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Abstract

To make adaptive choices, humans need to estimate the probability of future events. Based on a 

Bayesian approach, it is assumed that probabilities are inferred by combining a priori, potentially 

subjective, knowledge with factual observations, but the precise neurobiological mechanism 

remains unknown. Here, we study whether neural encoding centers on subjective posterior 

probabilities, and data merely lead to updates of posteriors, or whether objective data are encoded 

separately alongside subjective knowledge. During fMRI, young adults acquired prior knowledge 

regarding uncertain events, repeatedly observed evidence in the form of stimuli, and estimated 

event probabilities. Participants combined prior knowledge with factual evidence using Bayesian 

principles. Expected reward inferred from prior knowledge was encoded in striatum. BOLD 

response in specific nodes of the default mode network (angular gyri, posterior cingulate, and 

medial prefrontal cortex) encoded the actual frequency of stimuli, unaffected by prior knowledge. 

In this network, activity increased with frequencies and thus reflected the accumulation of 

evidence. In contrast, Bayesian posterior probabilities, computed from prior knowledge and 

stimulus frequencies, were encoded in bilateral inferior frontal gyrus. Here activity increased for 

improbable events and thus signaled the violation of Bayesian predictions. Thus, subjective beliefs 

and stimulus frequencies were encoded in separate cortical regions. The advantage of such a 

separation is that objective evidence can be recombined with newly acquired knowledge when a 

reinterpretation of the evidence is called for. Overall this study reveals the coexistence in the brain 

of an experience-based system of inference and a knowledge-based system of inference.
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Introduction

When facing a familiar environment, people rely on a priori knowledge to anticipate future 

events (Neisser, 1976; Bar, 2007). This ability develops in early childhood (Téglás et al., 

2011). However, predictions often need to be adjusted when new observations are made 

because our knowledge about situations and people is often incomplete or biased (e.g., 

stereotypes). That is, our “internal model” of the world is only partial and objective evidence 

is needed to complete our beliefs.

Bayes’ law provides a disciplined way to combine objective data with subjective prior 

beliefs. Behavioral studies have suggested that humans apply Bayesian principles when 

updating their knowledge (Peterson and Miller, 1965; Phillips and Edwards, 1966). Recent 

evidence has emerged in sensory decision making that uncertainty of prior knowledge 

relative to that of new data determines how posterior beliefs are formed, and neural signals 

of the corresponding uncertainty measures are beginning to be identified (Vilares et al., 

2012). In the present study, we do not focus on the uncertainty of sensory information but on 

its probability of occurrence. Indeed, probabilities provide crucial information to predict 

what will happen next (d’Acremont and Bossaerts, 2012).

Both fMRI and EEG studies have shown that the brain response to uncertain stimuli depends 

on their actual frequency of occurrence. In the “odd ball” paradigm, a larger event-related 

potential (the P300) has been recorded for rare stimuli (Duncan-Johnson and Donchin, 1977; 

Mars et al., 2008). During reinforcement learning, authors have related BOLD activity in 

lateral parietal and prefrontal cortex to the occurrence of rare outcomes (Fletcher et al., 

2001; Turner et al., 2004; Gläscher et al., 2010). Recently, it has been shown that the brain 

tracks the probability of up to 10 different stimuli in inferior parietal cortex and medial 

prefrontal cortex as well as their entropy in bilateral insula (d’Acremont et al., 2013). 

Missing, however, is a neurobiological account of how prior knowledge is merged with new 

factual evidence to form beliefs (Fig. 1).

Based on the literature and theoretical considerations, one can formulate several hypotheses. 

The first possibility is that regions previously found to react to likely (d’Acremont et al., 

2013) or surprising events (Gläscher et al., 2010) do not incorporate prior knowledge when 

this factor is manipulated experimentally; thus these regions would encode stimulus 

frequencies. Another possibility is that BOLD signal in these regions incorporates prior 

knowledge. Such a result would support the Bayesian brain hypothesis. Bayes’ rule does not 

require memory of past data, but only memory of the last forecast [like in the Kalman filter 

(Meinhold and Singpurwalla, 1983)]. Thus a neural signature of Bayesian probabilities does 

not necessitate the encoding of factual frequencies. A third scenario is that some of the 

regions found to be sensitive to stimulus probabilities in previous studies are specialized in 

encoding frequencies, while others incorporate prior knowledge in a Bayesian way. Our 

results favor the third hypothesis and point to the existence of a dual system of statistical 

inference in the brain.
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Materials and Methods

Participants

Twenty-six participants took part in the study (11 women and 15 men). The median age was 

23 years old (minimum, 18; maximum, 37). Twenty-four were students, graduate students, 

or postdoctorate students at the California Institute of Technology. Two were working 

outside of the college. The study took place at the Caltech Brain Imaging Center and was 

approved by the institutional review board.

Participants read the task instructions on the computer screen and practiced with two 

demonstration trials before the fMRI scanning. Participants began the session with $1 play 

money. The net payoff received in each trial was added to the play money. At the end of the 

experiment, they received four times the final play money in real currency (U.S. dollars). 

This variable amount was added to a fixed amount given for the participation in the study.

Task design

In our paradigm, participants were asked to estimate the probability of uncertain stimuli 

based on a priori information as well as repeated empirical observations. We tracked brain 

activity as evidence (stimuli) was accumulated. In our weather analogy (Fig. 1), evidence 

would correspond to the weather experienced each day. In addition, the reward associated 

with a stimulus was manipulated independently of its probability of occurrence, so the 

evidence was affectively neutral on average. In the weather analogy (Fig. 1), the decision 

maker might want to ski on Thursday. Thus “snow” would be a positively valued outcome. 

Conversely, he might need to drive, so that “snow” would be a bad outcome. The task thus 

introduced a distinction between objective and subjective probabilities while controlling for 

the effect of value.

Two novel tasks were developed to test the hypotheses presented in the introduction. The 

two tasks shared a common principle: participants received prior but incomplete information 

about the likelihood of observing two mutually exclusive stimuli. They later had the 

opportunity to refine their prediction after observing the factual occurrence of the stimuli. 

However, the causal model generating the stimuli differed between the two tasks. This 

strategy was followed to test the robustness of our findings and enhance the generality of the 

results.

Stimuli presented in the two tasks were distinguished by their color. In the first task, the ball 

betting task, prior information was given on the proportion of red and blue balls in a unique 

bin. Participants bet whether the ball drawn next would be of a designated color (red or blue; 

Fig. 2a). In the second task, the bin betting task, prior information was given on the 

probability that balls would be drawn from a designated bin (right or left). The two bins 

contained a different proportion of green and orange balls and participants bet whether ball 

drawings came from the designated bin (Fig. 2b). Participants were asked to bet on the 

ball/bin associated with the $1 payoff. In Figure 2 for instance, they had to bet on the red 

ball in the ball betting task and the right bin in the bin betting task. In half of the trials, the 

payoff was associated to the other ball/bin. With this design, stimulus probability and reward 

were statistically independent (see below, Randomization).
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Each trial was divided into six periods. In the prior information period, a range of possible 

probability was revealed by moving two triangles on a horizontal scale. The computer chose 

a value p between the triangles (p was not revealed). In the ball betting task, p determined 

the true probability that a ball associated with the $1 payoff (Fig. 2a, red ball) would be 

drawn from the bin. In the bin betting task, p determined the true probability that balls came 

from a designated bin (Fig. 2b, right bin). In the sampling period, objective empirical 

evidence was generated by repeatedly drawing balls (with replacement). Between one and 

nine balls were drawn. To ensure that participants carefully attended to each drawing, we 

randomly ended the drawing in each trial. In the subsequent betting period, participants bet 

between $0 and $1 on the color of the next ball (in the ball betting task) or on the designated 

bin (in the bin betting task) by moving a vertical gray line along the horizontal scale 

(participants placed their bet at the end of the sampling period, not after each drawing). As 

indicated previously, the ball (red/blue) or bin (right/left) they bet on was the one associated 

with the $1 payoff.

After the bet was chosen, we ran a second price auction to determine payoffs. This method 

was selected because it incites participants to accurately report their estimation of 

probabilities (Becker et al., 1964). In the auction period, the computer revealed a price by 

moving a vertical violet bar between $0 and $1. Participants won the auction if the bet was 

strictly higher than this random price. If the bet was equal or smaller than the computer 

price, the auction was lost. In the final outcome period, an additional ball was drawn in the 

ball betting task and the bin was revealed in the bin betting task. The earning for the current 

trial was shown in the feedback period. In case the auction was won, the payoff was $1 if the 

additional ball drawn was of the designated color (ball betting task) or if the bin from which 

balls had been drawn was the designated one (bin betting task). Otherwise the payoff was 

zero. The net payoff equaled the payoff minus the computer drawn price. Net payoff could 

be negative. In case the auction was lost, the net payoff was always zero. At the end of the 

auction, the net payoff was added to the play money. The details of the auction made it 

optimal to place a bet equal to the probability to obtain the $1 payoff (see below, Predictive 

models for choices). To avoid errors due to a misunderstanding of the second price auction, 

the optimal strategy was made explicit in the task instruction.

Randomization

The value of p that determined the probability of the final outcome was chosen from a 

uniform distribution between the two triangles. To vary the uncertainty about the prior 

information, the distance d between the triangles changed from one trial to the other. In the 

ball betting task, the distance could be 0.25, 0.50, or 1. The computer selected one of the 

three possible distances with equal likelihood. The position of the triangles on the scale was 

determined by two values: a and b. The value a was chosen between 0 and 1 – d from a 

uniform distribution. The value b was defined as a + d.

In the bin betting task, the three possible distances between the triangles were 0, 0.25, and 

0.50. Positions a and b of the triangles were determined as in the ball betting task. For the 

distance 0, the triangles were superimposed and determined the exact prior. Note that 

contrary to the bin betting task, the distance between the triangles was never zero in the ball 
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betting task. Otherwise the proportion of balls in the (unique) urn would have been known 

exactly, obviating the need for learning.

There was at least one drawing in the sampling period. Subsequently, there was a 20% 

chance that the sampling would end after each drawing. The maximum number of drawings 

was nine. Thus the number of drawings ranged from one to nine.

Participants performed eight trials of the ball betting task, eight trials of the bin betting task, 

eight trials of ball betting task again, and eight trials of the bin betting task again. At the 

beginning of the session, the computer randomly chose whether participants started with 

eight trials of the ball betting task or eight trials of the bin betting task. Within a block of 

eight trials, the color–payoff association or the bin–payoff association changed after four 

trials. This way, the effect of stimulus value and probability could be dissociated. Whether 

the first block started with the red/right–payoff association or the blue/left–payoff 

association was chosen randomly at the beginning of each session.

Duration and message

Prior information—The play money at the beginning of the task was $1. Messages were 

displayed on the bottom of the screen. Each trial started with a message “Total = X” 

showing the current play money (2.5 s). Then the message “Prior probability” was displayed 

(3.5 s). The gray triangles were moved to display the prior information. After 5.5 s, the 

message “Fill in the urn” for the ball betting task or “Select the urn” for the bin betting task 

was displayed (2 s).

Sampling—The sampling period was announced with the message “Start sampling” (2 s). 

A fixation cross was flashed (0.2 s). Colored balls (stimuli) were shown in the middle of the 

screen for 1 s one after another. The interstimulus interval was drawn from a uniform 

distribution between 3 and 4 s (jittering).

Betting—The betting period was announced with the message “Start auction” (3.5 s) 

followed by the message “Your bet on the ball?” for the ball betting task and “Your bet on 

the urn?” for the bin betting task. Participants had a maximum of 20 s to place their bet by 

moving a vertical gray line on a scale between $0 and $1. The position of the line was 

recorded after they clicked on the track ball button, or after the time limit was reached. A 

feedback message “Bet is X,” indicating the recorded bet, was displayed for 3.5 s.

Auction—The auction period was announced with the message “Select price” (3.5 s). A 

vertical violet line was moved to reveal the computer price. At the same time, a message 

indicating the price “Price is X” and a message indicating whether the participant won the 

auction or not was displayed over 5.5 s.

Final outcome—This period started with the message “Draw last ball” for the ball betting 

task and “Reveal the urn” for the bin betting task. A fixation cross was flashed (0.2 s) 

followed by an interstimulus interval (3–4 s). Then the color of the ball or the side of the bin 

was revealed in the center of the screen (1 s).
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Feedback—After an interstimulus interval (3–4 s), the payoff associated to the outcome 

“Outcome = X” and the net payoff “Net payoff = Y” were displayed for 5.5 s. Then a new 

trial started.

Predictive models for brain activity

We focus on brain activation correlating with the probability of occurrence of each type of 

stimulus, distinguishable by the color of the ball drawn from the bin (red or blue for the ball 

betting task; green or orange for the bin betting task). We measure stimulus probabilities in 

two ways. First, we compute probabilities ignoring prior information. Hence, these 

probabilities are purely based on the actual frequency of occurrence of the colors. We refer 

to this model as “frequentist.” Second, we use Bayesian posterior beliefs computed from the 

prior information and the history of sampling of colors. This model will be referred to as 

“Bayesian.” The naming is in no way meant to reflect arguments in the statistics literature 

on the relative merits of using prior information (Bayesian statistics) against considering 

only the objective information that could possibly emerge (classical frequentist statistics; 

Fienberg, 2006). Instead, it is a convenient way to distinguish between updating based on 

prior information and updating excluding prior information (Fig. 1).

Frequentist model—In the frequentist model, we ignore the prior information; inference 

is solely based on the factual drawings. In the ball betting task, the probability of observing 

another red ball after recording k red balls in n prior draws is given by Equation 1:

The probability of a blue ball is the complementary of the probability of a red ball (mutually 

exclusive events). In the bin betting task, the probability of observing another green ball 

after recording k green balls in n prior draws is given by Equation 2:

The probability of an orange ball is the complementary probability.

Bayesian model—The Bayesian model combines factual frequencies with prior 

knowledge. For the ball betting task, we provide a formula for the posterior probability that 

a red ball would be drawn conditional on the past draws and prior information (about the 

composition of the bin, delivered at the beginning of each trial). The random variables are 

the following: θ indicates the proportion of red balls in the bin, an outcome of the random 

variable ϴ; k is the outcome of a binomial random variable and denotes the number of red 

balls observed in n drawings.

At the beginning of each trial, ϴ follows a uniform distribution between [a, b], where a and 

b denote the positions of the triangles on the screen (0 < a < b < 1). The probability that ϴ 
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takes the value θ equals the probability density function of the uniform distribution (we use 

the symbol P for both probability density and mass functions) as shown in Equation 3:

The probability of observing k red balls in n drawings given a certain proportion of red balls 

θ is given by the density function of the binomial distribution (0 ≤ k ≤ n), as shown in 

Equation 4:

The probability of observing another red ball after recording k red balls in n previous draws 

can be calculated with the Bayes’ law, which gives in Equation 5 the following:

where Beta denotes the incomplete Beta function.

For the bin betting task, the Bayesian model provides the posterior probability that the right 

bin is used in the ball drawing. The probability that draws come from the left bin is 

complementary to that for the right bin (mutually exclusive events). We first define the 

relevant random variables. Let U denote a variable following a Bernoulli distribution with 

parameter θ indicating if the left (U = 0) or right (U = 1) bin was selected to draw balls. θ is 

the outcome of a random variable ϴ. k is a random variable following a binomial 

distribution indicating the number of green balls observed in n drawings. The parameter of 

this binomial distribution equaled three-tenths if the left bin was selected (U = 0) and seven-

tenths if the right bin was selected (U = 1).

At the beginning of each trial, ϴ follows a uniform distribution between [a, b], with a and b 

given by the position of the triangles on the screen (0 < a < b < 1). The probability that ϴ 

takes the value θ equals the probability density function of the uniform distribution as shown 

in Equation 6:

The probability that the bin u (= 0, 1) is selected given θ equals the probability mass 

function of the Bernoulli distribution is as follows in Equation 7:
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The probability of observing k green balls in n drawings given u (right or left bin) equals the 

probability density function of the binomial distribution (0 ≤ k ≤ n) as shown in Equation 8:

where R and L denote the probability of drawing a green ball when the right or left bin is 

selected, respectively.

To calculate the probability that the right bin was selected, given the observed data, we 

apply Bayes’ rule, which in Equation 9 produces:

The probability of observing a green ball after sampling is given by the following Equation 

10:

Predictive models for choices

Participants bet to earn a $1 payoff. It can be shown that the maximum expected net payoff 

is obtained when the bet b equals the probability p of receiving the payoff in the gamble (b = 

p). Thus, it is optimal to place a bet equal to the probability of winning the gamble. In case 

the bet is optimal, the expected net payoff is a quadratic function of the probability p, as 

shown in Equation 11:

In the behavioral analysis, we could have used statistical models that directly predicted the 

bet. However, risk aversion may bias such an approach. Specifically, risk-averse participants 

decrease their bet below their belief (of winning the gamble) to increase the chance to lose 

the auction and hence avoid the gamble altogether. Therefore, we ran analyses on an 

adjusted bet. When the red ball or right bin was rewarded, the adjusted bet equaled the 
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observed bet (b); otherwise the adjusted bet was 1 minus the observed bet (1 – b). The effect 

of risk attitude then cancels out across the two conditions. For simplicity, we refer to the 

adjusted bet simply as “bet” or “inferred belief” in the sequel.

Frequentist model—In the ball betting task, the bet was predicted by the frequency of the 

red ball (Eq. 1). In the bin betting task, participants bet on the bin, not the ball. Thus the bet 

was predicted by the probability that the right bin was selected conditional on the drawings 

and a Bayesian prior probability equal to . This way, the prior information was effectively 

ignored in the model and behavioral response in the two tasks could be compared. The 

probability that the right bin was used to draw balls is given by the following Equation 12:

Bayesian model—In the ball betting task, the bet was predicted by the red ball 

probability, calculated with Bayes’ formula (Eq. 5). In the bin betting task, the bet was 

predicted by the probability that the right urn was the one used to draw balls, calculated with 

Bayes’ formula (Eq. 9).

Behavioral analysis

Bets were predicted with mixed-linear models. Subject was entered as a random factor to 

capture individual variability. Mixed linear regressions were estimated in R with the lme 

function (R Development Core Team, 2012). See Predictive models for choices for details 

on the calculation of frequentis (Eqs. 1 and 12) and Bayesian probabilitie (Eqs. 5 and 9). The 

threshold for significance was set at p < 0.05.

Brain analysis

Image acquisition. BOLD fMRI acquisitions were performed with a 32-channel head coil on 

a 3 T Siemens Tim-Trio system. Functional MRI images were acquired with an EPI gradient 

echo T2*-weighted sequence [flip angle, 80°; TR, 2000 ms; TE, 30 ms; 64 × 64 matrix, 

GRAPPA (generalized autocalibrating partially parallel acquisition) acceleration, 2; voxel 

size, 3 × 3 × 3 mm; 38 slices, covering the whole brain].

High resolution morphological data were acquired with a sagittal T1-weighted 3D 

magnetization prepared rapid acquisition gradient echo (MP/RAGE) sequence, 176 slices 

(with voxel size of 1 mm isotropic), as a structural basis for brain segmentation and surface 

reconstruction.

Preprocessing—fMRI preprocessing steps, conducted with SPM8 (Wellcome 

Department of Cognitive Neurology, London, United Kingdom), included realignment of 

intrasession acquisitions to correct for head movement, normalization to a standard template 

[Montreal Neurological Institute template (MNI)] to minimize interparticipant 

morphological variability and resampling to isotropic voxel of 2 × 2 × 2 mm to improve 

superposition of functional results and morphological acquisitions, and convolution with an 
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isotropic Gaussian kernel (FWHM, 6 mm) to increase signal-to-noise ratio. The signal drift 

across acquisitions was removed with high-pass filter (only signals with a period <240 s 

were included).

Voxel-based analysis—Subject was defined as a random factor in general linear models 

(GLMs). GLMs were estimated with SPM8. The default orthogonalization of predictors was 

removed to avoid arbitrary results due to predictor order.

GLM events were defined for all messages displayed during the tasks. Event duration 

equaled the duration of the messages. In the prior information epoch, a GLM event was 

defined when the two triangles indicating prior information moved from their central 

positions. The event was modulated parametrically by the Bayesian expected net payoff 

calculated on condition of an optimal bet and with the use of the displayed prior 

information. The left-to-right position of the middle point between the triangles was defined 

as a second parametric modulator.

During the sampling period, GLM events were defined for the fixation cross, the 

interstimulus interval (gray ball), and the stimulus itself (drawing of a ball). The duration of 

these events in the GLM was equal to their duration in the tasks. The stimulus was 

modulated parametrically by the number of drawings (balls, regardless of color) since the 

beginning of the trial (1, 2, 3, etc.) and the frequency of occurrence of the color (color 

probability, GLM1). In a second GLM, Bayesian posterior probabilities substituted for 

frequencies to localize the neural representation of subjective beliefs (GLM2). In GLM1 and 

GLM2, BOLD activity was regressed on the probability of the currently observed stimulus. 

The probability of “red” (“blue”) was used when a red (blue) ball was drawn in the ball 

betting task. The probability of “green” (“orange”) was used when a green (orange) ball was 

drawn in the bin betting task. See Predictive models for brain activity for details on the 

calculation of frequentist (Eqs. 1 and 2) and Bayesian probabilities (Eqs. 5 and 10).

Update was substituted for probability as a parametric modulator to test whether the brain 

was encoding a change in belief based on the currently observed stimulus. The update was 

calculated as the posterior minus the prior (GLM3), or as the log of the ratio posterior/prior 

(GLM4). To test if probabilities were encoded differently depending on the task, the 

stimulus probability was modulated by the task identity (ball betting task, 0; bin betting task, 

1; GLM5). To test the role of value, the stimulus was modulated by the Bayesian expected 

net payoff based on Equation 6 (GLM6). To further explore the effect of value, the stimulus 

was modulated by its associated payoff ($0 or $1) in a separate GLM (GLM7).

In the betting epoch of both tasks, a GLM event was defined for the time spent placing the 

bet. This event was modulated by the left-to-right position of the middle point between the 

triangles. A covariate was used to make the distinction between participants’ placing their 

bet with the left (covariate, 0) or right hand (covariate, 1). In the auction epoch, the message 

display event was modulated parametrically by the content of the message; namely, the 

computer-generated price. In the feedback period, a GLM event was defined for the 

interstimulus interval (gray ball) that followed the revelation of the final outcome (color of 

the ball or side of the bin). This event was modulated by the net payoff.

d’Acremont et al. Page 10

J Neurosci. Author manuscript; available in PMC 2015 January 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Seven GLMs were estimated at this point: GLM1 (frequency), GLM2 (Bayesian 

probability), GLM3 (Bayesian update computed as a difference), GLM4 (Bayesian update 

computed as a ratio), GLM5 (task identity), GLM6 (Bayesian expected net payoff), and 

GLM7 (payoff). The appropriate GLM was selected when presenting results related to the 

stimulus displayed during the sampling period. Results for the remaining events were similar 

for the seven GLMs. We report the estimation found with GLM2 when presenting results 

not related to the stimulus. For voxel-based analyses (including identification of ROIs), the 

threshold for significance was set at p < 0.001, uncorrected, with minimal cluster size of 100 

voxels. Coordinates are given in the MNI space (millimeters).

ROI analysis—By definition, probabilities calculated with the frequentist and Bayesian 

models are both functions of the observed drawings. As a consequence, their correlation was 

relatively high (r = 0.66). To document their effect at the voxel level, a GLM was estimated 

separately for frequentist (GLM1) and Bayesian probabilities (GLM2). We should observe 

some overlap in brain activity as the two predictors share information. The key analysis was 

to estimate their unique contribution. To do so, frequentist and Bayesian probabilities were 

entered together in the same regression to explain the average BOLD effect found in a given 

ROI. This way, we directly contrasted the two explanatory variables (Poldrack et al., 2008).

ROIs encoding probabilities were defined by merging the voxels found to encode objective 

frequencies and Bayesian posterior probabilities. Voxels had to belong to GLM1 or GLM2 

clusters of activation (or both). With this approach, none of the two types of probability was 

favored in the definition of the ROIs. To avoid circularity or “double dipping,” ROIs for 

each participant were determined based on the data of all other participants (Kriegeskorte et 

al., 2009).

The GLMs for the ROI analysis (GLM8) was the same as the GLMs for the voxel-based 

analysis (GLM1–GLM7), except that different events were defined for each drawing of a 

ball (stimuli) during the sampling period. These events were not modulated by covariates. 

GLM8 was fitted to the brain functional data and Marsbar toolbox was used to extract the 

first component score of all voxels in a given ROI (Brett et al., 2002). This was done for 

each subject separately. Because ROIs for each subject were estimated without the subject 

himself, circularity was avoided. Estimated βs were imported in R (R Development Core 

Team, 2012). In R, mixed linear regressions (lme function) were computed to predict the β 

estimated for each stimulus obtained from Marsbar. Consistent with the voxel-based GLMs, 

subject was defined as a random factor in R mixed linear regressions. The threshold was set 

to p < 0.05 when analyzing average activation in ROIs.

Connectivity analysis—Functional connectivity was analyzed with the 

psychophysiological interaction (PPI) toolbox of SPM8. ROIs were used as seed regions. 

Connectivity in the sampling period was analyzed with a GLM fitted on images acquired 

during the sampling period (physiological factor). No experimental variable was included 

(psychological factor). As for all other voxel-based GLMs, connectivity analyses included 

realignment regressors to control for head motion (Weissenbacher et al., 2009). The high-

pass filter was maintained at 240 s to allow the comparison of results obtained with the 

connectivity analyses and the other GLMs.
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Results

Participant choices

Participant bets were first regressed on the Bayesian probabilities. Results showed that the 

slope (β) coefficients were close to 1 and highly significant in the ball betting task (β = 1.15, 

t(388) = 24.60, p < 0.001) as well as in the bin betting task (β = 0.82, t(388) = 22.64, p < 

0.001). When probabilities based on the Bayesian and frequentist models were entered in the 

same regressions to explain bets, Bayesian probabilities remained significant in the ball and 

bin betting tasks (respectively β = 0.86, t(387) = 14.16, p < 0.001; β = 0.62, t(387) = 11.33, p < 

0.001). The effect of objective frequencies was smaller but still significant in both tasks (β = 

0.22, t(387) = 5.14, p < 0.001; β = 0.22, t(387) = 3.26, p = 0.001), indicating that participant 

beliefs were slightly biased by the factual stimulus frequencies away from full Bayesian 

posteriors (Fig. 3). Belief about the outcome was unaffected by its associated value ($0 or 

$1) in the two tasks (p = 0.92; p = 0.84). Thus values did not influence beliefs, a rational 

strategy because values were irrelevant to estimate outcome probabilities (Savage, 1954).

When data of the two tasks were concatenated and a factor defining the task was created 

(ball betting task, 0; bin betting task, 1), the effect of Bayesian probabilities was greater (β = 

0.86, t(799) = 14.05, p < 0.001) compared with frequencies (regardless of the task). 

Frequencies still had a significant effect on choices (β = 0.23, t(799) = 4.60, p < 0.001). The 

Bayesian probability–task interaction was significant (β = −0.23, t(799) = −2.92, p = 0.004), 

but the frequentist probability–task interaction was not (β = −0.01, t(799) = −0.16, p = 0.87). 

Overall, Bayesian probabilities better explained bets, suggesting that participants effectively 

took into account prior information when making predictions. Integrating prior information 

with observed evidence was more difficult in the bin betting task compared with the ball 

betting task.

Brain activation

Prior information epoch—At the beginning of a trial, the (prior) probability of receiving 

the $1 payoff was equal to the value of the point situated midway between the two triangles. 

The expected net payoff (payoff minus expected price) was a quadratic function of this 

probability (Eq. 11), provided that participants would place the optimal bet at the end of the 

trial.

Results showed significant activation in the occipital cortex related to the left–right position 

of the triangles on the screen. This indicates that participants were paying attention to the 

information provided at the beginning of the trial (Fig. 4a). When the triangles moved to the 

left side of the screen, more activation was observed in the left occipital cortex. This can be 

explained because the bin(s) in the center of the screen created more luminescence in the 

right visual field when participants looked to the left. Consistent with documented 

involvement of striatal regions in signaling expected rewards (O’Doherty et al., 2004), the 

expected net payoff was correlated with BOLD signal in left caudate (Fig. 5a).

Sampling epoch—Brain activity during sampling from the unknown bin was regressed 

on the probability of the stimulus displayed in the center of the screen (the color of the ball 
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drawn). Results of the first voxel-based analysis (GLM1) showed a parametric and positive 

effect of objective frequencies in bilateral angular gyrus, posterior cingulate cortex (reaching 

the retrosplenial cortex), and dorsomedial prefrontal cortex (Fig. 6a). These regions belong 

to the default mode network (Buckner and Andrews-Hanna, 2008). Additional activation 

was observed in the left middle frontal gyrus. The positive effect means that activity in these 

regions increased significantly with the frequency of a stimulus (color). Bayesian 

probabilities had also a positive effect in a subset of these regions (GLM2, Fig. 6b). 

However, when the two types of probabilities were entered in the same regression, ROI 

analyses showed that all these regions tracked objective frequencies only (yellow bars), 

unaffected by prior information (Fig. 6c, red bars). The negative and significant effect of 

Bayesian probabilities in the right angular gyrus (red bar) was due to a suppressor effect. 

When entered alone, Bayesian probabilities were not significantly related to BOLD signal in 

this ROI (p = 0.60). Also, no voxels were activated in response to Bayesian probabilities in 

right angular gyrus (Figure 6b, bottom). BOLD activity decreased when a stimulus was 

presented (green bars) and increased with the number of drawings (violet bars) displayed 

since the beginning of the trial.

Result of the second voxel-based analysis (GLM2) revealed a parametric and negative effect 

of Bayesian posterior probabilities in right supramarginal gyrus, supplementary motor area, 

and bilateral inferior frontal gyrus (Fig. 7a). Activity in inferior frontal gyrus reached the 

pars opercularis and the precentral gyrus (it is thus a posterior activation). The negative 

effect means that BOLD signal significantly increased for stimuli believed to be improbable 

based on an optimal combination of prior information and factual evidence. Frequencies had 

a negative effect in a subset of the same regions (GLM1; Fig. 7b). When the two types of 

probabilities were entered in the regressions, ROI analyses showed that BOLD response in 

left and right inferior frontal gyrus was uniquely related to the Bayesian probability of 

stimuli (red bars), and not to their objective frequency of occurrence (Fig. 7c, yellow bars). 

This was not the case in the supramarginal gyrus and supplementary motor area, where 

Bayesian probabilities lost significant explanatory power after objective frequencies were 

entered in the same regression. BOLD response increased when a ball was displayed on the 

screen, suggesting an attentional response (Fig. 7c, green bars). Like for the ROI encoding 

frequencies, BOLD activity increased with the number of drawings (violet bars). A 3D 

rendering of the voxel encoding frequencies and Bayesian “improbabilities” is shown in 

Figure 8a.

We tested for neural stepwise encoding of Bayesian beliefs by correlating BOLD signal with 

the difference between the prior and the posterior after the observation of a stimulus (color) 

(GLM3). Significant correlation failed to emerge (figures for null results are not reported). 

The logarithm of the ratio of posterior over prior (Baldi and Itti, 2010) likewise failed to 

produce significant results (GLM4). As such, activation correlating with Bayesian 

improbability did not mask encoding of stepwise Bayesian updates.

To further test the functional specialization of the brain, the interaction between the ROI 

location and the effect of probability was tested with a single mixed linear regression after 

concatenating data of selected ROIs in R (Henson, 2005). A location factor was defined and 

set to 0 for ROI encoding frequencies (bilateral angular gyrus, posterior cingulate, left 
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middle frontal gyrus, and medial prefrontal cortex) and to 1 for ROI encoding Bayesian 

probabilities (bilateral inferior frontal gyrus). The regression also included the number of 

drawings since the beginning of the trial and the interaction between that number and the 

ROI location. If the effect size of frequentist and Bayesian probabilities happened to be the 

same in these two subsets of ROIs, the interaction with the location might be significant 

because the effects of frequencies are opposite those of Bayesian probabilities (positive 

effect for frequencies, negative for Bayesian probabilities). To rule out this possibility, the 

Bayesian regressor was transformed into the complementary probability (1 – p). After this 

transformation, a significant interaction effect will indicate that the effect magnitude 

(regardless of its sign) is larger in one subset of ROIs compared with the other. Results 

showed that BOLD response to the stimulus presentation was stronger in the Bayesian ROIs, 

suggesting that these regions belong to an attentional network (β = 2.01, t(25,659) = 10.29, p 

< 0.001). Results also confirmed that BOLD response in the frequency ROIs increased with 

the number of drawings (β = 0.38, t(25,659) = 3.78, p < 0.001) and the effect was stronger in 

the Bayesian ROIs (β = 0.34, t(25,659) = 5.02, p < 0.001). This suggests a general increase of 

brain activity with information load, particularly in attentional regions. While the effect of 

frequencies in the frequentist ROIs was significant (β = 0.58, t(25,659) = 6.42, p < 0.001), the 

effect of Bayesian probabilities was not (β = −0.10, t(25,659) = −1.70, p = 0.09). The same 

regression was estimated after setting the location factor to 0 for the Bayesian ROIs and 1 to 

the frequentist ROIs. Results showed that, in the Bayesian ROIs, the effect of Bayesian 

probabilities was significant (β = 0.32, t(25,659) = 4.58, p < 0.001) but the effect of 

frequencies was not (β = 0.02, t(25,659) = 0.21, p = 0.84). Crucially, the frequentist 

probability–ROI location interaction and Bayesian probability–ROI location interaction 

were both significant and the sign of each interaction showed that the effect of frequencies 

was stronger in the frequentist ROIs (β = 0.57, t(25,659) = 3.64, p < 0.001) and the effect of 

Bayesian probabilities was stronger in the Bayesian ROIs (β = −0.42, t(25,659) = −4.10, p < 

0.001).

Additional GLM analyses of BOLD signal proved that the effect of stimulus probabilities 

did not interact with task condition (ball betting vs bin betting, GLM5). Contrary to the 

imaging results for the prior information epoch, we found no significant neural effect of the 

expected net payoff (calculated using Bayesian posteriors, GLM6). When stimulus value ($0 

or $1) was substituted in the GLM for expected net payoff, significant correlation failed to 

emerge (GLM7). Thus, during sampling, the brain tracked stimulus probabilities instead of 

stimulus values or net expected payoff.

To ascertain to what extent objective frequencies and Bayesian probabilities were processed 

in a common or distinct brain network, we resorted to connectivity analysis. The left and 

right angular gyrus ROIs (encoding objective frequencies) were taken as seed regions in a 

first analysis (Fig. 8a). The left and right inferior frontal ROIs (encoding Bayesian 

“improbabilities”) were defined as seed regions in a second analysis (Fig. 8a). A paired t test 

was computed in SPM to highlight voxels connected more strongly with angular than with 

inferior frontal gyrus ROIs (or vice versa).

Results showed that voxels in posterior cingulate cortex, middle temporal cortex, and medial 

prefrontal cortex correlated more with activity in angular gyrus during the sampling (Fig. 
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8b,c). These regions overlap with the default mode network, which is formed by the 

following structures: medial temporal lobes (including the hippocampus), lateral temporal 

lobes, inferior parietal cortex, posterior cingulate cortex, and medial prefrontal cortex (both 

dorsal and ventral regions; Buckner and Andrews-Hanna, 2008).

Voxels in parietal cortex (but not in angular gyrus), precentral gyrus, and middle frontal 

gyrus correlated more with activity in inferior frontal gyrus (Fig. 8b,c). This was also true 

for voxels in middle cingulate cortex and insula. There is a large overlap between this 

network and the attentional network (Corbetta et al., 2005). Thus regions encoding the 

frequency and Bayesian probability of stimuli were part of functionally distinct neural 

networks.

Betting, auction, and final outcome epoch—As in the prior information epoch, we 

found visual activity related to the left–right position of the triangles when participants 

placed their bets (Fig. 4b). Motor activity related to the hand used to place the bet was also 

observed (Fig. 4c). After the auction, activation of bilateral striatum was correlated with the 

computer-drawn price that determined whether the participant won the auction and, hence, 

could play the gamble against payment of the drawn price. BOLD response increased with 

decreasing computer-drawn prices (Fig. 5b). After the gamble outcome was displayed (color 

of the final ball drawn in the ball betting task or revelation of the true bin from which the 

drawing happened in the bin betting task), activity in striatum increased with payoff net of 

price paid (Fig. 5c).

Result summary

In two probability learning tasks, analysis of fMRI BOLD signal revealed that objective 

frequencies were encoded in angular gyrus, posterior cingulate cortex, and dorsomedial 

prefrontal cortex. As to beliefs that combined recorded frequencies with prior information, 

activation in bilateral inferior frontal gyrus correlated negatively with Bayesian posterior 

probabilities. No activation correlating merely with Bayesian updates was detected. 

Connectivity analysis showed that regions encoding objective frequencies belonged to a 

larger network known as the default mode network. Regions encoding Bayesian 

probabilities belonged to a separate network, which one could identify as the attentional 

network. At the beginning of trials, expected reward inferred from prior knowledge was 

correlated to BOLD response in striatum. The same region was related to price and net 

payoff at the end of trials.

Discussion

The main contribution of this study is to uncover a dual system for inference: an experience-

based system and a knowledge-based system. The first system only tracked the objective 

likelihood of the evidence/stimuli. The second system took into account prior knowledge to 

form posterior beliefs. The existence of a dual neural system was further supported by 

participants’ choices: bets were mainly Bayesian, but biased significantly toward reflecting 

objective frequencies. Importantly, these two systems of inference operated independently 

of value, which was encoded in striatum.
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Several arguments can be advanced for the role of memory to explain the positive 

correlation between frequency and BOLD response in angular gyrus, posterior cingulate, 

and medial prefrontal cortex (MPFC). The angular gyrus supports the retrieval of episodic 

and semantic information from memory (Binder and Desai, 2011). It is more activated for 

“hits” during the test phase of memory tasks (old/new effect, Kim, 2013). According to the 

mnemonic accumulator model, activation in the angular gyrus quantifies the match between 

a probe and representations stored elsewhere in the brain (Guerin and Miller, 2011; Levy, 

2012). Several models based on the retrieval and summation of traces stored in memory 

have been developed to explain how people judge probabilities (Hintzman and Block, 1971; 

Dougherty et al., 1999). These “exemplar models” can account for the availability effect by 

which people overestimate the probability of events that easily come to their mind (Tversky 

and Kahneman, 1974). We propose that the angular gyrus contributes to the estimation of 

probabilities by activating traces of past events in memory.

The inferior parietal lobule and its mnemonic function has been found to compete with 

attentional processes located in the superior parietal lobule (Guerin et al., 2012). Likewise, 

our connectivity analysis highlighted a distinction between angular gyrus embedded in the 

default mode network (DMN) and more dorsal regions embedded in an attentional network 

(see Fig. 8c). The DMN also exists in monkeys (Mantini et al., 2011, 2013) and a recent 

study has shown that neurons in inferior parietal cortex were activated by the recognition of 

old items (Miyamoto et al., 2013). On the other hand, neurons in the lateral intraparietal area 

have been found to encode the amount of evidence in perceptual decision-making tasks 

(Shadlen and Newsome, 2001; Huk and Shadlen, 2005; Tosoni et al., 2008). We thus 

formulate the hypothesis that parietal neurons belonging to the DMN are specialized in 

accumulating evidence retrieved from memory, whereas neurons located in dorsal regions 

accumulate sensory evidence.

Lesions in posterior cingulate cortex leads to memory impairments (Bowers et al., 1988; 

Aggleton, 2010). Imaging studies indicate that this region is activated during the encoding of 

spatial/contextual information (Epstein, 2008; Szpunar et al., 2009). The posterior cingulate 

cortex has been shown to be responsible for the formation of stimulus–stimulus associations 

in rats (Robinson et al., 2011). A possible explanation of our results is that activity in 

posterior cingulate cortex measures the associative strength between a stimulus (ball 

displayed in the center of the screen) and its context (entire screen).

The MPFC was the third region found to encode frequencies. It has been related to 

prospective thinking (D’Argembeau et al., 2008), theory of mind (Coricelli and Nagel, 

2009), and autobiographical memory (Cabeza et al., 2004). In nonautobiographical memory 

tasks, it is more activated for items that spontaneously evoke associations (Peters et al., 

2009) and during the formation of indirect associations (Zeithamova et al., 2012). It also 

participates to the consolidation of memories (Takashima et al., 2007). The importance of 

the MPFC for memory is supported by studies in rodents (Takehara-Nishiuchi and 

McNaughton, 2008; Peters et al., 2013). Authors have observed that dopaminergic efflux in 

the rat MPFC peaked during the study and test phases of a memory task. The level of 

dopamine did not increase when the animal reached a reward (Phillips et al., 2004), contrary 

to what is observed in striatum and orbitofrontal cortex (Schultz et al., 2000). A meta-

d’Acremont et al. Page 16

J Neurosci. Author manuscript; available in PMC 2015 January 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



analysis in humans has revealed that the ventral MPFC, with its connections to the limbic 

system, was preferentially related to the encoding of value and emotion. More dorsal 

regions, with their connections to the DMN, were preferentially related to memory (Roy et 

al., 2012). We found that frequencies were encoded in the dorsal MPFC, possibly because 

events were neutral and impersonal (colored balls). Overall, the encoding of frequencies in 

MPFC fits well with the importance of this region in both memory and decision making (for 

review, see Euston et al., 2012). We suggest that an important function of the MPFC is to 

support social inference and prospective thinking by encoding the probability of future 

events.

Previous studies have shown that the hippocampus was activated in an associative version of 

the weather prediction task when compared with a procedural version (Poldrack et al., 

2001). One might wonder why this structure did not correlate positively with frequencies in 

our parametric design. Complementary learning theory suggests that the hippocampus is 

specialized in encoding events as separate episodes, whereas neocortical regions are 

responsible for memorizing general features (McClelland et al., 1995; Xu and Sudhof, 

2013). For example, estimating the probability of finding a parking spot in a given street 

requires a driver to extract information from multiple episodes and hence to rely on 

neocortical regions, as observed in the present study. In addition, the hippocampus reacts to 

novel events (Li et al., 2003; Lisman and Grace, 2005) and its activity decreases with 

stimulus repetition (Suzuki et al., 2011; d’Acremont et al., 2013). Thus, the hippocampus is 

not in a good position to positively encode frequencies that increase with the repetition of 

events. The hippocampus might be necessary but not sufficient to estimate probabilities.

The middle temporal cortex is the fifth and last node of the DMN. We found that it was 

functionally connected to the angular gyrus, but it did not encode frequencies. Lesion and 

imaging studies have shown that this region was implicated in semantic memory (Binder et 

al., 2009; Groussard et al., 2010). The estimation of frequencies was based on the repetitive 

observation of stimuli in the two tasks. They are thus likely to recruit episodic rather than 

semantic memory and this might explain why the lateral temporal cortex did not encode 

probabilities.

As to the knowledge-based system, we discovered a negative correlation between BOLD 

signal in inferior frontal gyrus and Bayesian probabilities. As such, “improbability,” or 

surprise relative to subjective beliefs, was being encoded. Several studies have reported a 

BOLD response in inferior frontal gyrus when participants observed rare events (Linden et 

al., 1999), inhibited motor responses to rare targets (go/no-go and stop signal) (Hampshire et 

al., 2010), observed statistical outliers (risk prediction error; d’Acremont et al., 2009), 

received information that violates their expectation (Sharot et al., 2011), or noticed 

infrequent changes (task switching; Konishi et al., 1998). Our study suggests that these 

results could have a common explanation: the encoding of event improbability. For the first 

time, our finding qualifies the encoding as subjective, in the sense that it reflects surprise 

based on a combination of prior knowledge with evidence. Locus coeruleus activity varies 

with attention (Aston-Jones and Bloom, 1981) and increases in response to low-probability 

targets in monkeys (Aston-Jones and Rajkowski, 1994). Its noradrenergic projections might 

thus be partly responsible for the Bayesian surprise observed in inferior frontal gyrus.
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For a Bayesian, once new evidence is incorporated to form a posterior, it can be discarded, 

because the posterior is all she needs to move ahead. Against this background, it may be 

surprising that the brain chooses to compute both objective frequencies and subjective 

beliefs. However frequentist inference is adaptive because it protects the decision maker 

from arbitrary priors (Efron, 2005). In addition, keeping track of objective evidence offers 

more flexibility to a Bayesian in case an initial prior needs to be revised (Epstein and 

Schneider, 2007). Finally, Bayesian solutions are often intractable and frequentist sampling 

is needed to approximate the posterior probability distribution. To take into account human 

cognition limitations, authors have developed Bayesian models based on the repeated 

sampling of traces in memory (Shi et al., 2010). Our results showed that frequentist and 

Bayesian probabilities were encoded in parallel. However, we have not demonstrated that 

the Bayesian signal in inferior frontal gyrus depended on the activity observed in nodes of 

the DMN, a result that would favor “exemplar models” of Bayesian inference. This 

hypothesis would be supported if one observed that activities in the experience-based and 

knowledge-based systems suffered from the same biases (e.g., availability effect) or that 

frequencies were encoded before Bayesian probabilities (using the time resolution of EEG). 

These questions need to be addressed in future research.
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Figure 1. 
Illustration where a person intends to predict whether it will snow on Thursday. On Sunday 

night, the person watches a weather forecast, leading to the formation of a prior belief. 

During the next 3 d, the person observes factual weather information. On Monday and 

Tuesday it snows, but Wednesday is sunny. To make a prediction on Wednesday night, it is 

adaptive to take into account both the subjective prior information gathered from TV and the 

factual observations. It is unknown how the neural representation of this forecast integrates 

the prior knowledge with the actual frequency of experienced outcomes. Bayesian 

probabilities combine prior knowledge and empirical observations in an optimal way, 

whereas frequencies only depend on empirical observations.
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Figure 2. 
a, b, One trial of the ball betting task (a) and bin betting task (b). Prior information: the two 

gray triangles gave incomplete prior information on the probability of the rewarded ball (ball 

betting task) or the rewarded bin (bin betting task). Sampling: between one and nine balls 

were drawn with replacement and shown in the center of the screen. Betting: participants 

placed a bet by moving a vertical gray line on the scale. Auction: the computer selected a 

price at random and displayed it by moving a vertical violet line; the outcome of the auction 

was revealed simultaneously. Final outcome: an additional ball was drawn in the ball betting 

task and the bin was revealed in the bin betting task. Feedback: payoff and net payoff were 

displayed.
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Figure 3. 
Participant beliefs as a function of outcome probabilities. The following beliefs were 

inferred from bets: the belief that a red ball would be drawn (ball betting task) or that the 

right bin was used to draw balls (bin betting task). Outcome probabilities were calculated 

based on only the observed balls (frequentist) or computed by optimally integrating prior 

information with observed frequencies (Bayesian). A linear model was fit to beliefs with the 

two types of probabilities entered simultaneously as explanatory variables, as well as a 

dummy variable for condition (whether the red ball/right bin was associated with the $1 

payoff). Heights of the bars represent t values (relative effect size). Dotted line indicates 

significance at p = 0.05.
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Figure 4. 
Visual and motor activation. a, BOLD response occipital cortex during the prior information 

period as a function of the left-to-right position of the triangles (ipsilateral activation). b, 

BOLD response in occipital cortex during the betting period as a function of the left-to-right 

position of the triangles (ipsilateral activation). c, BOLD response in primary motor cortex 

during the betting period as a function of the use of the left or right hand to place the bet 

(controlateral activation).
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Figure 5. 
Brain activation in striatum as a function of value. a, Activation during the prior information 

period in left caudate as a function of the expected net payoff based on the displayed 

information. b, BOLD response in bilateral caudate increased as the computer-generated 

price decreased in the auction epoch. c, Activation in bilateral striatum as a function of the 

net payoff during the feedback epoch.
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Figure 6. 
Positive effects of probabilities in the sampling period (BOLD response to likelihood of 

stimuli). a, Effect of factual frequencies in bilateral angular gyrus, posterior cingulate 

cortex, middle frontal gyrus, and medial prefrontal cortex (GLM1). b, Effect of Bayesian 

posterior probabilities (red, GLM2) superimposed on the effect of factual frequencies 

(yellow, GLM1). c, Effect of frequencies and Bayesian probabilities when entered in the 

same regression to explain BOLD response in each of the ROIs.

d’Acremont et al. Page 27

J Neurosci. Author manuscript; available in PMC 2015 January 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 7. 
Negative effects of probabilities in the sampling period (BOLD response to surprise 

measured by 1 minus the likelihood of the observed stimulus). a, Effect of Bayesian 

posterior probabilities in bilateral inferior frontal gyrus, right supramarginal gyrus, and 

medial supplementary motor area (GLM2). b, Effect of frequencies (yellow, GLM1) 

superimposed on the effect of Bayesian probabilities (red, GLM2). c, Effect of factual 

frequencies and Bayesian probabilities when entered simultaneously in the regression to 

explain BOLD response in each of the ROIs. Bayesian probabilities had a negative and 

significant effect in inferior frontal gyri. Factual frequencies had a negative and significant 

effect in supplementary motor area. The pattern was mixed in the supramarginal gyrus.
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Figure 8. 
Connectivity analysis in the sampling period. a, 3D rendering of the BOLD response to 

objective frequencies (green, GLM1) and Bayesian improbabilities (red, GLM2). b, In green 

are the voxels significantly related to activity in angular gyrus ROIs (1–2, encoding 

frequencies). The pattern of connectivity was characteristic of the default mode network 

with activation along the middle temporal gyrus. In red are the voxels significantly related to 

activity in inferior frontal gyrus ROIs (6 –7, encoding Bayesian improbabilities). Regions 

formed part of the attentional network. c, Cross-sectional view of the connectivity results 

(1–2, angular gyrus).
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