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Abstract

Compared to reward seeking, punishment avoidance learning is less clearly understood at both the 

computational and neurobiological levels. Here we demonstrate, using computational modeling 

and fMRI in humans, that learning option values in a relative - context-dependent - scale offers a 

simple computational solution for avoidance learning. The context (or state) value sets the 

reference point to which an outcome should be compared before updating the option value. 

Consequently, in contexts with an overall negative expected value, successful punishment 

avoidance acquires a positive value, thus reinforcing the response. As revealed by post-learning 

assessment of options values, contextual influences are enhanced when subjects are informed 

about the result of the forgone alternative (counterfactual information). This is mirrored at the 

neural level by a shift in negative outcome encoding from the anterior insula to the ventral 

striatum, suggesting that value contextualization also limits the need to mobilize an opponent 

punishment learning system.
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Introduction

In the past decades, significant advances have been made in the understanding of the 

computational and neural bases of reward-based learning and decision-making. On the other 

hand, computations and neural mechanisms mediating punishment-based learning and 

decision making remain more elusive1,2.

The first problem is computational. In fact, avoidance learning faces an apparent paradox: 

once a punishment is successfully avoided, the instrumental response is no longer 

reinforced. As a consequence, basic learning models predict better performance on reward 

learning (in which the extrinsic reinforcements are frequent, because they are sought) 

compared to punishment learning (in which the extrinsic reinforcements are infrequent, 

because they are avoided), despite the fact that human subjects have been shown to learn 

equally well in both domains3–6.

The second problem is neuroanatomical: a debate in cognitive neuroscience concerns 

whether the same brain areas (namely the ventral striatum and the ventromedial prefrontal 

cortex) represent positive as well as negative values or, alternatively, aversive value 

encoding and learning are organized in an opponent system (namely the insula and the 

dorsomedial prefrontal cortex)7–12.

We hypothesized that the two questions could be resolved in the framework of value 

context-dependence. Recently, context-dependence of option values has provided a formal 

framework to understand adaptive coding and range adaptation of value-responsive neurons 

and brain areas13–16. Concerning punishment learning, operationalizing the principle behind 

the two factor theory, we propose that successful avoidance, which is a neutral outcome in 

an absolute scale, acquires a positive value because it is computed relative to the value of its 

choice context, which is negative17–19. In other words, successful avoidance is “reframed” 

as a positive outcome20. On the other side, divergent functional magnetic resonance 

imagining (fMRI) findings could be reconciled assuming that, in absence or limited 

contextual information, punishments and rewards are implemented in opponent channels; 

subsequently, if contextual information is acquired or provided, outcome representations 

converge to the ventral fronto-striatal system. This is supported by the fact that ventral 

striatal and prefrontal responses to punishment avoidance were observed in situations in 

which the value of the context was made explicit by instruction or overtraining21–23.

To test these hypotheses, healthy subjects underwent fMRI scanning while performing an 

instrumental learning task, involving multiple two-armed bandits (choice contexts) and 

followed by a post learning assessment of option values. Two features of the task served our 

purposes: first, the task contrasted reward seeking with punishment avoidance learning; 

second, in specific choice contexts, we provided the information about the outcome of the 
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foregone alternative – counterfactual information – to enhance relative value encoding24–26. 

We reasoned that presenting subjects with both the outcomes of the chosen and the 

unchosen options would facilitate the learning of the average value of the choice context 

(i.e. the context value).

We found behavioral and neural evidence consistent with the idea that providing both the 

outcomes of the chosen and the unchosen options favored the learning of a context-specific 

reference point. Behavioral results indicated that subjects learn similarly well reward 

seeking and punishment avoiding: a result that was efficiently captured by a computational 

model that embodies the idea of relative value learning. The same model was able to 

account for context dependence-induced valuation biases, as revealed by the post-learning 

test, specifically for options learnt in the presence of counterfactual feedback. fMRI analyses 

served two purposes. First, we used neural data to provide further experimental support to 

the computational analyses. Crucially model-based and model-free fMRI analyses 

concordantly indicated that neural activity in the brain valuation system was better explained 

assuming relative, than absolute value learning. Second, fMRI permitted us to reconcile 

previous discordant findings advocating for anatomical overlap or dissociation between 

reward seeking and punishment avoidance neural systems. In fact, the observed increase in 

contextual discrimination in the complete feedback conditions was followed by a shift in the 

neural encoding of negative outcomes from the insula to the ventral striatum.

Results

Experimental design

Healthy subjects performed a probabilistic instrumental learning task with monetary gains 

and losses, adapted from those used in previous imaging, pharmacological and lesion 

studies3,6,27,28. The novel task presented a 2×2 factorial design with outcome valence 

(reward or punishment) and feedback information (partial or complete) as factors (Figure 1A 

and Figure 1B). In the learning task, options (materialized as abstract symbols) were always 

presented in fixed pairs. The fixed pairs of options represented stable choice contexts, with 

different overall expected value. In each context the two options were associated with 

different, but stationary, outcome probabilities, so that the subjects’ task was learning to 

choose the options associated either with highest reward probability or those associated with 

lowest punishment probability (correct options: G75 and L25 in the reward and the 

punishment context, respectively; incorrect options: G25 and L75 in the reward and the 

punishment context, respectively). Subjects performed four sessions of the task during fMRI 

scanning, each involving novel pairs of options. After the last session, subjects performed a 

post-learning test in which they were asked to indicate the option with the highest value, in 

choices involving all possible binary combinations – i.e. including pairs of options that had 

never been associated during the task (Figure 1C). As in previous studies, post-learning test 

choices were not followed by feedback, in order to not interfere with subjects’ final 

estimates of option values29,30.
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Instrumental performance

We found significant evidence of instrumental learning (i.e., participants sought rewards or 

avoided punishments) (Table 1). Indeed, average correct response rate was significantly 

higher than chance level (i.e. 0.5) in all contexts (T>7.0, P<0.001) (Figure 2A). A two-way 

ANOVA showed no effect of outcome valence (F=1.4, P>0.2), a significant effect of 

feedback information (F=30.7, P<0.001), and no significant interaction (F=0.7, P>0.7). 

Accordingly, post-hoc investigation showed performances in complete feedback contexts as 

significantly higher compared to the partial feedback contexts (reward and punishment 

contexts: T>3, P<0.01). Thus, as in previous studies, healthy subjects learnt similarly from 

reward and punishments3,29, and efficiently integrated counterfactual information in 

instrumental learning31–33. (See Supplementary Note 1 and Supplementary Fig. 1 for 

reaction times data analysis).

Post-learning choices

We found significant evidence of value retrieval during the post-learning test (Table 1)29,30. 

Indeed, a three-way ANOVA showed a significant effect of outcome valence (F=53.0, 

P<0.001) and a significant effect of option correctness (F=170.1, P<0.001), but no effect of 

feedback information (F=0.0, P>0.5) (Figure 2B). The only interaction that reached 

statistical significance was the correctness × feedback information (F=11.9, P<0.01). As for 

other interactions (double or triple), none reached statistical significance (all: F<2.0, P>0.1). 

A two-way ANOVA limited on the intermediate value options (i.e. the less rewarding option 

in the reward contexts and the less punishing option in the punishment contexts G25 and 

L25) with valence and feedback information as factors, crucially showed no significant 

effect of valence (F=1.6, P>0.2) nor of feedback information (F=0.2, P>0.2), but a 

significant interaction (F=9.4, P<0.01), thus reflecting an inversion in the evaluation of 

intermediate options, when moving from the partial to the complete feedback information 

contexts. More precisely, post-hoc tests revealed that the percentage of choices toward the 

correct option of the punishment/complete context (L25) was higher compared to that toward 

the incorrect option in the reward/complete context (G25) (T=3.2, P<0.01), despite their 

absolute expected value (EV; Probability(outcome) * Magnitude(outcome)) suggesting the 

opposite. (EV(L25) = −12.5¢; EV(G25) = +12.5¢). Post-hoc analysis also showed a 

significantly different choice rates for the correct options in the reward compared to the 

punishment context (G75 vs. L25 in both feedback information contexts: T>4.6, P<0.001), 

despite similar choice rates in the learning task (see also Supplementary Table 1). This 

indicated that post-learning choices could be explained neither by assuming that option 

values were encoded in an absolute manner, nor by assuming that they were merely 

reflecting past choice propensity (policy), but that they laid somehow halfway between these 

two extremes: a phenomenon that is parsimoniously explained by context-dependent option-

value learning.

Computational models

We fitted the behavioral data with model-free reinforcement-learning models (see 

Methods)34. The tested models included a standard Q-learning (thereafter referred to as 

ABSOLUTE), adapted to account for learning from counterfactual feedback, which has been 
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most frequently used with this kind of task and we therefore consider as the reference model 

(hypothesis zero)3,6,27,28,33. We also considered a modified version of the ABSOLUTE 

model, which, similarly to other theories assumes that choice context- (or state-) values are 

separately learnt and represented35,36. The crucial feature of this model (thereafter referred 

to as RELATIVE) is that the context value sets the reference point to which an outcome 

should be compared before updating the option value; option values are therefore no longer 

encoded in an absolute, but in a relative scale (Figure 3). The context value (V(s)) is defined 

as a “random-policy” state value, aimed at capturing the overall expected value of a given 

pair of options, independent from subjects’ choice propensity. Note that the RELATIVE 

model shares a crucial feature (i.e. relative option value encoding) with previous 

computational formulations, such as actor-critic and advantage learning models, that 

inspired its conception (see Supplementary Note 2 for additional model comparison 

including these preceding models and a discussion of their differences)37,38.

Bayesian model selection

For each model, we estimated the free parameters by likelihood maximization (to calculate 

the Akaike Information Criterion, AIC, and the Bayesian Information Criterion, BIC) and by 

Laplace approximation of the model evidence (to calculate the exceedance probability) 

(Tables 2 and 3). After post hoc analyses we found that the RELATIVE model better 

accounted for the data, both at fixed and random effect analysis (compared to the 

ABSOLUTE LL: T=4.1, P<0.001). This was also true when accounting (penalizing) for the 

different number of free parameters (AIC: T=3.4, P<0.001; BIC: T=2.1, P<0.05)39. We also 

calculated the exceedance probability (XP) of the model based on an approximate posterior 

probability of the model, and we consistently found that our model significantly 

outperformed the others (XP=1.0)40. Thus, context-dependent value encoding (RELATIVE) 

provided better account of learning test choices, even after correcting for its higher degrees 

of freedom (note that this conclusion was not affected by using different learning rates for 

the reward and the punishment contexts).

Relative value encoding explains instrumental performance

In order to characterize the effect of context-dependent over absolute value learning, we 

generated for each trial t the probability of choosing the best option according to the models, 

given the subjects’ history of choices and outcomes at trial t-1 (Figure 2A) and the 

individual best fitting free parameters. We submitted model-simulated choice probabilities 

to the same statistical analyses reported above for their model-free counterpart. The 

RELATIVE model’s choices showed no effect of outcome valence (F=0.7, P>0.7), a 

significant effect of feedback information (F=53.4, P<0.001), and no significant interaction 

(F=0.7, P>0.4): the same statistical pattern as the actual data. The ABSOLUTE model 

choices displayed a significant effect of outcome valence (F=7.0, P<0.05), a significant 

effect of feedback information (F=43.1, P<0.001), and a significant interaction (F=4.2, 

P<0.05): a different statistical pattern compared to the actual data (Figure 2C). A post-hoc 

test showed lower performances in punishment/partial compared to the reward/partial 

context (T=2.4, P<0.05) (Table 1). In fact, in the ABSOLUTE model, the model’s estimate 

of the decision value – defined as the difference between the correct and the incorrect option 

value – was significantly reduced in the punishment/partial compared to the reward/partial 

Palminteri et al. Page 5

Nat Commun. Author manuscript; available in PMC 2016 February 25.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



context (+15.9±1.2¢ vs +25.6±1.8¢; T=6.5, P<0.001) (Figure 4A). This naturally emerged 

from the reduced sampling of the G25 and L75 options respectively, induced by correct 

responding. This effect formally instantiates the computational problem inherent to 

punishment avoidance. This effect is not present in the RELATIVE model, in which, thanks 

to option value centering (i.e., RC,t− Vt(s) in δC; and RU,t− Vt(s) in δU), decision values 

were similar in the reward and punishment domains (final decision values: +17.3±1.4¢ vs 

+15.1±1.2¢; T=1.7, P>0.1) (Figure 4B). Thus, as predicted from the analysis of model-

derived option values, absolute value learning suffers from not being able to adequately fit 

symmetrical performances in the reward and punishment domains. The introduction of value 

contextualization proved sufficient to obviate this deficiency (Table 1 and Figure 2C).

Relative value encoding explains post-learning choices

In order to further probe the explanatory power of context-dependent (relative) over absolute 

value learning, we assessed and compared their ability to explain post-learning test choices 

(Figure 2B). First, we found that the cumulative log-likelihood of the post-learning test was 

significantly higher assuming choices based on final option values obtained by the 

RELATIVE, compared to those by the ABSOLUTE model (−172.1±11.5 vs −220.3±16.7; 

T=7.0, P<0.001) (predictive performances). Second, the post learning choices simulated 

with the ABSOLUTE option values, produced a different behavioral pattern than the actual 

choices, specifically failing to capture the value inversion between intermediate value 

options (G25 and L25) in the complete feedback contexts (generative performances). Indeed, 

a two-way ANOVA on the RELATIVE simulated choices limited to the intermediate value 

options, with valence and feedback information as factors, showed, no significant main 

effect of valence (F=2.5, P>0.1), in line with actual data. The same analysis applied to 

ABSOLUTE simulated choices produced a significant effect of valence (F=660.2, P<0.001), 

contrary to actual data (Figure 2D). Post-hoc tests showed that the RELATIVE model fitted 

significantly higher choice rate for the complete L25 option compared to the complete G25 as 

observed in the behavioral data (T=3.4, P<0.001), whereas the ABSOLUTE model 

generated a significant opposite effect (T=19.2, P<0.001) (Table 1). In fact, because of the 

additional (counterfactual) information provided to subjects, choice context values were 

better resolved in the complete compared to the partial feedback information contexts (final 

reward minus punishment context values: ΔVComplete = +33.6±2.3¢ vs ΔVPartial = 

+22.4±3.4¢; T=6.9, P<0.001) (Supplementary Fig. 3A and 4A). As a direct consequence, 

contextual influences on option values were more pronounced in the complete feedback 

contexts. Indeed, intermediate value options (G25 and L25) in the complete feedback 

contexts displayed a more pronounced deviation from absolute expected value encoding 

(Figure 4C and Figure 4D). More precisely G25 options acquired a negative value 

(−4.8±1.6¢; T=2.9, P<0.01), whereas L25 a positive one (+4.9±1.7¢; T=3.0, P<0.01). Thus, 

as predicted from the analysis of model-derived option values, absolute value learning and 

encoding suffers from not being able to adequately fit the value inversion between 

intermediate value options in the complete context. Again, the introduction of value 

contextualization proved sufficient to obviate this deficiency (Table 1 and Figure 2D).

Palminteri et al. Page 6

Nat Commun. Author manuscript; available in PMC 2016 February 25.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Neural Bayesian model selection

After showing at multiple behavioral levels that option value contextualization occurs, we 

turned to corroborate this claim using model-based fMRI41. To achieve this, we devised a 

general linear model (GLM1) in which we modeled as separated events the choice onset and 

the outcome onset, each modulated by different parametric modulators: chosen and 

unchosen option values (QC and QU) and prediction errors (δC and δU). In a first GLM 

(GLM1a) we regressed the computational variables derived from the ABSOLUTE model. In 

a second GLM (GLM1b) we used the estimates from the RELATIVE model. We used the 

GLM1a to generate second level contrasts and, replicating previous findings, we found brain 

areas significantly correlating with the decision value (QC - QU) both positively (vmPFC) 

and negatively (dmPFC,), and brain areas correlating with the decision prediction error (δC - 

δU) (vmPFC and ventral striatum: VS) (P<0.05, whole brain FWE corrected; Figure 5A and 

Table 4; see also Supplementary Fig. 5)3,27,42,43. In a second step, we estimated within this 

prefrontal and striatal areas the same GLMs using Bayesian statistics. We found that the 

context-dependent value encoding (GLM1b) provided a significantly better account of the 

network’s neural activity (1511 voxels; XP=0.97; Figure 5B)44. Importantly this result also 

held true for each ROI separately (vmPFC: 936 voxels, XP=0.87; dmPFC: 71 voxels, 

XP=0.97; VS: 505 voxels, XP=0.93; for the RELATIVE model. Thus, replicating previous 

imaging findings implicating the medial prefrontal cortex and the striatum in value learning 

and decision-making, we found that neural activity in these areas supports context-

dependent (GLM1b) as opposed to absolute (GLM1a) value signals. Note that the ROIs 

were selected in order to favor the hypothesis that we want to reject (GLM1a)45.

vmPFC activity is consistent with relative value encoding

Model-based Bayesian fMRI analyses corroborated the RELATIVE model. In order to 

further support relative value encoding from the neural perspective, we also devised a 

categorical GLM (GLM2), in which choice events were modeled separately for each context 

and learning phase (early: first eight trials; late: last eight trials). For this analysis we 

focused on the vmPFC: the region that has been more robustly implicated in value 

encoding11,12. To avoid double dipping, we used a literature-based independent vmPFC 

ROI. Based on the model predictions and the assumption that the vmPFC represents values 

signals, we expected higher activation in the punishment/complete late trials (once the 

correct option L25 of the punishment/complete context has acquired a positive value), 

compared to reward/complete early trials (when the option values are not yet very different 

from zero). On the other side, we expected no such a difference in the partial contexts. To 

test this hypothesis we submitted the choice-related regression coefficients to a three-way 

ANOVA with valence (reward and punishment), feedback information (partial and 

complete) and learning phase (early and late) as factors (Figure 6A). We found a significant 

main effect of phase (F=11.6, P<0.01), reflecting an overall learning-induced increase of 

vmPFC signal. We also found a significant main effect of valence (F=11.4, P<0.01), and a 

significant valence × information interaction (F=17.3, P<0.001), indicating that valence did 

not affect choice activations similarly in the partial and complete contexts, respectively. 

Consistent with this valence × information interaction, post hoc test indicated significant 

higher activations in the reward compared to the punishment late trials in the partial contexts 

(T=3.5, P<0.01), but no such difference in the complete contexts (T=0.7, P>0.4). Crucially 
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and consistent with our predictions, post hoc test also indicated significant higher activations 

in the punishment early trials compared to the reward late trials in the complete contexts 

(T=3.8, P<0.001), but no such difference in the partial contexts (T=0.2, P>0.8). This result 

closely resembles that of option value inversion in the post-learning test. In summary, in 

addition to model-based fMRI analyses, we found that the activation pattern of the vmPFC 

is still consistent with relative, rather than absolute value encoding, also when analyzed in a 

model-free manner,.

Outcome encoding is modulated by contextual discrimination

Previous fMRI and lesions studies, using similar behavioral tasks, suggest a role for the 

anterior insula (AI) in punishment learning, in contrast to that of the ventral striatum (VS) in 

the reward domain3,6,20,46–48. To challenge this hypothesis, we analyzed outcome encoding 

within an anatomic mask including the insular cortex and the basal ganglia (Supplementary 

Fig. 6E). In the GLM (GLM3) used for this analyses, outcome events were modeled 

separately for each context and factual feedback value (RC). GLM3 was also “model-free”, 

since the categories were not derived from a computational model, but from the observable 

outcomes. We computed for each context separately a best>worst outcome contrast. 

Consistent with the neural opponency hypothesis and replicating previous findings, we 

found voxels in the VS significantly activated by the +0.5€>0.0€ contrast in the reward/

partial context, thus encoding obtained rewards, and voxels in the AI significantly 

deactivated by the 0.0€>−0.5€ contrast in the punishment/partial context, thus encoding 

obtained punishments (P<0.05 FWE mask-level corrected) (Supplementary Fig. 6A and 6B 

and Table 4). This functional dissociation still held at more permissive threshold of P<0.001 

uncorrected, and after literature-based independent ROIs test8. In fact, in order to 

simultaneously and formally assess this functional dissociation as well as the effect of 

contextual information on outcome encoding, we submitted the outcome related contrasts to 

a three-way ANOVA with valence (reward and punishment) feedback information (partial 

and complete) and brain area (VS and AI) as factors (Figure 6B and 6C). Indeed, ANOVA 

indicated a significant main effect of brain system (VS vs AI; F=45.8, P>0.001), which 

confirms the fact that outcomes are encoded with opposite signs in the two neural systems. 

We also found a significant main effect of feedback information (F= 4.2, P<0.05) and a 

significant valence × information interaction (F=4.7, P<0.05), indicating that valence did not 

affect outcome signals similarly in the partial and complete contexts, respectively. Post-hoc 

testing revealed significant differences in outcome encoding between the reward/partial and 

the punishment/partial contexts in both the AI (T=2.9, P<0.01), and the VS (T=2.3, P<0.05). 

Such differences were not observed when comparing the reward/complete to the 

punishment/complete contexts (T<0.7, P>0.4). Interestingly, post hoc tests also revealed 

that, in the complete feedback contexts, VS significantly encoded avoidance (T=2.4, 

P<0.05) and, concomitantly, the AI stopped responding to punishments (compared to the 

partial/punishment context: T=2.8, P<0.01). Finally, the triple valence × information × brain 

area interaction was not significant, reflecting the fact that the signal increases similarly in 

both areas when moving from the partial to the complete feedback contexts (in the striatum, 

from zero, it becomes positive; in the insula, from negative, it becomes zero; F=1.9; 

P>0.1). ,In order to further check that the result was not dependent on the (independent) ROI 

selection, we explored outcome related activations at an extremely permissive threshold 
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(P<0.01 uncorrected), confirming no detectable implication of the AI in the punishment/

complete context (Supplementary Fig. 6C and 6D). Together these results show that when 

additional information is provided (i.e. complete feedback contexts), and therefore context 

value is better identified, punishment avoidance signals converge to the VS allowing the 

opponent system to “switch off”.

Discussion

Healthy subjects performed an instrumental conditioning task, involving learning to 

maximize rewards and minimize punishments. Orthogonally to outcome valence, complete 

feedback information (the outcome of the chosen and the unchosen option) was provided to 

the subjects, in order to promote relative value encoding. The data displayed convergent 

evidence of option value contextualization at two independent behavioral levels: 

instrumental choices, and post-learning choices. First, punishment avoidance performances 

were matched to reward seeking ones, a result that cannot be explained by absolute value 

encoding; second, post-learning evaluation of the instrumental options, especially for those 

of the complete feedback contexts, displayed significant biases that can be parsimoniously 

explained assuming relative value encoding.

All these behavioral effects were submitted to computational model-based analyses. More 

specifically our analyses compared models representing two opposite views of the signals 

that drive decision-making: context-independent absolute value signals (i.e. Q-learning) and 

context-dependent relative value signals (RELATIVE)25. We made a deliberate effort to 

keep these models as simple and parsimonious as possible. The RELATIVE model 

essentially tracks the mean of the distribution of values of the choice context (i.e. the 

reference point) and uses it to center option values. Notably, this model represents a minimal 

departure from a standard reinforcement learning algorithms that imply context or option 

values are updated with a delta rule, such as the Q-learning and actor-critic34. On the other 

side, the RELATIVE model can be seen as the most parsimonious algorithm implementation 

of a model that, departing from experienced raw values, learns to identify, for each situation 

(context) the “best” and the “worst” possible outcomes, based on an explicit representation 

of the underlying generative process (the task structure)49,50.

Punishment avoidance is computationally challenging. Simply stated: how can the 

instrumental response (avoid a punishment) be maintained despite the absence of further 

extrinsic reinforcement (punishment)? As already known and replicated here, absolute value 

learning methods are structurally not capable to cope with this problem37,38. In fact, the 

ABSOLUTE model predicted significant higher performances in the reward compared to the 

punishment context. Psychological models, such as the two-factor theory, suggested that a 

successful punishment avoidance could acquire a positive value and therefore act as intrinsic 

reinforcement to sustain learning17–20,22. The RELATIVE model embodies this idea by 

considering outcomes relative to the context in which they were delivered (RC−V). As a 

consequence of this feature, successful punishment avoidance (the neutral outcome 0.0€), 

acquired a positive value in the punishment avoidance context (where V is negative), 

providing a substrate for reinforcing the response. By doing so, it managed to equalize the 

performances between the reward and punishment context, as observed in human subjects.
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We probed relative value encoding with an additional, and independent, behavioral measure. 

As in previous studies, we asked subjects to retrieve the value of the options after 

learning29,30. In this last task, options were presented in all possible combinations and were 

therefore extrapolated from their original choice context. Post-learning choices showed clear 

signs of value encoding. In fact, G75 choice rate was higher compared to L25 choice rate, 

despite the fact that their instrumental choice rate was similar. However, more in-depth 

analyses indicated that the behavioral pattern was more consistent with relative, rather than 

absolute value encoding. Subjects indeed failed to correctly retrieve the value of 

intermediate value options, to the point of preferring a lower value option (L25) to a higher 

value option (G25) in the complete feedback information, where relative value encoding was 

enhanced. Importantly, only the RELATIVE model was able to precisely capture this choice 

pattern (out-of-sample validation). The across task stability of relative value further 

corroborated our assumptions regarding the model, namely that value contextualization 

occurs within the learning rule and not within the policy. This effect is reminiscent of choice 

irrationality induced by context-dependency (i.e. preference reversal or “less is more” effect) 

as if the adaptive function of value contextualization (in our case coping with punishment 

avoidance in the learning tasks) was traded against a bias of value estimates in the post-

learning test51,52. Thus, as far as we were able to infer option values from choice data, they 

showed signs of context-dependency.

Replicating previous results, we found neural correlates of option values and prediction 

errors in a well-established reinforcement learning and decision-making network, including 

cortical and subcortical brain regions3,27,42,43. Relative and absolute value regressors shared 

a significant part of their variance due to the fact that both depend on the same history of 

choices and outcomes, and that the two models are structurally similar (nested) and similarly 

affected by task factors. Given these premises, to overcome this issue and corroborate 

relative value encoding, we implemented, as in recent studies, a neural model comparison 

analysis53,54. Bayesian model comparison showed that, within this prefrontal-striatal 

network, the context-dependent value-learning model (RELATIVE) provided a better 

explanation for BOLD responses than the ABSOLUTE model, which was used to generate 

the ROIs. Everything else being constant (individual history of choices and outcomes), the 

difference in model evidence could only be attributed to the value contextualization process 

itself, and therefore corroborates behavioral model selection. This model-based fMRI result 

has been backed up by a model-free analysis showing that signal changes in vmPFC (the 

core of the brain valuation system), once decomposed as a function of learning phase and 

task factors, displayed a pattern fully compatible with relative value encoding. More 

precisely we found that late vmPFC signal in punishment/complete context, was higher 

compared to the early signal reward/partial context: an effect that closely resembles that of 

the post-leaning value inversion.

Our finding of a functional double dissociation between the striatum and the insula in 

positive and negative outcome encoding perfectly replicates our previous results, and adds to 

a now critical mass of studies suggesting the existence of an opponent insular system 

dedicated to punishment-based learning and decision making3,6,20,46–48,55. Indeed, we found 

that the AI represented received negative outcomes in the punishment/partial context, in 

opposition to the pattern of activity in the ventral striatum, which represented received 
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positive outcomes in the reward/partial condition. Strikingly, we found that in the 

punishment/complete context, negative outcome encoding in the AI faded, while the ventral 

striatum was concomitantly taking over. Globally, these results suggest that, by default, 

positive and negative values are represented in opposite directions by two opponent 

channels to ensure optimal outcome encoding in face of the impossibility of negative firing 

rates56–58. They also indicate that when relative valuation is facilitated (here in presence of 

complete feedback information), the ventral system is tuned to respond to ‘successful 

avoidance’ (intrinsic reinforcement) as it does for rewards20,22. This suggests that value 

contextualization can limit the need for simultaneously mobilizing multiple neural systems 

and therefore promotes neural parsimony. In our design, this effect was achieved in presence 

of the complete feedback information. Accordingly counterfactual outcome processing has 

been tightly associated to context-dependent (i.e. relative) decision-making models, such as 

the regret theory24–26. However it is nonetheless possible that in previous studies other task 

features, such as blocked design or explicit information about the outcome contingencies, 

could have concurred to reframe punishment avoidance tasks in order to induce the striatum 

to respond to successful avoidance36,59–62.

To summarize, our data suggest that as soon as an agent is engaged in a utility 

maximization-learning task, (s)he learns concomitantly the value of the available options 

and the value of the choice context in which they are encountered (the reference point). 

These quantities, option and context values, do not remain segregated but are rather 

integrated, so that the option value, originally encoded in an absolute scale, becomes relative 

to their choice context. Our study shows how value contextualization has the adaptive 

function of permitting efficient avoidance learning. Nevertheless, option value, being 

learned in a context-dependent manner, can produce suboptimal preferences (value 

inversion: irrational behavior) when the options are extrapolated from their original choice 

context (e.g. post-learning). In the brain, value updating, supposedly achieved via prediction 

errors, is originally implemented by two different systems for the reward (reward system: 

ventral striatum) and the punishment (opponent system: anterior insula) domains, 

respectively, to obviate the difficulty to efficiently encode a large range of negative values. 

As a result of value contextualization, the reward responds to successful avoidance (per se a 

neutral outcome) and concomitantly the activity in the opponent system is suppressed.

Methods

Subjects

We tested 28 subjects (16 females; age 25.6±5.4). Power calculation studies suggested that a 

statistically valid sample size for fMRI study should be comprised of between 16 and 24 

subjects63. We included N=28 subjects based on a pessimistic drop-out rate of 15%. We 

experienced no technical problems, so we were able to include all 28 subjects. Subjects were 

screened for the absence of any history of neurological and psychiatric disease or any 

current psychiatric medication, for right-handedness, and for normal or correct-to normal 

vision. The research was carried out following the principles and guidelines for experiments 

including human participants provided in the declaration of Helsinki (1964). The local 

Ethical Committee of the University of Trento approved the study and subjects provided 
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written informed consent prior to their inclusion. To sustain motivation throughout the 

experiment, subjects were remunerated according to the exact amount of money won in the 

experiment plus a fixed amount for their travel to the MRI center.

Behavioral tasks

Subjects performed a probabilistic instrumental learning task adapted from previous imaging 

and patient studies3,6,27,28. Subjects were first provided with written instructions, which 

were reformulated orally if necessary (see Supplementary Note 3). They were informed that 

the aim of the task was to maximize their payoff, that reward seeking and punishment 

avoidance were equally important and that only factual (and not counterfactual) outcomes 

counted. Prior to entering the scanner, subjects performed a shorter (training) session, aimed 

to familiarize them with the task’s timing and responses. In the scanner subjects performed 

four learning sessions. Options were abstract symbols taken from the Agathodaimon 

alphabet. Each session contained eight novel options divided into four novel fixed pairs of 

options. The pairs of options were fixed so that a given option was always presented with 

the same other option. Thus, within each session, pairs of options represented stable choice 

contexts. Within sessions, each pair of options was presented 24 times for a total of 96 trials. 

The four option pairs corresponded to the four contexts (reward/partial, reward/complete, 

punishment/partial and punishment/complete), which were associated with different pairs of 

outcomes (reward contexts: winning 0.5€ versus nothing; punishment contexts: losing 0.5€ 

versus nothing) and a different quantity of information being given at feedback (partial and 

complete). In the partial feedback contexts, only the outcome about the chosen option was 

provided, while in the complete feedback contexts both the outcome of the chosen and the 

unchosen option were provided. Within each pair, the two options were associated to the 

two possible outcomes with reciprocal probabilities (0.75/0.25 and 0.25/0.75). During each 

trial, one option was randomly presented on the left and one on the right side of a central 

fixation cross. Pairs of options were presented in a pseudo-randomized and unpredictable 

manner to the subject (intermixed design). The side on which a given option was presented 

was also pseudo-randomized, such that a given option was presented an equal number of 

times in the left and the right of the central cross. Subjects were required to select between 

the two options by pressing one of the corresponding two buttons with their left or right 

thumb to select the leftmost or the rightmost option, respectively, within a 3000ms time 

window. After the choice window, a red pointer appeared below the selected option for 

500ms. At the end of the trial the options disappeared and the selected one was replaced by 

the outcome (“+0.5€”, “0.0€” or “−0.5€”) for 3000ms. In the complete information contexts, 

the outcome corresponding to the unchosen option (counterfactual) was also displayed. Note 

that between cues the outcome probability was truly independent on a trial-by-trial basis, 

even if it was anti-correlated in average. Thus, in a complete feedback trial, subjects could 

observe the same outcome from both cues on 37.5% of trials and different outcomes from 

each cue on 62.5% of trials. A novel trial started after a fixation screen (1000ms, jittered 

between 500-1500ms). During the anatomical scan and after the four sessions subjects 

performed a post-learning assessment of option value. This task involved only the 8 options 

(2*4 pairs) of the last session, which were presented in all possible pair-wise combinations 

(28, not including pairs formed by the same option)29,30. Each pair of options was presented 

4 times, leading to a total of 112 trials. Instructions were provided orally after the end of the 
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last learning session. Subjects were informed that they would be presented pairs of options 

taken from the last session, and that all pairs had not necessarily been displayed together 

before. During each trial, they had to indicate the option with the highest value by pressing 

on the buttons as they had done during the learning task. Subjects were also advised that 

there was no money at stake, but encouraged to respond as they would have if that were the 

case. In order to prevent explicit memorizing strategies, subjects were not informed that they 

would have performed this task until the end of the fourth (last) session of the learning test. 

Timing of the post-test differed from the learning test in that the choice was self-paced and 

in the absence of the outcome phase.

Behavioral analyses

From the learning test, we extracted the choice rate as dependent variable. Statistical 

analyses were performed on the percentage of correct choices, i.e. choices directed toward 

the most advantageous stimulus (most rewarding or the less punishing), sorted as a function 

of the context (see Behavioral tasks). Statistical effects were assessed using two-way 

repeated-measures ANOVA with 1) feedback information and 2) feedback valence as 

factors. Between-context differences in correct responses were also tested post-hoc using a 

two-sided, one-sample t-test. Reaction times were also extracted from the learning test and 

submitted to the same factorial analyses used for the correct choice rate (see Supplementary 

Note 1 and Supplementary Fig. 1). Choice rate was also extracted from the post-learning test 

and sorted for each option separately, as the percentage of choice toward a given stimulus 

taking into account all possible comparisons. Post-learning choice rate was submitted to 

three-way repeated-measures ANOVA, to assess the effects of 1) feedback information, 2) 

feedback valence and 3) option correctness. We also performed a two-way repeated-

measures ANOVA focused on the intermediate value options, assessing the effect of 1) 

feedback information and 2) valence. Between-option differences in post-learning choices 

were tested post-hoc using a two-sided, one-sample t-test. As a control analysis, the 

percentage of direct choices involving the G25 and the L25 cues (i.e. the intermediate value 

cues) has also been analyzed separately for each comparison (see Supplementary Note 1 and 

Supplementary Fig. 2). All statistical analyses were performed using Matlab 

(www.mathworks.com) with the addition of the Statistical toolbox and other free-download 

functions (rm_anova2.m, RMAOV33.m).

Computational models

We analyzed our data with model-free reinforcement learning algorithms34. The goal of all 

models was to find in each choice context (state: s) the option that maximizes the cumulative 

reward R. We compared two alternative computational models: a Q-learning model, 

extended to account for counterfactual learning (ABSOLUTE), which instantiates “absolute 

value-based” learning and decision making by learning option values independently of the 

choice context in which they are presented25,34; the RELATIVE model which learns option 

values relative to the choice context in which they are presented35–38,64 (Figure 3).

(1) ABSOLUTE model—At trial t the chosen (c) option value of the current context (s) is 

updated with the Rescorla-Wagner rule (also called delta-rule) 65:
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and

where α1 is the learning rate for the chosen option and α2 the learning rate for the unchosen 

(u) option (counterfactual learning rate). δC and δU are prediction error terms calculated as 

follows:

(update in both the partial and complete feedback contexts) and

(in the complete feedback contexts only).

(2) RELATIVE model—We also devised a new model (RELATIVE), which, instantiates 

the “relative value-based” learning and decision-making. The key idea behind RELATIVE 

model is that it separately learns and tracks the choice context value (V(s)), used as the 

reference point to which an outcome should be compared before updating option values. 

Previous algorithms, such the actor/critic and the advantage learning model, inspired the 

RELATIVE model (see Supplementary Note 2, Supplementary Fig. 3 and Supplementary 

Table 3 for additional model comparison analyses including the actor/critic model). All 

these models implement relative value learning of option values, based on V(s) estimates. 

The RELATIVE model differs in that it is extended to account for counterfactual feedback 

and that V(s) is learnt in an “random-policy” manner (i.e. the state value is independent from 

the policy followed by the subject. (see Supplementary Note 2, Supplementary Fig. 4 and 

Supplementary Table 4 for additional model comparison analyses supporting these 

assumptions). Crucially V(s) is not merely the choice-probability weighted sum of options’ 

value, but rather affects (controls) them. In fact V(s) is used to center option prediction 

errors as follows:

and
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(in the complete feedback contexts only). As a consequence the option values are no longer 

calculated in an absolute scale, but relatively to their choice context value V(s). Context 

value is also learned via a delta rule:

Where α3 is the context value learning rate and δV is a prediction error term calculated as 

follows:

where t is the number of trials and RV is the context-level outcome at trial t: a global 

measure that encompasses both the chosen and unchosen options. In the complete feedback 

contexts the average outcome trial (RV) is calculated as the average of the factual and the 

counterfactual outcomes as follows:

Given that the average outcome trial (RV) is meant to be a context-level measure, in order to 

incorporate unchosen option value information in RV also in the partial feedback contexts, 

we considered Qt(s,u) a good proxy of RU,t and calculated RV,t as follows (see 

Supplementary Note 2 and Supplementary Table 2 for model comparison justifications of 

these assumptions):

To sum up, our model space included 2 models: the ABSOLUTE model (Q-learning) and 

the RELATIVE model. In all models decision-making relied on a softmax function:

where β is the inverse temperature parameter. The Matlab codes implementing the 

computational models are available upon request to the corresponding author.

Parameters optimization and model selection procedures

We optimized model parameters, the temperature (β), the factual (α1), the counterfactual 

(α2) and the contextual (α3) learning rates (in the RALATIVE model only), by minimizing 

the negative log likelihood (LLmax) and (in a separate optimization procedure) the negative 

log of posterior probability (LPP) of the data given different parameters settings using 

Matlab’s fmincon function, initialized at multiple starting points of the parameter space, as 

previously described66,67. Negative log-likelihoods (LLmax) were used to compute classical 
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model selection criteria. The LPP was used to compute the exceedance probability and the 

expected frequencies of the model.

We computed at the individual level (random effects) the Akaike’s information criterion 

(AIC),

the Bayesian information criterion (BIC),

and the Laplace approximation to the model evidence (LPP);

where D, M and θ represent the data, model and model parameters respectively. P(θn) is 

calculated based on the parameters value retrieved from the parameter optimization 

procedure, assuming learning rates beta distributed (betapdf(parameter,1.1,1.1)) and softmax 

temperature gamma-distributed (gampdf(parameter ,1.2,5))68 . The present distributions 

have been chosen to be relatively flat over the range of parameters retrieved in the previous 

and present studies. The LPP increases with the likelihood (which measures the accuracy of 

the fit) and is penalized by the integration over the parameter space (which measures the 

complexity of the model). The LPP, as the BIC or AIC, thus represent a trade-off between 

accuracy and complexity and can guide model selection. Individual LPPs were fed to the 

mbb-vb-toolbox (https://code.google.com/p/mbb-vb-toolbox/)40. This procedure estimates 

the expected frequencies of the model (denoted PP) and the exceedance probability (denoted 

XP) for each model within a set of models, given the data gathered from all subjects. 

Expected frequency quantifies the posterior probability, i.e. the probability that the model 

generated the data for any randomly selected subject. This quantity must be compared to 

chance level (one over the number of models in the search space). Exceedance probability 

quantifies the belief that the model is more likely than all the other models of the set, or in 

other words, the confidence in the model having the highest expected frequency. We 

considered the “best model”, the model which positively fulfilled all the criteria.

Model Simulation analyses

Once we had optimized models’ parameters, we analyzed their generative performance by 

analyzing the model simulation of the data69. Model estimates of choice probability were 

generated trial-by-trial using the best individual parameters in the individual history of 

choices and outcomes. Model choice probability was then submitted to the same statistical 

analysis as the actual choices. The evaluation of generative performances involved two 

steps: first, the assessment of the model’s ability to reproduce the key statistical effects of 

the data; second, the assessment of the model’s ability to match subjects’ choices. The first 

step essentially involved within-simulated data comparisons, in both the form of ANOVA 
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and post-hoc one-sample t-test. The second step involved comparison between simulated 

and actual data with a one-sample t-test, and adjusting the significance level for the multiple 

comparisons (see the results reported in Table 1). We also tested models’ performances out 

of the sample by assessing their ability to account for post-learning test choices. Concerning 

the post-learning test analysis, under the assumption that choices in the post learning test 

were dependent on the final option values, we calculated the probability of choice in the 

post-learning test using a softmax, using the same individual choice temperature optimized 

during the learning test (note that similar results have been obtained when optimizing a β 

specific to the post-learning test). Based on model-estimate choice probability, we calculated 

the log-likelihood of post-learning choices that we compared between computational 

models. Finally, we submitted the model-estimate post-learning choice probability to the 

same statistical analyses as the actual choices (ANOVA and post-hoc t-test; within-

simulated data comparison) and we compared modeled choices to the actual data (pair wise 

comparisons, corrected for multiple comparisons; Table 1).

fMRI data acquisition and preprocessing

A 4T Bruker MedSpec Biospin MR scanner (CiMEC, Trento, Italy) and an eight-channel 

head coil were used to acquire both high resolution T1-weighted anatomical MRI using a 3D 

MPRAGE with a resolution of 1 mm3 voxel and T2*-weighted Echo planar imaging (EPI). 

The parameters of the acquisition were the following, 47 slices acquired in ascending 

interleaved order, the in-plan resolution was 3 mm3 voxels, the repetition time 2.2 s, and the 

echo time was 21 ms. A tilted plane acquisition sequence was used to optimize functional 

sensitivity to the orbitofrontal cortex70. The acquisition started from the inferior surface of 

the temporal lobe. This implicated that, in most subjects, the acquired volume did not 

include the inferior part of the cerebellum. Preprocessing of the T1-weighted structural 

images consisted in coregistration with the mean EPI, segmentation and normalization to a 

standard T1 template, and average across all subjects to allow group-level anatomical 

localization. Preprocessing of EPI consisted in spatial realignment, normalization using the 

same transformation as structural images, and spatial smoothing using a Gaussian kernel 

with a full width a half-maximum of 8 mm. Final voxel size was 2mm3. Preprocessing was 

realized using SPM8 (www.fil.ion.ucl.ac.uk).

fMRI data analyses

EPI images were analyzed in an event-related manner within the general linear model 

(GLM) framework, using SPM8 software. In GLM1, each trial was modeled as having two 

time points, corresponding to choice and outcome display onsets, modeled by two separate 

regressors. Choice onset and outcome onset were then modulated with different parametric 

regressors. In order to account for irrelevant motor or visual activations, the first parametric 

modulators for GLM1 were: 1) the response (coded as 1 and −1, for the right or left 

response, respectively) for the choice onset, and 2) the number of outcomes on the screen 

(codes as 1 and 2 for the partial and complete feedback context, respectively) for the 

outcome onset. These control parametric modulators generated motor and visual activations 

(data not shown). To correct for motion artifact, all GLMs also included the subject/session 

specific realignment parameters as nuisance covariates. The GLM1a and GLM1b differed in 

the computational model used to generate the parametric modulators. In addition to motor 
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and visual regressors, in GLM1 the choice onsets were modulated by the trial-by-trial 

estimates of QC and QU, whereas the outcome onsets by the trial-by-trial estimates of δC and 

δU. In the partial feedback trials, the unchosen prediction error regressor (δU) was 

systematically set at zero. Computational regressors were generated for each subject using 

the group level mean of the best individual parameters and the individual history of choices 

and outcomes. Regressors were z-scored before regression in order to ensure between-

model, between-subject and between-modulator commensurability of the regression 

coefficients (Table 3). The computational variables of the GLM1a were derived from the 

ABSOLUTE computational model. GLM1b was structurally identical to GLM1a, except for 

the fact that the computational variables were derived from the RELATIVE model. All 

activations concerning GLM1 reported in Figure 5 survived a threshold of P<0.05 with 

voxel level whole brain family-wise error (FWE) correction for multiple comparisons. In 

GLM2, each trial was modeled as having one-time points, corresponding to the stimulus 

display onsets. The choice onsets were split into eight different events (categories) as a 

function of task factors (feedback information × outcome valence) and the position of the 

trial within the learning curve (early: first eight trials; late: last eight trials; we did not 

include the mid eight trials so as to only include in each category trials belonging as clearly 

as possible to the “incremental” versus the “plateau” phase of the learning curves). In 

GLM3, each trial was modeled as having one-time points, corresponding to the outcome 

display onsets. The outcome onsets were split into eight different events (categories) as a 

function of the task factors (feedback information × outcome valence) and obtained outcome 

(RC). We computed at the first level a best>worst outcome contrast for each context 

separately (“+0.5€>0.0€”: best>worst outcome contrast in the reward contexts; “0.0€>

−0.5€”: best>worst outcome contrast in the punishment contexts). All GLMs were estimated 

using classical statistical techniques and linear contrast of parametric modulators were 

computed at the individual level and then taken to a group-level random effect analysis 

(one-sample t-test). Based on our hypotheses, second level contrasts of GLM3 were 

estimated within an anatomic mask encompassing bilaterally the insula and the basal ganglia 

(caudate, putamen and pallidum; >9*105 voxels of 2 mm3) (Supplementary Fig. 6E). The 

mask has been designed using MARINA software (http://www.fil.ion.ucl.ac.uk/spm/ext/). 

Activations concerning GLM3 and reported in yellow in Supplementary Fig. 6 survived a 

threshold of P<0.05 with voxel level anatomic mask family-wise error (FWE) correction, 

i.e., the multiple comparison accounted for the number of voxels in the mask rather than the 

whole brain (small volume correction). Activations are reported in the coordinates space of 

the Montreal Neurology Institute (MNI). Activations were anatomically labeled using the 

Brodmann and the automatic anatomical labeling (AAL) template implemented by the 

software MRIcron (www.mccauslandcenter.sc.edu/mricro).

Region of interest analyses

Region of interest (ROI) analyses served three purposes: 1) assess and compare the 

goodness of fit of the neural data between the RELATIVE and the ABSOLUTE 

computational model parametric modulators (GLM1); 2) assess choice related brain activity 

in the vmPFC as a function of the task contexts (GLM2) 3) assess outcome encoding in the 

VS and the AI as a function of the task contexts (GLM3). All ROI analyses were designed to 

avoid double dipping in favor of the hypothesis we aimed to validate45. To assess goodness 
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of fit (neural model selection), we first defined from GLM1a (ABSOLUTE’s regressors) a 

‘task network’ mask including all the voxels which survived cluster level p<0.05 (FWE 

corrected) in the following contrasts: positive and negative correlation with “QC − QU” 

(decision value) and “δC − δU” (decision prediction error) (see Figure 5A). Within this mask 

(total voxels number =1511), we estimated GLM1a and GLM1b (best model regressors) 

using Bayesian statistics, which provided log evidence for each GLM. Log evidence was 

then fed to BMS random effects analysis, which computed the exceedance probability of 

each GLM within the mask44. This analysis indicates which GLM better explained the 

neural data. To avoid double dipping in favor of the hypothesis that we wanted to support, 

we selected the ROIs, which favored the hypothesis we wanted to reject (GLM1a, 

ABSOLUTE model)45. The second ROI analysis was devoted to study how task factors 

(contexts) affected choice related activity. A spherical ROI of 4mm diameter was centered 

on ventromedial prefrontal coordinates reported to be significantly associated with decision 

value in a recent meta-analysis11. Regression coefficients from the GLM2 were submitted to 

a repeated measure three-way ANOVA analysis with valence (reward and punishment), 

feedback information (partial and complete) and learning phase (early, late) as factors. The 

third ROI analysis was devoted to study how task factors (contexts) affected outcome 

encoding. Spherical ROIs of 4mm were centered on striatal (VS) and insular (AI) 

coordinates reported to be significantly associated with reward and punishment prediction 

errors in a recent meta-analysis8. Regression coefficients were submitted to a repeated 

measure three-way ANOVA analysis with neural system (ventral striatum or anterior insula) 

and valence (reward and punishment) and feedback information (partial and complete) as 

factors. In the second and third ROI analyses the post-hoc significance assessed with two-

sided one-sample t-test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. experimental task and design
(A) Learning task 2×2 factorial design with 4 different contexts: reward/partial, punishment/

partial, reward/complete, and punishment/complete. PGain= probability of winning 0.5€; 

PLoss= probability of losing 0.5€. Note that the colored frames are introduced in the figure 

for illustrative purposes, but were not present in the original task. (B) Successive screens of 

typical trials in the reward partial (top) and complete (bottom) contexts. Durations are given 

in milliseconds. (C) Time course of the experiment. Note that the post-learning test was 

uniquely based on the eight options of the last learning session.

Palminteri et al. Page 23

Nat Commun. Author manuscript; available in PMC 2016 February 25.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 2. behavioral results and model simulations
(A) Correct choice rate during the learning test. (B) Choice rate in the post-learning test. G75 

and G25: options associated with 75% and 25% percent of winning 0.5€, respectively; L75 

and L25: options associated with 75% and 25% percent of losing 0.5€, respectively. EV: 

absolute expected value (Probability(outcome) * Magnitude(outcome)) in a single trial. The 

values +37.5¢ and −37.5¢ correspond G75 and the L75 options, respectively. In (A) and (B) 

colored bars represent the actual data and black (RELATIVE) and white (ABSOLUTE) dots 

represent the model simulated data. (C) Reward minus punishment correct choice rate 

during the learning test. (D) G25 minus L25 choice rate during the post learning test. *P<0.05 

one sample t-test; ns: not significant (N=28). Error bars represent s.e.m.
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Figure 3. computational architecture
The schematic illustrates the computational architecture used for data analysis. For each 

context (or state) ‘s’, the agent tracks option values (Q(s,:)), which are used to decide 

amongst alternative courses of action. In all contexts, the agent is informed about the 

outcome corresponding to the chosen option (R(c)), which is used to update the chosen 

option value (Q(s,c)) via a prediction error (δ(c)) . This computational module (“factual 

learning”) requires a learning rate (α1). In the complete feedback condition, the agent is also 

informed about the outcome of the unselected option (R(u)), which is used to update the 

unselected option value (Q(s,u)) via a prediction error (δ(u)). This computational module 

(“counterfactual learning”) requires a specific learning rate (α2). In addition to tracking 

option value, the agent also tracks the value of the context (V(s)), which is also updated via 

a prediction error (δ(v)), integrating over all available feedback information (R(c) and R(u), 

in the complete feedback contexts and Q(s,u) in the partial feedback contexts). This 

computational module (“contextual learning”) requires a specific learning rate (α3). The 

RELATIVE model can be reduced to the ABSOLUTE model by suppressing the contextual 

learning module (i.e. assuming α3=0).
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Figure 4. ABSOLUTE and RELATIVE model final value estimates
(A) and (B) The bars represent, for each model, the final optimal decision value estimates 

(the value of the correct minus the value of the incorrect option). (C) and (D): The bars 

represent, for each model, the final option value estimates. . G75 and G25: options associated 

with 75% and 25% percent of winning 0.5€, respectively; L75 and L25: options associated 

with 75% and 25% percent of losing 0.5€, respectively. EV: absolute expected value 

(Probability(outcome) * Magnitude(outcome)) in a single trial. The values +37.5¢ and 

−37.5¢ correspond G75 and the L75 options, respectively. The estimates are generated from 

individual history of choices and outcomes and subject-specific free parameters. *P<0.05 

one sample t-test; ns: not significant (N=28). Error bars represent s.e.m.
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Figure 5. neural model comparison
Brain areas correlating positively and negatively with the difference between chosen and 

unchosen option value (QC-QU; left and central column), and correlating positively with the 

difference between chosen and unchosen prediction error (δC -δU; right column). Significant 

voxels are displayed on the glass brains (top) and superimposed to slices of the between-

subjects averaged anatomical T1 (bottom). Coronal slices correspond to the blue lines on 

sagittal glass brains. Areas colored in gray-to-black gradient on glass brains and in yellow 

on slices showed a significant effect (P<0.05, voxel level FWE corrected). Y coordinates are 

given in the MNI space. The results are from the GLM using the ABSOLUTE model 

parametric modulators (GLM1a). (B) Bayesian model comparison (BMS) of GLMs 

regressing ABSOLUTE (ABS) and RELATIVE (REL) option values and prediction errors 

(GLM1a and GLM1b). BMS is performed within the functional ROIs, presented on the left 

in yellow on the brain slices. Note that ROI selection avoids double dipping in favour of the 

hypothesis we aimed to validate, since the ROIs were defined from GLM1a (ABS) and 

GLM1a (ABS) was the hypothesis we aimed to reject.
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Figure 6. model-free neural evidence of value contextualization
(A) Bars represent the regression coefficients extracted in the ventromedial prefrontal 

cortex, as a function of the task contexts (represented by different colors) and leaning phase 

(early: first eight trials; late: last eight trials). Regression coefficients are extracted from the 

model-free GLM2 within a sphere centered on literature-based coordinates of the 

ventromedial prefrontal cortex11. (B) & (C) Bars represent the regression coefficients for 

best>worst outcome contrast as a function of the task contexts. (“+0.5€>0.0€”: best>worst 

outcome contrast in the reward contexts; “0.0€>−0.5€”: best>worst outcome contrast in the 

punishment contexts). Regression coefficients are extracted from the model-free GLM3 

within spheres centered on literature-based coordinates of the striatum and anterior insula8. 

Y coordinates are given in the MNI space. Note that ROI selection avoids double dipping, 

since the ROIs were defined from independent studies (metanalyses). *P<0.05 one sample t-

test comparing between regressors (black ‘*’) or to zero (white ‘*’) (N=28); ns: not 

significant. Error bars represent s.e.m.
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Table 1
experimental and computational-model derived variables

The table summarizes for both tasks their experimental and model-derived dependent variables. DATA: 

experimental data; RELATIVE: relative value learning model with delta rule update and context-specific 

heuristic (best fitting model); ABSOLUTE: absolute value learning model. Data are expressed as mean ± 

s.e.m.

Dependent variables DATA ABSOLUTE RELATIVE 4

Learning test: correct choice rate

Reward partial (% correct) 0.73±0.03 0.75±0.02 0.74±0.02

Punishment partial (% correct) 0.74±0.03 0.70±0.02 0.72±0.02

Reward complete (% correct) 0.83±0.02 0.83±0.02 0.84±0.02

Punishment complete (% correct) 0.86±0.02 0.81±0.02* 0.84±0.02

Post-learning test: choice rate

G75 partial (% choices) 0.78±0.04 0.86±0.01 0.85±0.01

G25 partial (% choices) 0.51±0.06 0.58±0.01 0.54±0.01

L25 partial (% choices) 0.45±0.04 0.37±0.01 0.45±0.01

L75 partial (% choices) 0.25±0.03 0.17±0.01 0.16±0.01

G75 complete (% choices) 0.83±0.03 0.91±0.01 0.83±0.02

G25 complete (% choices) 0.40±0.04 0.66±0.01* 0.38±0.03

L25 complete (% choices) 0.61±0.03 0.37±0.01* 0.62±0.03

L75 complete (% choices) 0.17±0.03 0.08±0.01 0.16±0.02

*
P<0.05 t-test, comparing the model-derived values to the actual data after correcting for multiple comparisons.
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Table 2
model comparison criteria

The table summarizes for each model its fitting performances. DF: degrees of freedom; LLmax: maximal Log 

Likelihood; AIC: Akaike Information Criterion (computed with LLmax); BIC: Bayesian Information Criterion 

(computed with LLmax); LPP: Log of Posterior Probability; XP: exceedance probability (computed from 

LPP). PP: posterior probability of the model given the data.

Model DF −2*LLmax 2*AIC BIC −2*LPP PP XP

ABSOLUTE 3 307±20 319±20 325±20 314±20 0.08±0.03 0.0

RELATIVE 4 295±22 311±22 319±22 304±21 0.92±0.03 1.0
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Table 3
computational free parameters

The table summarizes for each model the likelihood maximizing (“best”) parameters averaged across subjects. 

Data are expressed as mean ± s.e.m. ABSOLUTE: absolute value learning model; RELATIVE: relative value 

learning model (best fitting model). The average values retrieved from the LL maximization procedure are 

those used to generate the parametric modulators of GLM1a and GLM1b. LL maximization: parameters 

obtained when maximizing the negative log likelihood; LPP maximization: parameters obtained when 

maximizing the negative log of the Laplace approximation of the posterior probability. ***P<0.001 when 

correlating the LPP-based with LL-based free parameters (robust regression, N=28).

LL maximization LPP maximization

Free parameter ABSOLUTE RELATIVE ABSOLUTE RELATIVE

Inverse temperature (β) 17.4±5.92 21.52±5.95 11.4±0.97*** 13.66±1.32***

Factual learning rate (α1) 0.28±0.02 0.19±0.02 0.29±0.02*** 0.20±0.01***

Counterfactual learning rate (α2) 0.18±0.02 0.15±0.02 0.20±0.02*** 0.16±0.02***

Context learning rate (α3) - 0.33±0.07 - 0.34±0.07***
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Table 4
brain activations

The table summarizes brain activations reported in Figure 5A, significant at P<0.05 FWE whole brain-level 

(GLM1a) or anatomic mask-level (GLM3) FWE corrected. [x y z]: MNI coordinates; BA: Broadmann area; 

AAL: automatic anatomic labeling; T: t-values of the maxima; N: size of the activation (voxels); GLM: 

general linear model. vmPFC: ventro-medial prefrontal cortex; dmPFC; dorso-medial prefrontal cortex; VS: 

ventral striatum; AI: anterior insula.

Contrast Label [x y z ] BA AAL T N GLM

QC - QU

vmPFC [4 58 −12] 10,11 Medial Frontal Gyrus, pars orbitalis 6.57 939 1

QU - QC

dmPFC [−6 20 42] 8,32 Superior Medial Frontal Gyrus 5.63 71 1

δC - δU

vmPFC [−6 54 −4] 10,11 Medial Frontal Gyrus (pars orbitalis 7.00 1226 1

vlPFC [−52 36 2] 45,47 Inferior Frontal Gyrus, (pars triangularis) 5.79 119 1

left-VS [−16 12 −8] - Putamen, Pallidum 4.78 271 1

right-VS [14 10 −8] - Putamen, Pallidum 4.57 234 1

+0.5€>0.0€ (reward/partial)

right -VS [16 12 −6] - Putamen, Pallidum 3.89 21 3

-0.5€>0.0€ (punishment/partial)

AI [16 12 −6] 48 Insula 4.02 43 3
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