvement is further boosted if the

internal stopping rule was used (up to 97.1%). The success of IQ-TREE in finding trees with

higher likelihoods is somehow at odds with the discussion in the literature about the

effectiveness of NNI compared with SPR (Hordijk and Gascuel 2005; Guindon et al. 2010;

Whelan and Money 2010). One explanation for the very good performance of IQ-TREE is

possibly the introduction of the stochastic NNI. This random perturbation of locally optimal

trees helps to escape local optima. The perturbed trees are then optimized by hill-climbing

NNI, thus allowing for the possibility to find new and higher local optima. The combination

of random and deterministic elements for ML searches has been previously proposed in Vos

(2003) and Vinh and von Haeseler (2004).

Nguyen et al. Page 5

Mol Biol Evol. Author manuscript; available in PMC 2015 January 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

In addition, we employed some elements of evolution strategies (Rechenberg 1973) to allow

for a broader exploration of the tree space. To this end, we maintain a small population

(candidate tree set) of locally optimal trees initially generated from a large number of

maximum parsimony (MP) trees. Throughout the ML tree search, we continuously update

the candidate tree set with better trees. This extension of the tree-search also contributes to

the performance of IQ-TREE.

It would be interesting to evaluate the relative importance of all these heuristic optimization

techniques implemented in IQ-TREE, but this is beyond the scope of this article and will be

discussed in forthcoming technical publications.

We also observed that the improvement in log-likelihood differences is positively skewed

for all comparative analyses with the exception of the time constrained IQ-TREE versus

RAxML for AA data (fig. 1b). Thus, not only the average loglikelihood improved with IQ-

TREE but also for some alignments, the improvement is substantial. It would be interesting

to find out the characteristics of such alignments to further improve ML tree reconstruction

methods. Moreover, by using many large alignments we show that the very good

performance of our search strategy is not limited to a few alignments. Based on our

benchmark results, we are confident that IQ-TREE will generally work very well.

We would like to point out that it is not enough to run phylogenetic programs with a

stochastic component only once. RAxML and IQ-TREE showed some variation in the log-

likelihoods, if they were run several times (here ten times) on the same alignment (fig. 2 and

supplementary fig. S2, Supplementary Material online). This observation implies that both

programs still finish sometimes in local optima and one should rerun the programs as many

times as possible. In addition, we also offer the possibility to run IQ-TREE longer by

adjusting the corresponding parameter of the stopping rule or by applying the statistical

stopping rule suggested by Vinh and von Haeseler (2004). Compared with other programs,

our results show that with the standard setting of the stopping rule IQ-TREE can produce

very good results, with a moderate increase in running time.

The proposed tree search in IQ-TREE also improves the accuracy of the recently introduced

ultrafast bootstrap approximation approach (Minh et al. 2013). To further facilitate large

phylogenetic analyses, we also consider future development of IQ-TREE for distributed

computing platforms. The highly independent components of our stochastic search

algorithm would allow us to implement an efficient parallelization strategy (cf. Minh et al.

2005) with near-optimal speedup. Thus, the running time of very large phylogenetic

analyses would then be greatly reduced.

In conclusion, IQ-TREE is a time and search efficient ML-tree reconstruction program. It

complements the collection of available ML-programs and shows a better performance with

respect to the ML search than RAxML or PhyML. However, as IQ-TREE is not always

better than the other programs, we recommend using all three programs.

Nguyen et al. Page 6

Mol Biol Evol. Author manuscript; available in PMC 2015 January 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Materials and Methods

In the following, we describe the ingredients of the fast tree reconstruction method that are

implemented in IQ-TREE. We used the phylogenetic likelihood library (Flouri et al. 2014)

for likelihood and parsimony computations. We first describe our fast hill-climbing NNI

algorithm that is repeatedly used throughout the tree search. Subsequently, we will explain

the initial tree generation and the stochastic NNI process.

Hill-Climbing NNI

For the determination of locally optimal trees, we implemented a fast hill-climbing NNI

search. Our approach is based on the work of Guindon and Gascuel (2003) where they

applied several NNIs simultaneously. The hill-climbing NNI is a central element of the

search strategy (fig. 3 box c).

NNI is a local tree rearrangement operation that swaps two subtrees across an internal

branch. Each inner branch defines two distinct NNIs. Thus, for an unrooted bifurcating tree

with n taxa, there are 2(n-3) NNI-trees in the NNI-neighborhood of that tree.

For a given tree (current tree), we first compute the approximate likelihoods of each NNI-

tree by optimizing the respective inner branch and the four adjacent branches. In the

following, we only consider NNIs that increase the tree likelihood compared with the

current tree. We then create a list of nonconflicting NNIs. Two NNIs are considered

conflicting if they operate on the same inner branch or adjacent branches. The list is

initialized with the best NNI. We then add the next best NNI to the list if it does not conflict

with any existing NNI in the list otherwise we discard it. We repeat this procedure until all

NNIs have been processed.

Afterwards, we simultaneously apply all NNIs in the list to the current tree and compute the

likelihood of the resulting tree by doing one tree traversal of ML branch length optimization.

If the likelihood of the resulting tree is worse than the likelihood of the best NNI-tree, we

discard all topological modifications except that of the best NNI in the list. Thus, if the list is

not empty, a new tree with higher likelihood will be found. This tree will replace the current

tree. Furthermore, we tag the inner branches on the new current tree on which NNIs were

applied and perform the remaining procedure as follows.

Instead of computing the full NNI-neighborhood we conduct a reduced NNI search on the

new current tree, applying the following heuristic to find a locally optimal tree. We only

compute the NNI-trees on inner branches that are at most two branches away from the

tagged branches. For such admissible branches, we compute the list as described. If the list

is empty, a locally optimal tree has been found and the hill-climbing search is finished.

Otherwise, we continue the reduced NNI search with the better tree as described above.

Initial Tree Generation

Tree search heuristics typically start with a quickly built initial tree that is subsequently

improved. For example, PhyML starts with a BIONJ tree (Gascuel 1997) whereas RAxML

starts with a stepwise addition tree (Farris 1970) using MP (Fitch 1971) where the MP tree is

Nguyen et al. Page 7

Mol Biol Evol. Author manuscript; available in PMC 2015 January 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

further optimized with lazy subtree rearrangement (Stamatakis 2006). To get a

representative sample of plausible initial trees, we generate 100 parsimony trees using the

same strategy as RAxML. From the 100 trees, we collect all unique topologies and compute

their approximate likelihoods by doing one tree traversal of ML branch length optimization.

From the ranked list of ML values, we select the top 20 trees and perform hill-climbing NNI

on each tree to obtain the locally optimal ML trees. We then retain the top five topologies

with highest likelihood in the so-called candidate tree set for further optimization (fig. 3

box a).

A Stochastic NNI Step

The locally optimal trees in the candidate set are randomly perturbed to allow the escape

from local optima. To this end, we introduce a so-called stochastic NNI step (fig. 3 box b).

Here, we perform 0.5(n – 3) random NNIs on a tree T randomly drawn from , where n – 3

is the number of inner branches. Then, we apply hill-climbing NNI to the perturbed tree to

obtain a new locally optimal tree T* (fig. 3 box c).

If T* has a higher likelihood than the best tree in , we replace that tree by T*. Moreover,

the stochastic NNI successfully found a better tree, thus the number (count) of perturbations

after a new better tree was found is set to zero. If T*’s likelihood is higher than the

likelihood for the worst tree in , then that tree is replaced by T*. Finally, does not change

if the likelihood of T* is smaller than the smallest likelihood for the trees in . In the last

two cases, the tree with the highest likelihood did not change and count is increased by one.

The tree search stops, if the current best tree has not changed for count = 100 random

perturbations. The flowchart of our stochastic tree search is summarized in figure 3.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors thank Tomas Flouri, Fernando Izquierdo-Carrasco, and Alexandros Stamatakis for help with the
phylogenetic likelihood library, Pablo A. Goloboff and an anonymous reviewer for helpful comments on the
manuscript. The computational results presented have been achieved using the Vienna Scientific Cluster (VSC-2).
This work was supported by the Austrian Science Fund—FWF (grant number I760-B17) to B.Q.M. and A.v.H., and
the University of Vienna (Initiativkolleg I059-N) to L.-T.N. and A.v.H.

References

Chor B, Tuller T. Maximum likelihood of evolutionary trees is hard. Lect Notes Comput Sci. 2005;
3500:296–310.

Farris JS. Methods for computing Wagner trees. Syst Zool. 1970; 19:83–92.

Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol.
1981; 17:368–376. [PubMed: 7288891]

Felsenstein, J. Inferring phylogenies. Sinauer Associates; Sunderland (MA): 2004.

Fitch WM. Toward defining course of evolution—minimum change for a specific tree topology. Syst
Zool. 1971; 20:406–416.

Nguyen et al. Page 8

Mol Biol Evol. Author manuscript; available in PMC 2015 January 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Flouri T, Izquierdo-Carrasco F, Darriba D, Aberer AJ, Nguyen L-T, Minh BQ, von Haeseler A,
Stamatakis A. The phylogenetic likelihood library. Syst Biol. 2014 Advance Access published
October 30, 2014, doi:10.1093/sysbio/syu084.

Gascuel O. BIONJ: an improved version of the NJ algorithm based on a simple model of sequence
data. Mol Biol Evol. 1997; 14:685–695. [PubMed: 9254330]

Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and
methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0.
Syst Biol. 2010; 59:307–321. [PubMed: 20525638]

Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by
maximum likelihood. Syst Biol. 2003; 52:696–704. [PubMed: 14530136]

Helaers R, Milinkovitch MC. MetaPIGA v2.0: maximum likelihood large phylogeny estimation using
the metapopulation genetic algorithm and other stochastic heuristics. BMC Bioinformatics. 2010;
11:379. [PubMed: 20633263]

Hordijk W, Gascuel O. Improving the efficiency of SPR moves in phylogenetic tree search methods
based on maximum likelihood. Bioinformatics. 2005; 21:4338–4347. [PubMed: 16234323]

Lanave C, Preparata G, Saccone C, Serio G. A new method for calculating evolutionary substitution
rates. J Mol Evol. 1984; 20:86–93. [PubMed: 6429346]

Lewis PO. A genetic algorithm for maximum-likelihood phylogeny inference using nucleotide
sequence data. Mol Biol Evol. 1998; 15:277–283. [PubMed: 9501494]

Minh BQ, Nguyen MA, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol
Evol. 2013; 30:1188–1195. [PubMed: 23418397]

Minh BQ, Vinh LS, von Haeseler A, Schmidt HA. pIQPNNI: parallel reconstruction of large
maximum likelihood phylogenies. Bioinformatics. 2005; 21:3794–3796. [PubMed: 16046495]

Money D, Whelan S. Characterizing the phylogenetic tree-search problem. Syst Biol. 2012; 61:228–
239. [PubMed: 22076302]

Morrison DA. Increasing the efficiency of searches for the maximum likelihood tree in a phylogenetic
analysis of up to 150 nucleotide sequences. Syst Biol. 2007; 56:988–1010. [PubMed: 18066931]

Rechenberg, I. Evolutionsstrategie—optimierung technischer systeme nach prinzipien der biologischen
evolution. Frommann-Holzboog Verlag; Stuttgart (Germany): 1973.

Salter LA, Pearl DK. Stochastic search strategy for estimation of maximum likelihood phylogenetic
trees. Syst Biol. 2001; 50:7–17. [PubMed: 12116596]

Sanderson MJ, Donoghue MJ, Piel W, Eriksson T. TreeBASE: a prototype database of phylogenetic
analyses and an interactive tool for browsing the phylogeny of life. Am J Bot. 1994; 81:183.

Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of
taxa and mixed models. Bioinformatics. 2006; 22:2688–2690. [PubMed: 16928733]

Swofford, DL. PAUP*. Phylogenetic analysis using parsimony (* and other methods). Sinauer
Associates; Sunderland (MA): 2003. Version 4

Swofford, DL.; Olsen, GJ. Phylogeny reconstruction. In: Hillis, DM.; Moritz, C., editors. Molecular
systematics. Sinauer Associates; Sunderland (MA): 1990. p. 411-501.

Vinh LS, von Haeseler A. IQPNNI: moving fast through tree space and stopping in time. Mol Biol
Evol. 2004; 21:1565–1571. [PubMed: 15163768]

Vos RA. Accelerated likelihood surface exploration: the likelihood ratchet. Syst Biol. 2003; 52:368–
373. [PubMed: 12775525]

Whelan S, Goldman N. A general empirical model of protein evolution derived from multiple protein
families using a maximum-likelihood approach. Mol Biol Evol. 2001; 18:691–699. [PubMed:
11319253]

Whelan S, Money D. The prevalence of multifurcations in treespace and their implications for tree-
search. Mol Biol Evol. 2010; 27:2674–2677. [PubMed: 20584772]

Yang Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over
sites: approximate methods. J Mol Evol. 1994; 39:306–314. [PubMed: 7932792]

Yang Z. Maximum likelihood estimation on large phylogenies and analysis of adaptive evolution in
human influenza virus A. J Mol Evol. 2000; 51:423–432. [PubMed: 11080365]

Nguyen et al. Page 9

Mol Biol Evol. Author manuscript; available in PMC 2015 January 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Zwickl, DJ. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence
data sets under the maximum likelihood criterion [Ph.D. dissertation]. The University of Texas at
Austin; Austin (TX): 2006.

Nguyen et al. Page 10

Mol Biol Evol. Author manuscript; available in PMC 2015 January 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Fig. 1.
Performance of IQ-TREE for fixed CPU times: (a, b) Display frequencies of log-likelihood

differences for IQ-TREE minus RAxML for 70 DNA (a) and 45 AA (b) alignments. (c) and

(d) show the same if IQ-TREE is compared with PhyML. IQ-TREE’s CPU times were

limited to those required by RAxML and PhyML, respectively. The percentages on the

dashed line in (b) and (d) represent the fraction of alignments where log-likelihood

differences are smaller than 0.01.

Nguyen et al. Page 11

Mol Biol Evol. Author manuscript; available in PMC 2015 January 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Fig. 2.
Performance of IQ-TREE for variable CPU times: The upper plots (a, b) show the

performance of IQ-TREE against RAxML using the 70 DNA (a) and 45 AA (b) alignments.

The lower plots (c, d) show the same against PhyML. Each dot in the main diagrams

represents for one alignment the mean differences of the CPU times (y axis) and of the mean

differences of log-likelihoods (x axis) of the reconstructed trees by the programs compared.

The whiskers at each point show the standard errors of the differences. The histograms at the

top and the side present the marginal frequencies. Dots to the right of the vertical dashed line

represent alignments where IQ-TREE found a higher likelihood. If a dot is below the

horizontal dashed line, the reconstruction by IQ-TREE was faster. Percentages in the

Nguyen et al. Page 12

Mol Biol Evol. Author manuscript; available in PMC 2015 January 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

quadrants of histograms denote the fraction of alignments in that region. Percentages on the

dashed line reflect the number of alignments where log-likelihood differences are smaller

than 0.01 (see [b] and [d]).

Nguyen et al. Page 13

Mol Biol Evol. Author manuscript; available in PMC 2015 January 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Fig. 3.
Flowchart for the stochastic search algorithm. The variable count counts the number of

random perturbations (box b and box c) as a new best tree was found.

Nguyen et al. Page 14

Mol Biol Evol. Author manuscript; available in PMC 2015 January 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

