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Abstract

The growth of isogenic cells in the same environment shows a large degree of variability with 

consequences for resistance to antibiotics, chemotherapy, and environmental stress. In order to 

characterize transcriptional differences associated with this variability we have developed a 

method – FitFlow – that enables sorting of subpopulations by growth rate. Here we report an 

altered transcriptome in the slow growing subpopulation that partially resembles that of slow 

growing cells in a chemostat. The slow growing subpopulation shows a transcriptional stress 

response, up-regulates transposons, and expresses more chromosomal, viral and plasmid-borne 

transcripts. Moreover, slow cells have reduced RNA polymerase fidelity and exhibit a DNA 

damage response. Finally, addition of an antioxidant reduces the size of the slow subpopulation, 

suggesting that oxidative stress is causative for slow growth in subpopulations. Our results suggest 

that the slow growing subpopulation explores a larger genotypic - and so phenotypic - space.
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INTRODUCTION

Fitness, in single-cell organisms and cancer, is the number of viable offspring a cell is able 

to produce in a given amount of time, and is typically measured as a population average 

trait1. However, growth is highly variable (Supplementary Fig. 1)2 and any single cell will 

differ from the population average, resulting in subpopulations that, at least temporarily, 

maintain a lower growth rate. The presence of such a slow-growing subpopulation has been 

observed in microbes, metazoans, and tumor cells, and has been implicated in persistence, 

stress sensitivity, bacterial antibiotic resistance3-5 and chemo-resistance in cancer6-8. While 

changes in growth and its association with changes in gene expression patterns has been 

extensively studied at the population average level, much less is known about the 

transcriptional programs of the slow growing subpopulations.

At the population level, growth rate can be changed environmentally by changing growth 

condition9 or as a result of genetic perturbations10,11. These changes in growth rate are 

accompanied by intracellular changes in gene expression. Slow growth is generally 

associated with a transcriptionally stressed phenotype whereas fast growth is associated with 

upregulation of ribosomal genes9. Altered mean population-level growth rate has 

consequences on fitness. Fast-growing E. coli are more sensitive to stress and can utilize 

fewer nutrient sources than their slow-growing counterparts, and this stress sensitivity is 

correlated to expression of sigma factor RpoS12,13.

Gene expression shows a large degree of non-genetic within-population variability 

(noise)14,15 and as such one would expect this variability to be associated with downstream 

phenotypes, such as growth. Previous microscopy-based studies have shown that slow and 

fast growing subpopulations differ in the expression level of a few genes2,16 and that genetic 

perturbation can change the shape of the growth rate distribution16,17. However, the general 

gene expression programs of the slow growing subpopulation are not at all characterized. 

This is because existing microscopy-based methods can measure single cell growth and gene 

expression for at most three genes at a time, making characterization of large scale gene 

expression programs in slow and fast subpopulations a laborious process. In yeast only a 

single gene, TSL1, is known to correlate with growth rate within a population16. Here we 

present a novel method that enables an unbiased characterization of the transcriptomes of 

slow and fast subpopulations using FACS sorting and RNA sequencing.

Here we describe the development of FitFlow (Fitness Flow-cytometry), the first method 

able to completely characterize subpopulations that differ in their fitness (Fig. 1). We use 

FitFlow to characterize the transcriptome of slow and fast growing subpopulations of 

budding yeast, and validate the biological conclusions using time-lapse microscopy. We find 

that the slow growing subpopulation has a high level of transcriptional diversity: more 

annotated genes, novel genes and antisense transcripts are transcribed, and genes on the 2-

micron plasmid and two endogenous viruses are highly expressed. In addition, RNA 

polymerase in slow growing yeast and nematodes is more error prone, resulting in increased 

mRNA diversity at the nucleotide level. Furthermore, the slow growing subpopulation has 

higher expression of transposons and shows both a transcriptional and post-translational 
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DNA damage response, suggesting that these cells may have higher rates of transposition 

and DNA mutation. Addition of Vitamin C, an antioxidant, reduced the fraction of slow 

growing cells, suggesting that oxidative stress is causative for slow growth in a subset of the 

slow growing cells. Taken together, these results suggest that, because the growth rate 

within a population is highly nonuniform, the potential for epigenetic and genetic changes 

may be different among cells within a population, in a manner that depends on the growth 

rate of individual cells.

RESULTS

A method to sort yeast by single-cell fitness

In order to completely characterize the differences in intracellular state between fast and 

slow subpopulations in an unbiased manner we developed a novel method (Fitness-Flow-

Cytometry, FitFlow) for sorting cells based on quantitative differences in single-cell fitness 

(the number of progeny a single cell can produce in a given amount of time). In budding 

yeast, the daughter cell remains attached to the mother cell following cytokinesis with the 

daughter cell then expressing an enzyme, chitinase, that degrades this linkage44 (see 

materials and methods). A chitinase knockout (cts1Δ) results in cells that do not separate and 

thus form attached microcolonies of cells descended from a common ancestor (Fig. 1, 

Supplementary Fig. 2). cts1Δ microcolonies are easily separated by brief sonication 

(Supplementary Fig. 2), enabling us to grow cells in liquid media, break apart the 

microcolonies, and allow them to reform as cells grow and divide. The single cell fitness 

distribution can be determined by measuring the distribution of the number of cells per 

microcolony, using a Histone-GFP fusion protein (Hta2-GFP) (Fig. 1). This method gives 

results comparable to growth rates measured by time-lapse microscopy (Supplementary Fig. 

1, Supplementary Fig. 2). However, in contrast to microscopy, cells can be sorted by FACS, 

enabling large-scale characterization of cells that differ by quantitative differences in fitness. 

We sorted 50,000 microcolonies into each of three bins of single-cell fitness and performed 

RNA-seq on each sorted population. We found significant transcriptional differences in the 

slow and fast subpopulations that recapitulate what is known about these two populations in 

yeast 16 (Supplementary Fig. 3). In addition, the slow growing subpopulation expresses 

more genes involved in alternative carbon and nitrogen source metabolism, suggesting that 

these cells might be capable of growing on more heterogeneous environments, similar to 

slow growing E. coli12 (Supplementary Fig. 3). This slow growth is a heritable state 

(Supplementary Fig. 4), however, the slow growing subpopulation eventually recovers 

(Supplementary Fig. 5).

The slow growing subpopulation expresses more genes

The faster a population grows, the greater the proportion of the transcriptome is dedicated to 

ribosome production9. In rapidly growing cells, 50% of mRNA synthesis is dedicated to 

~10% of genes18. Consistent with these population-level results, we found that, in the fast 

subpopulation, the most highly expressed genes account for a large fraction of the total 

transcriptome. In contrast, in the slow subpopulation, the rest of the genome is more highly 

expressed (Fig. 2). This is not an artifact of detection bias due to fast cells having higher 

expression of highly expressed genes (Supplementary Fig. 6, Supplementary Fig. 7). In 
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addition to expressing more genes, slow growing cells also express more unique gene 

functions (Fig. 2a). An increase in transcription of highly expressed genes results in a far 

greater commitment of cellular resources than a similar fold-change in the transcription of 

genes with low expression. This suggests that the slow subpopulation shifts resources from 

high expression of only a few genes to the more moderate expression of a large number of 

genes. While deletion of most genes does not cause a growth defect in rich media, there 

exists some condition in which each gene is useful19. We find that these slow cells have 

higher expression of genes that, in fast growing cells, have little or no expression (Fig. 2). 

Furthermore, novel (unannotated) and antisense transcripts are expressed at a higher level in 

the slow growing subpopulation (Fig. 2b). These results show that the slow growing 

subpopulation expresses more genes and unique enzymatic and cellular functions, which 

may, in turn, allow them to explore a larger phenotypic space.

Correlation between subpopulation and other transcriptomes

In order to better understand the details of this transcriptional shift, we analyzed groups of 

genes that are differentially expressed between slow and fast subpopulations. Genes 

involved in transcription and cytoplasmic translation are more highly expressed in fast 

growing cells, however, the number of expressed transcription factors is actually higher in 

slow cells (Fig. 3a,b), suggesting that they diversify their transcriptional program by 

increasing the number of expressed transcription factors. In addition, genes involved in 

respiration (Fig. 3a) are more highly expressed in slow growing cells, as are genes involved 

in mitochondrial translation (Fig. 3c), suggesting that the slow growing subpopulation is 

respiring.

Genetic and environmentally determined growth differences show similar changes in 

transcriptional profiles9,11. We therefore wondered if transcriptome changes associated with 

subpopulation growth differences are similar to differences associated with average 

population growth rate alteration. For each gene, we computed the log ratio of expression 

between the fast and slow subpopulation growth bins. We then compared this log ratio 

(growth associated gene expression change) to the log ratio derived from growth rates 

altered via nutrient limitation in a chemostat9 (see Methods). Both mechanisms of changing 

growth have a common transcriptional profile: stress genes go up in slow growing cells, 

while ribosomal genes go up in fast growing cells (r=0.31, p<2e-65). Similar results are 

obtained when looking at gene expression as a function of growth rate determined by 

genetic perturbations11 (r=0.35, p<5e-121) (Supplementary Fig. 8). To visualize the extent 

to which subpopulation differences are similar to average population differences, we plot 

subpopulation growth-correlated gene expression changes (as measured by FitFlow) against 

average population growth-correlated expression changes (derived from data by Bauer et al.) 

(Fig. 3b-d). In particular, when looking just at the Environmental Stress Response (ESR) 

and ribosomal genes, the two transcriptional profiles show high similarity (r=0.68, p<2e-31). 

These results suggest that average population and subpopulation growth differences have 

some similarity at the transcriptional level, but that the slow growing subpopulation are not 

identical to environmentally slow growing cells.
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We also observed significant differences between subpopulation and population average 

growth (Supplementary Data 1). The observed degree of correlation is not entirely due to 

technical or biological noise; large groups of related genes are differentially regulated in the 

two datasets (Fig. 3c). While we note that any differences may be due to fundamental 

differences in the media and growth conditions between batch and chemostat experiments, it 

is still informative to analyze the differences. While most ribosomal genes are up-regulated 

in the fast growing subpopulation, the components of the mitochondrial ribosome are more 

highly expressed in slow cells than in fast cells (Fig. 3c). This is in contrast to population 

average growth, in which the majority of ribosomal genes, including the ones involved in 

mitochondrial translation, are up-regulated in fast growing cells (Fig. 3c). In addition, the 

fast subpopulation down-regulates amino acid biosynthesis genes, whereas in fast average 

population growth these same genes are relatively up-regulated (Fig. 3c). Using data from an 

experiment in which yeast growing on glucose were shifted to glycerol20, we find that 

amino acid biosynthesis genes are up-regulated when cells are shifted from glucose to 

glycerol, but not during continuous growth on glycerol (Supplementary Fig. 20), suggesting 

that the up-regulation of these genes may be a response to a rapid decrease in growth-rate or 

part of the switch to respiratory growth. Moreover, proteasomal genes are up-regulated in 

the fast subpopulation but down-regulated in fast average population growth (Fig. 3c). To 

test the differential sensitivity of the subpopulation to proteasome inhibition, we grew pdr5Δ 

cells in the proteasome inhibitor MG132. Faster growing cells are slightly more sensitive to 

proteasome inhibition (Supplementary Fig. 9); the growth rate of the fast majority is 

decreased but the size of the slow tail remains the same.

Slow growers have oxidative stress and DNA damage

Stress may promote genomic alterations21-24. Consistent with this, we found that 

transposons are highly expressed in the slow subpopulation (Fig. 3a), but not in the slow 

average population (Supplementary Fig. 10). In addition, out of the nine genes that are up-

regulated specifically in response to environmental DNA damage25, eight are up-regulated 

in the slow growing subpopulation (Fig. 3d). The exception, DIN7, is involved only in 

mitochondrial DNA damage repair26.

To determine if slow cells have increased nuclear DNA damage we measured Rad52-GFP 

foci27 using time-lapse microscopy. We found that cells in the slow growing subpopulation 

have Rad52 foci (Fig. 3e), and that cells with a Rad52 focus show a short-term decrease in 

growth rate (Supplementary Fig. 12). This suggests either that slow growth is causative of 

an increase in DNA damage, or that DNA damage sometimes, but not always, causes cells 

to grow slowly. Oxidative stress can cause DNA damage28. We therefore grew wild-type 

yeast in the presence of the water-soluble antioxidant L-ascorbic acid (vitamin C). We found 

that vitamin C decreases the fraction of slow growing microcolonies (Fig. 3f, Supplementary 

Fig. 13). These results suggest that, DNA damage and/or oxidative stress may be a cause of 

slow subpopulation growth.

Stresses alter the single-cell fitness distribution

The above results suggest that internal stresses, such as DNA damage or oxidative stress 

may result in heritable changes in growth rates. To determine if extracellular stresses can 

van Dijk et al. Page 5

Nat Commun. Author manuscript; available in PMC 2016 February 13.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



alter the growth rate distribution, we grew wild-type cells in different environmental stresses 

and measured the distribution using microscopy. We found that stresses can alter the growth 

rate distribution independent of their effect on the mean (Supplementary Fig. 14-16). For 

example, 7mM MnCl and 100mM LiAc result in the same mode growth rate, but MnCl 

results in a far wider distribution (Supplementary Fig. 14). Addition of H2O2 across a 200-

fold range resulted in a 20% decrease in growth rate but no change in the shape of the 

distribution (Supplementary Fig. 16). None of the conditions tested (save vitamin C) results 

in a decrease in the slow growing subpopulation, consistent with the transcriptomics data 

suggesting that these cells are already stressed.

Slow growing cells express more selfish DNA elements

Additional selfish genetic entities other than transposons can also be induced by stress29, 

and might contribute to further genic diversity. We found that genes on the 2-micron 

plasmid, a small (~6kb) selfish plasmid, and from narnaviruses, a form of selfish RNA are 

more highly expressed in the slow subpopulation (Fig. 4a). In addition to transposons, the 

slow growing subpopulation exhibits higher expression of plasmid-borne and viral genes. 

The same higher expression of selfish DNA elements was also observed in slow growing 

cells in a chemostat (Supplementary Fig. 11).

Slow growing cells have lower RNA polymerase fidelity

Errors during gene expression can directly cause phenotypic diversity and, at least in some 

cases, error-induced phenotypic change can be epigenetically heritable due to the 

reprogramming of transcriptional networks30. To determine if the slow subpopulation 

exhibits more transcriptional diversity at the nucleotide level, we calculated the frequency of 

RNA-seq mismatches to the reference genome. We find that the slow growing 

subpopulation has more RNA-seq mismatches with the reference genome, suggesting 

decreased RNA polymerase fidelity and, therefore, increased transcriptional diversity at the 

nucleotide level (Fig. 4b). While most mismatches are technical errors, the technical error 

rate is highly reproducible within an experiment (Supplementary Fig. 17), and can be treated 

as a constant.

To test if the observed increased mRNA error rate is a general property of slow growing and 

or stressed cells, we analyzed additional RNA-seq data sets in which slow and fast growing 

cells were compared: yeast growing with and without H2O2
31, and yeast growing in excess 

glucose (batch culture) versus glucose limitation (in a chemostat)32. In all cases, the slow 

culture has more sequence errors (Fig. 4b), suggesting that increased mRNA sequence 

variation is a property of slow growing cells.

To determine if this is a microbe-specific phenotype, we analyzed data from an experiment 

in which nematodes were grown in 0.5% oxygen (hypoxia stress)33. Stressed C. elegans also 

exhibit an increased RNA polymerase error rate in response to stress (Fig. 4c), suggesting 

that this may be part of a general stress response across all organisms. This change in error 

rate is constant across all levels of RNA-seq coverage and is not due to differential gene 

expression (Supplementary Fig. 17).
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The increased transcriptome error rate in slow growing and stressed cells could stem from 

either an increased RNA Pol II error rate, or an increase in genomic DNA mutations. We 

find that more highly conserved genes have a lower transcriptional error rate (Fig. 4d), 

suggesting that error rate is a regulated process. There are three reasons to favor RNA 

Polymerase as the source of these errors. First, the DNA polymerase error rate34 is ~5e−10, 

whilst the RNA Pol II error rate35,36 is ~10−5 and our measured change is ~3e−5. The 

increase in errors that we detect in slow growing cells is similar to the 30% increase in RNA 

polymerase error rate observed in an rbp9 strain35, but an increase of more than 100,000-

fold in the DNA polymerase error rate. Second, in the H2O2 stressed cells, the increased 

error rate is detected within 30 minutes, which is not consistent with DNA polymerase as a 

source of errors. Third, RBP9, which is involved in RNA Pol II fidelity in vivo35, is down-

regulated in the slow growing subpopulation more than the rest of the RNA Polymerase 

complex (Supplementary Fig. 17), suggesting imbalanced Pol II stoichiometry as a possible 

mechanism for reduced transcriptional fidelity.

DISCUSSION

In summary, by developing a method to physically sort slow growing subpopulations, we 

have presented here the first global and unbiased view of changes in cellular state associated 

with differences in growth rate within one isogenic population growing in the same 

environment. Transcriptome analysis suggests that cells from the slow growing 

subpopulation are respiring and exhibit the transcriptional hallmarks of a stress response: 

down-regulation of cytoplasmic ribosomes and up-regulation of the environmental stress 

response genes. Furthermore, the cells from the slow growing subpopulation express more 

transcripts from the 2-micron plasmid, transposons, endogenous virus-like RNAs, possibly 

as a means to increase diversity37; alternatively, the 2-micron plasmid and viruses may be 

trying to “jump ship” from the stressed cell, similar to stress-induced herpes outbreaks38,39. 

Cells in the slow growing subpopulation also express more of their genome, more novel and 

antisense transcripts, and there is more nucleotide diversity within each transcript, likely due 

to a decrease in transcription fidelity. Thus, the slow growing subpopulation shows 

increased transcriptional diversity throughout the genome and may increase genic diversity 

in order to deal with future, unforeseen stresses.

While isogenic cells in the same environment are known to grow and divide at different 

rates, the intrinsic and extrinsic factors that cause cells to become slow or fast growing are 

not well understood. At the population level, stress reduces growth rate, and the 

transcriptional response to stress is highly stochastic40. Our results show that the growth-rate 

response to stress is also highly heterogeneous. The relationship between stochastic 

differences in the transcriptional response to stress and growth rate within that stress remains 

to be elucidated.

Furthermore, cells are exposed to mild stresses growing in minimal media; cellular 

metabolism produces reactive oxygen species, and wild-type cells exhibit spontaneous 

Rad52 DNA damage foci41. We found that cells with Rad52-GFP foci gave rise to slow 

growing microcolonies and that addition of the antioxidant vitamin C reduced the fraction of 

slow growing cells. These results suggest that DNA damage or oxidative stress may cause 
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cells to switch into a slow growing state. The cellular growth rate response to some stresses 

is far noisier than for other stresses; growth in 2M sorbitol produces the same modal 

microcolony growth rate as growth in 1mM CoCl2, but the growth rate distribution in CoCl2 

is significantly wider. Thus, certain, but not all types of intrinsic or extrinsic stress may 

cause cells to switch into a slow growth state. If this slow growth state is stress resistant, as 

results in prokaryotes4 and yeast16 suggest that it is, then this may be a bet-hedging 

mechanism in which small amounts of stress lead to slow growth and subsequent stress 

resistance of a subset of the population, while the majority of the population continues to 

grow quickly at the cost of remaining stress sensitive.

Stress and slow growth may increase both transposition14,15 and the DNA mutation 

rate42,43, and the cell is capable of altering the fidelity of both DNA29 and RNA26 

polymerases. Because the growth rate within a population under stress is highly non-

uniform, the potential for heritable changes may be different among cells within a 

population, in a manner that depends on the growth rate of individual cells. Therefore a 

complete understanding of the way in which organisms evolve will require the continued 

development of novel methods for isolating and characterizing subpopulations that differ in 

dynamic phenotypes.

Materials and Methods

Yeast strains and media

All yeast strains are derived from BY4741 and were generated by homologous integration of 

PCR products. For all experiments, yeast were grown in synthetic complete media with 20% 

glucose (SCD).

Overview of the FitFlow Method

During budding, a chitin ring is formed in the cell wall at the bud neck between the mother 

and daughter. Following cytokinesis, bud neck contraction ends with the formation of a 

chitin septum that divides the mother and daughter. Both mother and daughter then build 

cell walls around this chitin septum. Finally, the chitin septum is degraded by chitinase, and 

the two cells separate44,45. In the absence of chitinase, the cell walls between the mother and 

daughter remain continuous. Because the cell wall consists crosslinked chitin, 

mannoproteins and glucans (polysaccharides), the mother and daughter remain attached to 

each other by covalent bonds. The cts1 deletion does not affect the HTA2-GFP fluorescence 

distribution, the ura3::TEFpr-mCherry distribution, or the growth rate (Supplementary Fig. 

18).

In order to collect a large subpopulation of cells with the same genotype and environment, 

but with different microcolony growth rates, an HTA2-GFP cts1Δ strain was grown 

overnight so that it reached an OD of 0.4 in the morning. Cells were then placed in a room 

temperature water bath and sonicated for 10 seconds at an amplitude of 10 using a Branson 

Digital Sonifier. 250,000 G1 cells were then isolated by sorting at room temperature on the 

Histone-GFP signal. Cells were then allowed to grow into microcolonies at 30°C for four 

hours (two population doublings). Approximately 2ml of cells from a single tube were then 
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placed on ice, into a pre-chilled BD FACSAria, and sorted for 30 minutes at 4°C by 

Histone-GFP content per microcolony. Cells were sorted into three bins: the lowest 10%, the 

median 10%, and the highest 10%. Cells were sorted into prechilled 1.5ml eppendorf tubes 

containing 250ul SCD each. At least 50,000 microcolonies were isolated in each bin. Cells 

were then transferred on ice to a centrifuge at 4C, spun at 14000 RPM (20817×g) for two 

minutes, the media removed, and the resulting cell pellet frozen at −80 for RNA extraction. 

All bins were treated identically throughout the process. Cellular RNA was extracted using 

the Epicenter MasterPure RNA Purification Kit, and Illumina sequencing libraries were 

prepared using the Truseq Stranded mRNA kit, and sequenced on a HiSeq2000 with at least 

20,000,000 50bp sequencing reads per bin.

RNA-seq expression levels and RNA polymerase fidelity

RNA-seq data from all experiments were processed as follows. FASTQ files (SRAs: 

SRR636634, SRR636633, SRR636635, SRR636636 SRR636637, SRR636638, SRR636639 

SRR636640, SRR636641, SRR636642, SRR636643, SRR636644, SRR636645, 

SRR636646, SRR636647, SRR636648, SRR636649 and SRR636650 for the stress 

experiments31, and SRR453566, SRR453567, SRR453568, SRR453569, SRR453570 and 

SRR453571 for the batch vs chemostat experiments32) were downloaded. FASTQ files from 

FITFLOW experiments were downloaded from the CRG genomics facility.

We performed two different types of expression analysis: de-novo transcriptome assembly 

to identify novel transcripts, and guided assembly to compute differential expression of 

annotated transcripts. For the latter, differential gene expression was performed using 

cufflinks46 (--max-bundle-frags 100000000 --frag-bias-correct --multi-read-correct) and 

cuffdiff (--multi-read-correct), using the R64 release of the yeast genome with viral and 2-

uM plasmid sequences added. The annotation file used was the R64 gff with viral and 2-uM 

plasmid sequences added.

To identify novel transcripts, cufflinks was used in unguided mode. The raw RNA 

sequencing data were mapped to the reference genome R64 with bowtie47 using the default 

parameters. The mapped reads were assembled into transcripts using cufflinks, not using the 

reference annotations as a guide, with parameters (-u -b --overlap-radius 30 --min-isoform-

fraction 0.01). The resulting unguided assembly was then compared to the reference 

annotations from SGD using cuffcompare, which determines how the assembled transcripts 

overlap the reference annotations. cuffcompare sorts the assembled transcripts into 12 class 

codes depending on the intersection of each transcript and the reference annotations; class 

codes ‘u’ and ‘x’ designate transcripts that do not overlap any annotated features, and 

transcripts found overlapping an annotated feature on the opposite strand, respectively.

We found that the absolute number and location of identified antisense and novel transcripts 

is not very reproducible across biological replicates. As an alternative method, we combined 

sequencing reads from all data, and performed a single unguided assembly using cufflinks. 

The unguided assembly was then used as a guide to run Cufflinks on each group 

individually. This pooling approach decreased the variation between assemblies due to 

Cufflinks splitting a transcript or joining adjacent transcripts in one group and not in 

another. The guided assemblies of each group were then compared to the reference 
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annotations with cuffcompare. This approach produced the same qualitative result: slow 

growing populations show higher expression of more novel and antisense transcripts.

To measure differential RNA polymerase error rates, reads were trimmed to remove the first 

five bases, which are of low quality. The qualitative difference (slow growers have more 

mismatches) is insensitive many different types of read trimming and filtering, as all 

experiments were sequenced in the same lane and similar error profiles. Reads were then 

aligned using bwa-aln48 to the R64 release of the S cerevisiae genome with default 

parameters. Relative mRNA error rates in C elegans were determined using SRAs 

SRR1560104 SRR1560105, SRR1560106 and SRR156010733. Reads were processed 

identically except that the alignment was performed with bwa-mem. For both yeast and 

worm data, samtools49 mpileup (-q 30 -d 100000 -C50) was used to identify positions at 

which RNA-seq reads differed from the reference genome. The resulting mpileup files were 

then processed using a custom perl script to count the number of mismatches relative to the 

total number of mapped bases.

Differential expression and GO term analysis

The differential expression of manually selected groups of genes (eg: the DNA damage 

response genes) were obtained directly from the FPKM outputs given by cuffdiff, as 

described above. GO term analysis was performed using GOrilla50 using the default p-value 

threshold of 10−3. For GO term analysis using GOrilla, genes were sorted by the 

log2(FPKM_fast / FPKM_slow) with the constant term 0.1 added to remove zeros.

Computing subpopulation growth-correlated gene expression

To quantify for each gene to what extent it is upregulated in either subpopulation slow or 

fast growing cells we computed the log2 ratio of fast versus slow bin FPKM (Fragments Per 

Kilobase of exon per Million mapped reads) obtained from RNAseq. Thus, our growth-

correlated expression metric is log2(FPKMfast) – log2(FPKMslow)

Computing mean population growth-correlated gene expression

To quantify how gene expression changes with growth across environmentally imposed 

conditions we downloaded the data from Brauer et al. 2008. This data comprises microarray 

measurements across 36 different continuous culture (chemostat) conditions. Their data is 

computed as the log2 ratio of the sample signal (spot intensity) over the signal in the 

reference channel (glucose-limited chemostat grown at a dilution rate of 0.25 h−1). Thus, we 

can write this as log2(Sratio,sample) = log2(Ssample) – log2(Sref) where Ssample and Sref are the 

microarray spot intensities of the sample and reference respectively. To compute, for each 

gene, one measure of growth related expression we computed, for each gene, the average 

value for fast growth conditions and for slow growth conditions. The former is composed of 

all conditions with a chemostst dilution time of 0.05 h−1. The latter is composed of all 

conditions with a chemostat dilution time of 0.3 h−1. We then take the log2 ratio of the fast 

over the slow values, thus:
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Where log2(Sratio,fast) and log2(Sratio,slow) are the average log2 ratios of the fast or slow 

samples over the reference signal, log2(Sfast) and log2(Sslow) are the average fast signal and 

slow signals.

Genetic variability as a function of growth rate

Variation at each position in the transcriptome was determined using samtools mpileup. The 

genetic variability of the transcriptome was measured by computing, at each position in the 

genome, the total number of RNA-seq reads, and the number of reads that differ from the 

reference genome. Positions in which more than half the reads differ from the reference 

genome were discarded, under the assumption that these represent genomic differences 

between the experimental strain and the reference strain. Because errors are rare compared 

to the coverage of the genome, the error rate at any one position cannot be measured. 

Therefore, the transcriptome-wide or transcript-wide error rate is the total number of 

mismatches at all positions, divided by the total number of reads at all positions. To 

calculate the per-expression level error rate, positions were grouped by the total number of 

reads, and binned into groups of at least 100,000 different genomic positions with identical 

coverage. Because the dominant source of differences between RNA-seq data and the 

reference is technical (eg: sequencing errors, PCR & reverse transcription errors), and the 

frequency of these errors differs between labs, for each set of data we calculate the average 

error rate across all experiments performed by that lab. We then compute the relative 

increase or decrease in error rate for within each experiment.

Microscopy

Microscopy was performed similar to that of Levy et al16. Prior to each experiment a 96-

well glass bottom plate (Brooks Life Science Systems, MGB096-1-2-LG-L) was coated with 

200ul of 200ug/ml concanavalin A (Sigma, typeV, Product # C2272) for 16 hours at 37°C. 

The plates were then washed with water and allowed to dry for at least 24 hours 4°C.

Prior to microscopy, cells were grown overnight in 150ul SCD to saturation, diluted 1:50, 

and grown overnight a second time. For experiments in which stress or drug was used, cells 

were grown for at least 24 hours in the condition in which they were measured using 

microscopy. On the day of the microscopy experiment, cells were diluted 1:50 into 150ul 

SCD (+ drug/stress). Cells were grown for four hours, shaking, at 30C, and then diluted to 

an initial OD600 of 0.0007, and 80ul of cells were added into 320ul of media in a glass 

bottomed microscopy plate, resulting in an initial OD600 of 0.00014. The plate was then 

sealed with PCR film, centrifuged, and imaged for at least 12 hours at 30°C using an 

ImageXpress Micro (Molecular Devices) with a 10x objective.

Microcolony segmentation of brightfield images was performed using custom perl scripts. 

Bright field images were analyzed in two steps. First, for each image the mean pixel 
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intensity and standard deviation (s.d.) were calculated, which allowed identification of the 

brightest and the darkest pixels of the image. Pixels with intensities greater than mean

+2.5×s.d. were considered as the brightest pixels of the image whereas the pixels with 

intensities lower than mean-2.5×sd were considered to be the darkest pixels. On top of that, 

Sobel edge detection was used to identify drastic change in pixel intensity in the image that 

happens at the yeast cell boundary. The pixels satisfying at least one of the above criteria 

were clustered and centroids for all clusters were calculated. In the second step, the 

centroids of clusters were computationally aligned across consecutive time points. Clusters 

showing at least doubling of area over the whole period of observation were considered as 

yeast microcolonies. If two clusters touched each other during our observation, they were 

only followed until the time point at which they touched. The resulting raw data consists of 

area measurements for each microcolony, and the time associated with each measurement.

Images in the fluorescent channel were processed to measure intensity of GFP signal. For 

each image, mean fluorescence intensity and the corresponding standard deviation (s.d.) 

were calculated. Only pixels with intensities greater than mean+2×s.d. were considered in 

our analysis. In the next step, the fluorescent pixels of interest were computationally 

superimposed with the bright field images for calculation of maximum GFP intensity in a 

microcolony, which was calculated as the maximum fluorescent pixel intensity within the 

microcolony area. The resulting raw data consists of the sum, average and maximum GFP 

pixel intensity in each microcolony at each time point.

To calculate microcolony growth rates independent of both lag and competition for 

resources as the cell density increases we use the maximum microcolony growth rate. 

Microcolony areas were natural-log transformed and area regressed against time. The 

growth rate for each microcolony is the maximum slope that spans at least three time points 

(180 minutes) with an R2 >= 0.95. Using this method, growth rates were obtained for 99.8% 

of microcolonies.

To calculate the fraction of slow growing microcolonies, a tangent line is fit to the point of 

maximal slope in the cumulate distribution of the microcolony growth rates. In a uniform 

distribution, this line will explain 100% of the data. In a normal distribution, this line will 

explain most of the data, and the unexplained data will be symmetric in the bottom left and 

top right of the cdf. The fraction of slow microcolonies is (unexplained slow - unexplained 

fast), or zero if this value is negative.

Future adaptation of FitFlow for metazoans and bacteria

FitFlow relies on creating microcolonies of cells in which all cells in the microcolony are 

descended from a single cell. This method could be applied in bacteria using the drug 

cephalexin or FtsZ mutants, both of which cause E coli to form chains51. It is more difficult 

to force mammalian cells to remain covalently bound after cytokinesis. However, this is not 

a requirement. A DNA-dye pulse-chase or histone-GFP photoconversion52 would permit 

cells to be sorted by the number of divisions. In our experience with yeast, the Histone-GFP 

has a far narrower distribution than Carboxyfluorescein succinimidyl ester (CFSE), which is 

often used to determine the number of divisions cells have undergone. While it seems like 

an easy experiment to stain cell lines with CFSE or a DNA dye, and, after several divisions, 
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sort and sequence, to the best of our knowledge, no one has done this experiment. This 

would enable FitFlow to be applied to mammalian cells.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. FitFlow: Sorting cells by single-cell fitness
(a) FitFlow method: Single, chitinase deficient, Hta2-GFP expressing cells are suspended 

after brief sonication and G1 selection. Growth for several generations in liquid media 

results in microcolonies of cells that have a distribution of cell number. Flow cytometry of 

Hta2-GFP measurement reveals the micro-colony size distribution. Subsequent sorting on 

Hta2-GFP abundance thus separates populations according to their single-cell growth rate. 

RNA-seq analysis of each bin of growth rate reveals gene expression patterns associated 

with variable stochastic growth. (b) Microscopy at different time points shows microcolony 

formation. (c) Flow cytometry of single cells (t=0 hours) and microcolonies (t=4 hours) 

shows the distribution cell number per microcolony. The HTA2-GFP fusion enables high 

resolution measurement of DNA content as shown by separate G1 and G2 peaks at t=0 

hours.
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Figure 2. More transcriptional diversity in slow growing subpopulations
(a) At low expression (< 5 FPKM (Fragments Per Kilobase of transcript per Million mapped 

reads)), slow and fast growing cells express similar numbers of transcripts, but at medium 

(5-30 FPKM), slow growing cells express both more genes and more unique gene functions 

(paired ttest p<1e-35 for transcripts & GO terms). (b) The slow growing subpopulation 

expresses more unannotated transcripts (paired ks-test p=5.36*10−10) and antisense 

transcripts (paired ks-test p=1.34*10−22) at >10FPKM. (c) Highly expressed genes (higher 

than one standard deviation, red) are up-regulated (paired ks-test p=1.1*10−63), while lowly 

expressed genes (lower than one standard deviation, blue) tend to be down-regulated with 

increasing subpopulation growth rate (paired ks-test p=4.6*10−35). Y-axis shows the average 

expression level in all measured populations. The X-axis shows expression change from 

slow to fast subpopulation growth, computed as the log2 ratio.
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Figure 3. Transcriptional profiles of mean and subpopulation growth
(a) Bar-plot showing mean and std expression of all genes in each functional group of genes 

up-regulated in the slow (blue) or fast (blue) growing subpopulations. (b-d) Growth-

correlated expression from slow and fast growing subpopulations (FitFlow, X-axis) are 

compared to expression differences from growth rate varied in nutrient limited chemostats 

(Y-axis). (b) Scatter-plot the correlation of gene expression between subpopulation growth 

and mean population growth. Ribosomal genes (red) and stress genes (blue) are, 

respectively, up- and down-regulated both in subpopulation (X-axis, paired ks-tests 

pred=3.36*10−67 pblue=4.02*10−21) and mean population (Y-axis, paired ks-tests 

pred=2.45*10−36 pblue=8.26*10−50) fast growth. (c) Scatter-plot highlighting genes for which 

subpopulation growth is anti-correlated with mean population growth. Amino acid 

biosynthesis (red) and mitochondrial translation (blue) are down-regulated in the fast 

subpopulation (paired ks-tests pred=1.03*10−12 pblue=3.31*10−04) but up-regulated in mean 

population fast growth (paired ks-tests pred=3.30*10−04 pblue=2.64*10−16), while the 

proteasome (green) is up-regulated in the fast subpopulation (paired ks-test p=2.25*10−06) 

but down-regulated in mean population fast growth (paired ks-test p=4.69*10−07). (d) DNA 

damage genes (black points) are up-regulated in the slow subpopulation (X-axis, paired ks-
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test p=4.73*10−07), but are not correlated with average population growth rate differences 

(Y-axis, paired ks-test p=0.83). DIN7 (red point) is involved in mitochondrial DNA damage 

repair, and is the only DNA damage related gene that is not up-regulated in the slow 

subpopulation. (e) Time-lapse microscopy shows that cells from the slow growing 

subpopulation have Rad52-GFP foci. Foci were measured as the maximum Rad52-GFP 

signal in the nucleus (Y-axis) and growth (X-axis) as the microcolony growth rate where 

slow and fast cells represent the slowest 25% and fastest 75% respectively (t-test, p=0.02). 

(f) Addition of the antioxidant vitamin C reduced the fraction of slow growing 

microcolonies (t-test, p=0.005).
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Figure 4. Slow growing cells exhibit more transcript errors
(a) For each genomic nucleic acid molecule (plasmid, chromosome, or RNA virus), the 

median expression fold-change, across all genes (X-axis), is graphed versus nucleic acid 

sequence length. Vertical solid and dashed lines show mean and standard deviation of the 16 

native yeast chromosomes. Mitochondria (magenta star), two viruses (blue circle and green 

square) and the 2-micron plasmid (red triangle) show significantly stronger up-regulation in 

slow cells compared to the 16 yeast chromosomes. (b) The number of RNA-seq errors was 

measured across the genome for three different experiments performed in three different 

labs. RNA-seq data from isogenic cells that differ only by their stochastic growth rate, the 

growth conditions, or have been grown in H2O2 for 30 minutes, were analyzed to measure 

the amount per-nucleotide transcriptome variability in each condition. In all cases, slow 

growing cells have more variability (t-test, p=0.013 for the H2O2 data, t-test p=0.004 for all 

the data combined. (c) In order to determine if this effect is yeast-specific, an identical 

genome-wide analysis was performed on RNA-seq data from C. elegans subjected to 0.5% 

O2 for 36 hours. These hypoxia stressed nematodes also contain more errors in their 

transcriptomes. (d) More highly conserved genes (% amino acid identity across yeast 

species53) have lower RNA-seq error rates (average error rate across all experiments) 
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suggesting a lower RNA Pol II error rate (t-test, p<1e−3). This is not a function of expression 

level; the correlation with amino acid conservation is seen when looking at only the top 25% 

of genes by expression level (inset, p<1e−6).
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