Skip to main content
. Author manuscript; available in PMC: 2015 Sep 14.
Published in final edited form as: Nat Commun. 2015 Aug 25;6:8096. doi: 10.1038/ncomms9096

Table 1. experimental and computational-model derived variables.

The table summarizes for both tasks their experimental and model-derived dependent variables. DATA: experimental data; RELATIVE: relative value learning model with delta rule update and context-specific heuristic (best fitting model); ABSOLUTE: absolute value learning model. Data are expressed as mean ± s.e.m.

Dependent variables DATA ABSOLUTE RELATIVE 4
Learning test: correct choice rate
Reward partial (% correct) 0.73±0.03 0.75±0.02 0.74±0.02
Punishment partial (% correct) 0.74±0.03 0.70±0.02 0.72±0.02
Reward complete (% correct) 0.83±0.02 0.83±0.02 0.84±0.02
Punishment complete (% correct) 0.86±0.02 0.81±0.02* 0.84±0.02
Post-learning test: choice rate
G75 partial (% choices) 0.78±0.04 0.86±0.01 0.85±0.01
G25 partial (% choices) 0.51±0.06 0.58±0.01 0.54±0.01
L25 partial (% choices) 0.45±0.04 0.37±0.01 0.45±0.01
L75 partial (% choices) 0.25±0.03 0.17±0.01 0.16±0.01
G75 complete (% choices) 0.83±0.03 0.91±0.01 0.83±0.02
G25 complete (% choices) 0.40±0.04 0.66±0.01* 0.38±0.03
L25 complete (% choices) 0.61±0.03 0.37±0.01* 0.62±0.03
L75 complete (% choices) 0.17±0.03 0.08±0.01 0.16±0.02
*

P<0.05 t-test, comparing the model-derived values to the actual data after correcting for multiple comparisons.