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Abstract

Background and Aims—Quantifying relationships between snow cover duration and plant 

community properties remains an important challenge in alpine ecology. We developed a method 

to estimate spatial variation in energy availability in the context of a topographically complex, 

high-elevation watershed, which we used to test the explanatory power of environmental gradients 

both with and without snow cover in relation to taxonomic and functional plant diversity.

Methods—We mapped snow cover at 15 m resolution using Landsat imagery for five recent 

years and fitted a generalized additive model (GAM) for each year linking snow to time and 

topography. Predicted snow cover maps were combined with air temperature and solar radiation at 

daily resolution, summed for each year and averaged across years. Equivalent growing season 

energy gradients were also estimated without accounting for snow cover duration. Relationships 

were tested between environmental gradients and diversity metrics measured for 100 plots 

(including species richness, community weighted mean traits, functional diversity and 

hyperspectral estimates of canopy chlorophyll content).

Key Results—Accounting for snow cover in environmental variables consistently led to 

improved predictive power as well as more ecologically meaningful characterizations of plant 

diversity. Model parameters differed significantly when fitted with and without snow cover. 

Filtering solar radiation with snow as compared to without led to an average gain in R2 of 0.26 and 

also reversed slope direction to more intuitive relationships for several diversity metrics.
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Conclusions—We show that in alpine environments, high-resolution data on snow cover 

duration are pivotal for capturing the spatial heterogeneity of both taxonomic and functional 

diversity. The use of climate variables without consideration of snow cover can lead to erroneous 

predictions of plant diversity. Our results further indicate that studies seeking to predict the 

response of alpine plant communities to climate change need to consider shifts in both temperature 

and nival regimes.
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INTRODUCTION

In alpine landscapes, variation in snow cover duration along elevation and mesotographic 

gradients has long been recognized as a key environmental filter structuring patterns of plant 

distribution and community composition (Billings, 1973; Evans et al. 1989). Snowpack 

affects the functioning of alpine ecosystems by exerting strong regulatory control on near-

surface soil temperature (Edwards and Cresser, 1992), water and nutrient availability 

(Freppaz et al., 2007; Weingartner et al., 2007), plant growth and phenology (Kudo et al., 

2006; Wipf et al., 2009), growing season length and gross primary production (Baptist and 

Choler, 2008). Snowmelt timing has also been related to consistent shifts in alpine plant 

functional traits (Choler, 2005; Venn et al., 2011). Certain late-melting sites, for example, 

while limited by a short growing season, benefit from decreased exposure to frigid air 

temperatures in the winter and spring as well as increased water and nitrogen availability at 

the time of snowmelt (Björk and Molau, 2007), and are identified as taxonomically distinct 

snow bed communities with particular functional traits including low stature, high nitrogen 

leaf content per unit of mass and high specific leaf area (Choler, 2005). In the Alps, altered 

snow cover regimes in the form of earlier melt dates and rising snow lines have been 

observed during recent decades, and are anticipated to be an important on going 

consequence of climate change in alpine environments (Beniston, 2012). Collectively, this 

evidence highlights the importance of better understanding the linkages between snow cover 

regimes and plant diversity in order to improve models of alpine biodiversity in response to 

climate change.

Recognizing the importance of snow in alpine systems and building upon a naturalist 

tradition of field observations and descriptive studies (e.g. Walker et al., 1993), several 

authors have incorporated snow as an explanatory variable with the goal of improving 

species distribution models (Heegaard, 2002; Odland and Munkejord, 2008; Randin et al., 

2009; Schöb et al., 2009). Previous studies connecting plant occurrence or traits to snowmelt 

gradients have quantified snow cover duration by snowmelt rank (e.g. Heegaard, 2002), or 

by the first snow free Julian day (e.g. Choler, 2005). Additionally, species distribution 

modelling studies focused on alpine plants have routinely estimated growing season length-

related energy variables (e.g. solar radiation and growing degree days), without considering 

the mediating effect of snow cover duration on incoming solar radiation or near-surface air 

temperature (e.g. Zimmermann and Kienast, 2001; Randin et al., 2009; Carlson et al., 2014), 
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which may lead unrealistic estimates of energy availability for plants (Scherrer and Körner, 

2011; Ford et al., 2013).

One consistent difficulty shared by plant ecologists seeking to take snow into account 

involves mapping and quantifying snow cover duration at sufficiently fine grain to represent 

mesotopographic heterogeneity (<50 m). Approaches used thus far have been based on 

manual field surveys (Heegaard, 2002; Choler, 2005; Odland and Munkejord, 2008; Schöb 

et al., 2009), in-situ repeat photography (Scherrer and Körner, 2011) and at least one 

application of a mechanistic model of snow redistribution by wind (Randin et al., 2009). 

Process-based models accounting for meteorological forcing, topography and land cover 

have been developed and applied to forecast the effect of anticipated climate change on 

water budgets in mountainous environments (Liston and Elder, 2006; Viviroli et al., 2009; 

Vionnet et al., 2014). Validation of snow cover maps generated by two state of the art 

hydrological models (Liston and Elder, 2006; Viviroli et al., 2009) relative to classified 

high-resolution imagery, however, showed fairly weak spatial agreement of snow-covered 

pixels during the snowmelt period (Randin et al., 2014; Table E.1), which is of critical 

interest to plant ecologists. Classification routines applied to Landsat imagery have long 

existed as tools for generating high-resolution snow cover maps at the regional scale 

(Dozier, 1989; Rosenthal and Dozier, 1996). Landsat images are freely available and have 

the added advantage of providing multiple scenes during the spring and summer months.

Here, we implement a remote sensing-based framework for high-resolution mapping of 

snow cover duration that can be applied to larger extents than would be feasible with a field-

mapping approach. While acknowledging the merits of a physical model of snow 

distribution (Randin et al., 2009), we present our approach as an empirical alternative for 

snow distribution modeling at the mesotopographic scale. In this study, our goal was to 

investigate the importance of snow cover duration for predicting multiple facets of plant 

community structure, including both trait-based and taxonomic diversity. At the scale of a 

6.7 km2 alpine basin, we mapped snow cover at 15 m resolution for five snowmelt cycles 

using Landsat imagery, modelled daily snow melt relative to time and mesotopography and 

combined snow cover maps with air temperature and solar radiation maps at a daily time 

step and for all five years. Assuming that the presence of snow cancelled incoming solar 

radiation and maintained near surface air temperature at 0° C, we averaged the sum of snow-

free growing season days, frost days and solar radiation across years. Comparable energy 

budgets were also estimated without taking snow cover into account. We then analysed the 

statistical and ecological implications of snow for predicting taxonomic and functional 

diversity metrics for 100 vegetation plots, including species richness, Simpson index, 

species composition as measured by NMDS dissimilarity (Faith et al., 1987), community 

weighted mean plant height, specific leaf area (SLA), hyperspectral-derived estimates of leaf 

chlorophyll content and functional diversity. While we focus here on predicting current 

patterns of alpine plant community structure, a secondary aim is to elucidate which 

predictive variable(s) may be the most ecologically meaningful for forecasting the response 

of alpine plant communities to climate change.
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MATERIALS AND METHODS

Study area and floristic data

The study area consists of a 6.7 km2 watershed, spanning an elevation range from 1980 to 

3114 m a.s.l., situated in the Grand Galibier Massif of the south-western French Alps (Fig. 

1). This area, referred to as the Vallon de Roche Noire, is located in the commune of Le 

Monêtier-les-Bains within the Ecrins National Park. Vegetation consists of a mosaic of 

heath, sub-alpine and alpine forb and graminoid communities. Summer grazing is limited to 

sheep and cattle presence from late July to mid-September. Comprehensive botanical 

relevés, including visual estimates of species’ relative abundance (Braun-Blanquet, 1957), 

were carried out for ninety 2-5 m radius plots in July, 2007. Ten additional relevés were 

completed in July, 2011, making for a total of 100 plots available for this analysis (Fig. 1).

Measuring alpine plant community diversity

For each plot, species richness and Simpson diversity were quantified based on the 

community relevé. Non-Metric Multidimensional Scaling (NMDS; Kruskal, 1964) was 

applied in order to estimate turnover in species composition across plots. Bray-Curtis 

dissimilarity was calculated between plots and the resulting dissimilarity matrix as an input 

for NMDS ordination (Stress = 0.2). Twenty-five per cent quantiles of scores from the first 

axis were used to class plots into four distinct groups, based on their taxonomic 

dissimilarity.

Morphological plant functional traits, including plant height, specific leaf area (SLA), leaf 

dry matter content (LDMC) and leaf nitrogen content (LNC) were collected from several 

field campaigns carried out in the study area (Choler, 2005; Chalmandrier et al., 2014). In 

order to reduce the pervasive effects of intra-specific trait variability on diversity estimates 

(Albert et al., 2012), we only used trait measurements sampled above 1800 m a.s.l. 

Community-weighted mean (CWM; Garnier et al., 2007) trait values for each plot were 

calculated for specific leaf area (SLA) and plant height by summing species-level trait 

values, weighted by the abundance of species in the community. Plots for which we lacked 

trait data for 20% or more of relative community composition were excluded from the 

analysis, as recommended by Pakeman and Quested (2007), resulting in the exclusion of 

thirty-one plots. For each of the sixty-nine remaining plots, functional diversity was 

estimated by (1) calculating Gower’s distance between all species relative to plant height, 

SLA, LDMC and LNC and (2) calculating the abundance-weighted mean pairwise distance 

between all species of each plot using the mpd function in the picante R-package. Lastly, a 

community re-shuffling routine that randomized species composition within plots while 

maintaining species richness was used to test whether convergence of functional diversity 

differed significantly from a null distribution following 1000 repetitions.

In order to complement field-based measures of plant diversity, leaf chlorophyll content (a + 

b; μg/cm2) was extracted from a hyperspectral image (AISA; Specim Ltd., Finland) obtained 

for the study area in 2008. Leaf chlorophyll content estimated from reflectance values of 

hyperspectral imagery has been shown to be a reliable proxy for leaf nitrogen content 

(Haboudane et al., 2002). Details concerning image acquisition and processing can be found 
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in Pottier et al. (2014). The initial 0.8 m resolution image was resampled to 5 m using a 

mean function and values were extracted for each of the 100 vegetation plots.

Quantifying energy gradients

Daily solar radiation values for 2013 were calculated with the area solar radiation tool in 

ArcGIS [version 10.2 (2013) Redlands, CA, USA] using a 2 m LiDAR digital elevation 

model and the clear sky model set to a sky size of 2800 pixels. Output solar radiation maps 

(Watts/m2) for 2013 were used for corresponding calendar days in all other years, given that 

the underlying model did not account for inter-annual variation caused by nebulosity.

One-minute interval air temperature data for the Grand Galibier Massif was obtained by 300 

m elevation class from the SAFRAN–Crocus–MEPRA model chain developed by Météo 

France. Details on data description, methodology, and validation of this regional climate 

model for the French Alps are provided in Durand et al. (2009). Time series of air 

temperature for the years 2000-2014 were aggregated to daily minimum (Tmin) and mean 

(Tmean) values. Daily Tmean values averaged across years were used to assess the potential 

length of the growing season, which was defined by the number of consecutive days with a 

mean temperature above 0° C. The threshold of 0° C was selected based on the minimum 

required temperature for alpine plant growth, as in Zimmermann and Kienast (1999). In 

order to add spatial grain, temperature values associated with a given elevation class (e.g. 

2100 – 2400 m a.s.l.) were assigned to the median elevation (e.g. 2250 m a.s.l.) and 

elevation-dependent linear regression was used to downscale temperature values across the 

study area. Daily Tmean and Tmin rasters were reclassified into binary maps, where 

growing season days were defined as grid cells above 0° C and frost days were defined as 

grid cells less than 0° C. For each day falling within the potential estimated growing season 

and for five years (2000, 2001, 2002, 2013 and 2014), daily frost and growing season day 

maps were exported for the study area at 2 m resolution.

Snow cover mapping and modelling

Landsat 7 (ETM+ sensor) imagery was obtained for five dates in 2000, five dates in 2001, 

and four dates in 2002. Landsat 8 (OLI sensor) was obtained for six dates in 2013 (Fig. S1) 

and four dates in 2014. All retained images had less than 30% cloud cover and were 

acquired between late March and mid-August. Adequate imagery between 2003 and the 

commissioning of the Landsat 8 satellite in April, 2013, was unavailable due to irreparable 

sensor damage to the Landsat 7 satellite occurring in the spring of 2003 

(www.landsat.gsfc.nasa.gov). The panchromatic band 8 at 15 m resolution was selected for 

this analysis in order to maximize the resolution of snow cover maps. Scenes were re-

projected to Lambert 93 and cropped to the study area prior to classification in eCognition 

Developper [version 8.0 (2012) Munich, Germany]. Binary snow cover maps were 

generated first by segmenting the grey scale image according to the spectral values of the 

pixels and second by applying an object based classification to the segmented image based 

on a nearest neighbour algorithm. Assignment of objects to snow or no snow classes took 

into account spectral signal values, as well as topographic context (slope and aspect). Given 

that available Landsat scenes did not always cover the end of the snowmelt cycle, a snow 

cover map derived from a 50 cm aerial photograph obtained on August 6, 2003, was 
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aggregated to 15 m resolution using the majority parameter in ArcGIS and subsequently 

added to each annual Landsat time series. This additional step ensured that late summer 

snow patches, which occur in consistent locations in the study area from one year to the next 

(Choler, personal observation), were consistently documented.

Following data exploration, for each Landsat year, a binomial generalized additive model 

(GAM; Wood 2006) in the mgcv R-package was used to relate the presence/absence of snow 

cover to temporal and topographic variables at 15 m resolution (N=654,858 grid cells). 

Restricted maximum likelihood was used to estimate penalized regression splines without a 

fixed number of degrees of freedom. Explanatory variables included: (1) calendar day; (2) 

solar radiation (estimated by calendar day); (3) normalized topographic position index (TPI; 

Wilson and Gallant, 2000) multiplied by slope for a 45m moving window; (4) normalized 

TPI multiplied by slope for a 225m moving window and (5) mean annual temperature. Solar 

radiation was calculated using the same approach detailed above with a 15 m DEM as the 

input. TPI was calculated as a proxy for convexity and concavity relative to a 

neighbourhood of surrounding cells. Normalizing TPI values between 0 and 1 and 

multiplying this term by slope angle was intended to account for the expected increased 

likelihood of snow accumulation and persistence in low-angle, convex areas (Fig. S2). The 

use of two different window sizes is supported by previous works (e.g. Revuelto et al., 

2014) and was intended to quantify local topographic heterogeneity both in a local 3×3 (45 

m2) grid cell neighbourhood and at the scale of a slope in a 15×15 (225 m2) neighbourhood. 

Mean annual temperature was estimated across the study area by (1) calculating mean 

annual temperature by elevation class from 2000 to 2013; (2) averaging mean annual 

temperature across years and (3) applying elevation-dependent regression in order to provide 

continuous temperature predictions. In the GAM, mean annual temperature values were 

grouped by slope orientation category (N, NE, E, SE, S, SW, W and NW) and a response 

curve was fit for each aspect class.

Fitted GAMs for each year were used to generate daily snow cover maps for five Landsat 

years (2000, 2001, 2002, 2013 and 2014). Although topographic variables remained 

constant, date and corresponding solar radiation varied by time step. Continuous probability 

of snow cover maps were converted to binary snow cover maps using the optimal threshold 

as determined by the true skill statistic (TSS) calculated between probability maps and 

observed snow cover maps (Allouche et al., 2006; Thuiller et al., 2009). Daily snow cover 

maps were exported for the five years at 15 m resolution.

Snow cover model validation

SPOT 4 images were obtained for four additional dates in 2013 (www.cnes.fr). After 

correcting reflectance values for topography (Shepherd and Diamond, 2003), snow cover 

maps were generated at 20 m resolution by applying a threshold to the normalized difference 

snow index (NDSI; Dozier, 1989). SPOT 4 and Landsat-derived snow cover maps were 

resampled to a common 15 m resolution and compared to predicted GAM snow cover maps 

both (1) non-spatially, i.e. comparing estimates of percent snow cover for the study area and 

(2) spatially, by applying the true skill statistic (TSS; Allouche et al., 2006).
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Combining snow cover with energy gradients

For the length of the estimated growing season and for the five years considered, snow cover 

maps were combined with daily maps of air temperature and solar radiation. Snow cover 

maps were disaggregated to 2 m resolution to align with high resolution maps and applied as 

a mask, e.g. if a grid cell contained snow, frost days, solar radiation and growing season 

days were set to zero. Temperature and solar radiation rasters were not upscaled to 15 m (the 

resolution of snow cover maps) in order to preserve variation in energy variables linked to 

finer topographic heterogeneity. Snow-free growing season days, frost days and solar 

radiation were summed for each grid cell and for each year, averaged across years and 

exported as 2 m raster layers. The sum of snow free growing season days from now on will 

be referred to as growing season length (GSL). In addition to calculating average GSL 

across years, the variability in GSL was also estimated by extracting the range (max-min) of 

GSL from all five years and for each grid cell. This metric will be referred to as GSL 

variability. Solar radiation (for one year) and growing season length (for all five years, and 

then averaged) were also calculated by summing daily radiation and growing season day 

maps in the absence of snow cover.

Relating energy gradients to community properties

Values for GSL and solar radiation with and without snow, GSL variability and snow-free 

frost days were extracted for each of the 100 vegetation plots and integrated into a common 

data table. Additionally, the percentage of bare ground at 5 m resolution was derived from a 

high-resolution aerial photograph using image segmentation and this information was 

extracted for each vegetation plot. We considered the percentage of bare ground to be a 

proxy for geomorphic disturbance related to slope and possible cryoturbation (Le Roux et 

al., 2013) and also for biotic disturbance linked primarily to Alpine marmot activity, 

Marmota marmota (Choler, 2005).

In order to simplify parameter comparison across models, ordinary least squares linear 

regression was used to relate GSL and solar radiation with and without snow to taxonomic 

and functional diversity metrics. Model performance was measured by adjusted R2 and 

mean absolute error (MAE). In the case of GSL and solar radiation filtered by snow cover, 

GSL variability, frost days and the percentage of bare ground were tested as explanatory 

variables against linear model residuals. Predictors explaining a significant portion of model 

residuals were retained and the best multivariate model (taking into account possible 

interaction effects) was fit to each of the seven biodiversity metrics tested (species richness, 

Simpson index, NMDS dissimilarity, CWM plant height, CWM SLA, functional diversity 

and hyperspectral-based leaf chlorophyll content). Finally, in order to test for spatial patterns 

in diversity metrics not explained by selected input variables, Moran’s I was systematically 

used to test for spatial autocorrelation among residuals of the best-fitting model.

RESULTS

Snow cover model validation

Model performance for snow cover GAMs was consistent across years, with adjusted R2 

varying from 0.75 to 0.81, and explained deviance varying from 71% to 81%. Comparison 
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of estimates of relative snow cover area across the study site for seven dates in 2013 showed 

strong agreement between observed snow cover maps derived from Landsat 8 and SPOT 

imagery with GAM model outputs (MAE = 6.02%, R2 = 0.94, P < 0.001, Fig. S3A-B). 

Agreement estimated by TSS between observed and predicted snow cover maps was 

especially elevated through mid-July (>0.50), followed by a decline in agreement after this 

date (mean TSS = 0.54; Fig. S3C). Sensitivity exhibited a similar pattern, with close to 

100% of true positives detected through July 15 followed by decreasing precision during the 

second half of the snowmelt period (mean sensitivity = 0.68).

Quantifying energy gradients

The maximum length of the potential alpine growing season based on inter-annual daily 

mean air temperatures was found to occur from April 22 to November 7 (Fig. S4). Here, we 

summed growing degree days and solar radiation from April 22 to August 15 as the length 

of the initial period of growth has been shown to be a primary factor driving plant 

phenology and growth in alpine systems (Wipf et al., 2009). Growing season length in this 

case is defined by relative differences in snowmelt timing prior to August 15 and therefore 

does not represent total energy received during the potential summer growing season.

Median differences in growing season length (GSL) and in the sum of solar radiation with 

and without snow cover duration were significant (P < 0.001). When GSL was plotted 

against elevation, standard error was substantially higher when snow cover was integrated 

(2.12 days as compared 0.38 days without snow), which was also the case for solar radiation 

(14,173 Watts/m2 with snow as compared to 6,569 Watts/m2 without). For a given 

elevation, the range of GSL with snow varied up to forty days, whereas without snow 

fluctuation in GSL relative to elevation was almost non-existent and could be attributed to 

inter-annual variability in daily air temperatures (Fig. 2). Within supplementary information, 

a video file illustrates the combination of daily snow cover and solar radiation maps for 

2013.

Relating energy gradients to community properties

Due to strong co-linearity between solar radiation and GSL estimated with snow cover 

(Pearson’s r = 0.96), energy gradients were analysed separately in relation to plant 

community properties. Pearson’s r estimated between GSL and solar radiation without snow 

was substantially weaker (r = −0.32). For GSL estimated with snow cover, adjusted R2 

increased and mean absolute error decreased for all taxonomic and functional diversity 

metrics, with the exception of leaf chlorophyll content (Table 1). While average gain in 

explanatory power when snow cover was taken into account was 3-4%, increase in R2 was 

particularly pronounced for community weighted mean plant height (+ 0.20) and for 

functional diversity (+ 0.10; Table 1). Slope estimates were consistently lower and intercept 

values were consistently higher for GSL with snow cover as compared to without (Table 1; 

Fig. 3). For the seven diversity metrics considered, 95% confidence intervals for parameter 

estimates (slope and intercept) did not overlap across models fit to gradients with and 

without snow cover (Table 1).
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For solar radiation, pronounced shifts in both explanatory power and the direction of 

relationships occurred. Whereas solar radiation exhibited no significant relationship with the 

Simpson index, plant height or functional diversity, these relationships became highly 

significant when snow cover was added (Table 1; Fig. 4C-D). Although the direction of 

relationships remained positive both with and without snow, substantial gains in R2 occurred 

when snow was included with respect to species richness (+0.21) and relative to first axis 

non-metric multi-dimensional scaling (NMDS) scores (+ 0.51). Shifts in R2 corresponded 

with similar magnitude changes in mean absolute error (Table 1). Negative slope values 

estimated without snow for species richness, Simpson, plant height and leaf chlorophyll 

content switched to being positive with snow, whereas the relationship between solar 

radiation and NMDS taxonomic dissimilarity changed from being positive to negative when 

snow was taken into account (Table 1; Fig. 4C-F). Explanatory power was slightly higher 

for specific leaf area (SLA) without snow (+ 0.02), however mean absolute error was the 

same for both models. Within the 95% quantile of SLA, snow bed plots expected to receive 

low solar radiation and exhibit high SLA were differentiated with snow (Fig. 4A), while 

these plots were scattered and poorly characterized when solar radiation was summed 

without snow cover (Fig. 4B). As was the case for GSL, 95% confidence intervals for slope 

and intercept estimates for models with and without snow cover did not overlap (Table 1).

Analysis of residuals

Overall, model residuals for solar and GSL responded in an equivalent manner with respect 

to other estimated environmental gradients (physical disturbance, frost stress and inter 

annual variability in GSL), although R2 was slightly higher for predictors applied to solar 

radiation residuals (Table 2). Accordingly, results for the two will be reported 

simultaneously. Physical disturbance explained a significant portion of residual variation for 

all taxonomic diversity metrics (Table 2). To a lesser degree, physical disturbance also 

captured variation in residuals for SLA and leaf chlorophyll content, but not for height or 

functional diversity. The estimated number of snow free frost days was not a significant 

predictor of residual error for diversity metrics, with the exception of a weak relationship 

with plant height residuals in the case of solar radiation. Inter-annual variability in GSL was 

a significant predictor of model residuals in the case of species richness, NMDS 

dissimilarity, plant height, SLA and leaf chlorophyll content, but not for Simpson or 

functional diversity (Table 2). GSL variability was greatest for high-elevation, south-facing 

scree communities, characterized by R. glacialis and O. dignya.

Model residuals were not found to be spatially auto-correlated for gradients estimated with 

snow cover (Table 2). When snow cover was not taken into account, however, residuals 

were spatially auto-correlated for both GSL and solar radiation in the case of NMDS 

dissimilarity and plant height (results not shown), even when other predictors were 

incorporated in the model (bare ground and GSL variability). The lack of spatial 

autocorrelation when snow was included indicates that remaining unexplained variance in 

diversity metrics was due to local heterogeneity not accounted for in the model rather than 

systematic error in the estimation of energy availability. Finally, adjusted R2 for the best 

fitting multivariate model was equivalent or slightly higher in the case of GSL as compared 

to solar radiation, with the exception of SLA for which the solar radiation model captured 
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4% more variation (Table 2). Averaging R2 across diversity metrics, the multivariate GSL 

model was able to explain 56% of variation in taxonomic diversity and 38% of variation in 

functional diversity. In comparison, the solar radiation model captured slightly less (51%) of 

variation in taxonomic diversity and an equivalent amount (37%) of variation in functional 

diversity.

DISCUSSION

Although previous studies have examined relationships between snow cover and alpine plant 

distribution patterns (Heegaard, 2002; Odland and Munkejord, 2008; Randin et al., 2009; 

Schöb et al., 2009) and functional traits (Choler, 2005; Venn et al., 2011), to the best of our 

knowledge, this study is the first to quantitatively assess the importance of snow cover 

duration for predicting multiple facets of alpine plant diversity and structure along 

environmental gradients at the community level. Methodologically, we used a combination 

of high-resolution remote sensing products, a digital elevation model and coarse-resolution 

gridded climate data to implement an empirical snow distribution model (see Appendix for 

further discussion of our method relative to other approaches). Conceptually, we show the 

enhanced ecological relevance and statistical predictive power of bio-climatic variables that 

combine energy inputs (temperature and solar radiation) with snow cover duration. Our 

findings furthermore indicate that in addition to energy gradients, inter-annual variability in 

growing season length, as well as physical disturbance, have strong effects on alpine plant 

community properties. Despite the small extent (~7 km2) of our study area, given the 

ubiquitous nature of snow cover throughout high-elevation systems (Billings, 1973), we are 

confident that our findings are applicable to alpine areas in other geographic contexts.

Ecological and statistical contributions of integrating snow cover

High variability in estimated growing season length for plots located at similar elevations 

but within contrasting mesotopographic contexts (Fig. 2) is in agreement with previous 

studies applying field-mapping techniques to differentiate environmental conditions for 

alpine plant communities (Walker et al., 1993; Choler, 2005). Our remote-sensing approach 

thus provides a spatially continuous method for estimating energy availability, which field 

measurements have shown is a strong driver of both community type and of aboveground 

phytomass production (Walker et al., 1994). Ideally, our estimate of growing season days 

would have been conducted using plot-level measures from in situ soil data loggers in order 

to better approximate thermal conditions found in micro-habitats (Scherrer and Körner, 

2011; Slavich et al., 2014). These data were not available for all Landsat years, however. 

Furthermore, and particularly given the remote-sensing approach used here, we argue that it 

is worthwhile to test the utility of variables that are widely available and that can be applied 

more readily at broader spatial scales, such as regional or in this case massif-scale air 

temperature. The local meteorological model we used (Durand et al., 2009) is based on 

continuous measurements from multiple local weather stations, and the outputs by 300 m 

elevation class that we downscaled are finer than standard macroclimatic variables, such as 

WorldClim (Hijmans et al., 2005). In the case of solar radiation, simulating daily clear sky 

gain in a GIS appears to be the best approach, given the difficulty and cost of 

instrumentation and the impracticality of interpolating point measurements. In summary, we 
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consider that both GSL and solar radiation filtered by snow cover duration represent good 

proxies of energy availability, providing a more realistic estimate of conditions experienced 

by plant communities as compared to thermal gradients estimated independently of snow 

cover duration. Furthermore, our selection of environmental variables based on ecological 

significance, e.g. plants only receiving radiation in the absence of snow, represents an 

important change in approach relative to modelling studies that frequently select predictors 

strictly on a statistical basis.

The comparatively strong statistical performance of GSL estimated without snow can be 

attributed to the underlying elevation gradient resulting from temperature downscaling. 

Despite the modest gain in explanatory power conferred by estimating GSL with snow cover 

(+ 3-4%), the shift in model parameters (slope and intercept) emphasizes that snow cover 

had a strong effect on model fit. Furthermore, the more substantial 20% gain in R2 in the 

case of plant height suggests that energy availability estimated with snow better captures the 

environmental filter controlling variation in community weighted mean plant height. By 

extension, the 10% increase in R2 relative to functional diversity is a strong indicator that 

functional convergence around an optimal trait in stressful conditions is better predicted 

when snow cover is taken into account (Table 1; Fig. 3E-F). As found in another study 

measuring leaf chlorophyll in the North American Rockies, we observed a decrease in leaf 

chlorophyll content with elevation (Spasojevic and Suding, 2012). However, high measured 

chlorophyll values for both Vaccinium sp.-dominated and F. paniculata-dominated 

communities, which are found at similar elevations but in opposite mesotopographic 

contexts, led to a decrease in R2 for GSL with snow as compared to without (Table 1). This 

finding indicates that there may be a broad range of community-aggregated leaf trait values 

for a given level of snow cover duration.

Our findings strongly caution against the use of incident solar radiation summed without 

consideration of snow cover duration as a predictive variable for modelling studies in alpine 

environments. We found summer solar radiation estimated without snow to be a weak and at 

times misleading predictor of both functional and taxonomic diversity. The pronounced rise 

in R2 for species richness, Simpson index, taxonomic dissimilarity (NMDS), plant height 

and functional diversity when snow was taken into account highlights the statistical gain 

afforded by summing snow-free incoming radiation during the growing season. 

Additionally, we found solar radiation summed without snow cover to be a significant 

negative predictor of species richness and leaf chlorophyll content. The switch to a more 

intuitive positive relationship between energy availability, photosynthetic activity and 

species richness points to the enhanced ecological significance gained by summing snow-

free solar radiation.

While it has been demonstrated that community weighted mean specific leaf area (SLA) 

declines with elevation (Bello et al., 2013), and that SLA increases in late-melting sites 

along a mesotopographic gradient (Choler, 2005), a third study shows that variation in 

community weighted mean SLA measured in the context of a combined mesotopographic 

and elevation gradient exhibits no clear trend (Spasojevic and Suding, 2012). Although we 

found a significant relationship between SLA and solar radiation with and without snow 

(Table 1; Figure 4A-B), consistently elevated mean absolute error points to the high range of 
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SLA values for a given value of radiation throughout the gradient. We do not consider the 

R2 value to be particularly meaningful in the case of SLA, given that previous studies have 

documented a wide range of community-weighted mean SLA values at high-elevation in 

relation to snow cover duration (Choler, 2005). Diverging functional strategies, linked to 

fellfield and snowbed communities, are apparent at upper elevations when solar radiation is 

filtered by snow cover, however this variation in the cold portion of the gradient is absent 

when received solar radiation is calculated in the absence of snow (Fig 4A-B).

Despite the documented importance of frost events as a stress factor affecting the growth 

and survival of alpine plants (Körner 2003; Wipf et al., 2006, 2009), our approach to 

summing snow-free frost days during the growing season did not constitute a significant 

predictor of model residuals (Table 2). We attribute this absence of explanatory power 

largely to a lack of measurement of sub-surface soil temperature, during the winter months 

but also in spring when plants are the most sensitive to snow-free frost damage (Banister et 

al., 2005). Significant residual variance explained by physical disturbance, particularly in 

the case of taxonomic diversity (Table 1), however, confirms that the percentage of bare 

ground estimated from high-resolution imagery is a meaningful proxy for biotic and 

geomorphic disturbances affecting community composition.

Finally, while it is difficult to classify inter-annual variability in snow cover duration and air 

temperature as stress or disturbance (Grime, 1977), the amplitude of variation in GSL was a 

significant predictor for model residuals for the majority of diversity metrics considered 

(Table 2). A study conducted in Japan documents highly variable phenology of snowbed 

species relative to inter-annual variation in snow melt, whereas fellfield species initiated 

flowering and seed-set at consistent times regardless of melt date (Kudo et al., 2006). In 

addition to phenology, our findings support the conclusion that the taxonomic and functional 

characteristics of alpine grasslands are sensitive to the inter-annual consistency of snow 

cover duration, which has implications for ecosystem functioning (Baptist and Choler, 

2008). Evidence from long-term monitoring of alpine plant communities’ response to 

environmental change in the Colorado Rockies furthermore indicates that directional shifts 

in plant diversity are accompanied by fine-scale oscillations in community composition 

linked to inter-annual variability in environmental conditions, including snow cover duration 

(Spasojevic et al., 2013).

Implications for predicting community responses to climate change

Our study, while focused on current patterns of alpine plant community properties, has 

strong implications for forecasting the response of alpine plants to global change. We view 

the shift in model parameters with and without snow as being of equivalent importance to 

the gain in explanatory power conferred by taking snow cover duration into account. More 

specifically, slope values were consistently higher when GSL was estimated without snow, 

which could lead to potentially extreme predictions of community responses to incremental 

climate change if snow cover is not taken into account.

As a next step emerging from this work, geared toward linking energy availability to alpine 

plant diversity and functioning (phenology and productivity), we recommend summing 

received snow-free solar radiation when air temperature is above a physiologically 
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meaningful threshold, such as 0° C. Ecologically, this metric of energy availability would 

aim to quantify the amount of incoming solar radiation available for photosynthesis, as 

mediated by snow cover duration. Statistically, it would be possible to integrate available air 

temperature scenarios for the coming decades in order to define the potential growing season 

length (IPCC, 2007), even if clear sky solar radiation remained constant for the prediction 

period. An ongoing challenge involves the procuration of future, climate-driven snow cover 

maps at appropriate spatial and temporal scales. Despite difficulties predicting persistent 

snow patches, recent studies demonstrate that forecasting the response of snow regimes to 

climate change is becoming increasingly feasible due to advances in hydrological modelling 

in mountainous study areas (Kobierska et al., 2013; Randin et al., 2014).

Conclusion

While other studies have examined current patterns in order to imply the relevance of snow 

cover for predicting responses of alpine plants to global change (Bannister et al., 2005; Wipf 

et al., 2009; Kudo et al., 2010; Venn et al., 2011), to the best of our knowledge ours is the 

first to demonstrate the utility of high-resolution imagery for mapping snow cover patterns 

in complex alpine terrain, and furthermore to provide a methodological framework for 

quantifying relationships between snow-mediated energy budgets and the multiple facets of 

taxonomic and functional diversity. The findings reported here underscore the importance of 

considering spatial heterogeneity in both thermal and nival regimes in order to link alpine 

plant community properties to environmental gradients, both for the present and in the 

context of global change.
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APPENDIX

Strengths and limitations of the snow distribution model

Predicting snow height, snow water equivalent and snow distribution at spatial resolutions 

pertinent to mesotopographic variation in an alpine context (<50 m) constitutes an on-going 

challenge in the realm of process-based climate and hydrological modelling (Vionnet et al., 

2014). Mechanistic models have been developed for this purpose, taking into account 

meteorological forcing, land cover and topography (PREVAH – Viviroli et al., 2009) and 
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also snow redistribution by wind (SnowModel - Liston and Elder, 2006; Crocus - Vionnet et 

al. 2014). Such models are well-suited to forecasting the effect of climate change on snow 

cover regimes (Kobierska et al., 2013), and have already been applied successfully to 

improve predictive variables in a species distribution modelling context (Randin et al., 

2009). For the time being and from the standpoint of plant ecologists, however, we are not 

convinced that existing process-based models are superior to a remote sensing-based 

approach at <20 m resolution, particularly when the critical period of interest is the 

snowmelt cycle. A recent study comparing snow cover maps at 20 m resolution generated by 

SnowModel and PREVAH in the Austrian Alps to observed snow cover maps classified 

from SPOT imagery found low agreement during the melting period (5.4% of true positives 

were detected in the case of PREVAH, and 10.1% for SnowModel; Randin et al., 2014). 

Comparison of predicted snow cover maps with 2013 Landsat and SPOT imagery in this 

study, in contrast, yielded an average detection of 68% of true positives during the melting 

period, although this rate did fall below 50% after July 15 (Fig. S3D). In short, while a 

process-based approach to snow modelling is ultimately the most desirable, we argue that 

the approach used here is viable for two principal reasons: (1) the spatial patchwork 

generated by snowmelt patterns is well captured by high-resolution imagery (Fig. S1), 

allowing for simplistic modelling of a highly complex phenomenon and (2) our approach is 

applicable by ecologists with access to high-resolution digital elevation data and Landsat 

imagery.

Despite a number of advantages, we are aware that our empirical approach to snow 

modelling falls short for precisely predicting end of season snow patches persisting through 

early August. Late-melting sites largely independent of elevation caused by snow 

accumulation due to avalanches, for example, were not captured by our model. While model 

performance remained high for the majority of the melt period from the end of April to mid 

July (Fig. S3A-B), the decline in spatial agreement at the end of summer as compared to 

observed snow cover maps can be attributed to an increasing relative importance of 

mesotopographic context and a decreasing relative importance of date and elevation over the 

course of the melt cycle. Failure to account for this tendency in the model explains at least in 

part why the predicted ranking of snowmelt by site differed for certain high-elevation plots 

from field observations. Although late July snow patches can affect the growing season 

length for certain nival species such as D. grandiflorum and G. reptans, the first snow free 

day for snow bed communities dominated by S. herbacea., A. pentaphyllea and C. foetida 

typically occurs before the beginning of July within the study area (Choler 2005). The strong 

spatial agreement between observed and predicted snow cover maps through July 15 

therefore justifies the approach adopted here for modelling snowmelt patterns (Fig. S3), and 

suggests that our method can be expected to perform well in the context of other alpine 

environments.
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Figure 1. 
Locator map for the study area displaying elevation and the location of vegetation plots. * 

Shows the location of the study area in the inset map.
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Figure 2. 
Variation in growing season length relative to elevation estimated with snow cover 

(triangles) and without snow cover (circles). Trend lines represent the running mean (k=20), 

while the shaded ribbon represents the running mean +/− the running mean absolute error 

(k=20)
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Figure 3. 
First axis Non-Metric Multidimensional Scaling (NMDS) score (A-B), species richness (C-

D) and functional diversity (E-F) plotted relative to growing season length estimated with 

(S) and without (NS) snow cover. Point symbols correspond to quartiles of the NMDS score. 

Black points in (E) and (F) represent significant functional convergence. Shadded ribbons 

correspond to the linear model +/− the running mean absolute error (k=25).
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Figure 4. 
Specific Leaf Area (SLA, A-B), plant height (C-D) and per cent leaf chlorophyll content 

(μg/cm2; E-F) plotted relative to the sum of solar radiation (Watts/m2) estimated with (S) 

and without (NS) snow cover. Point symbols correspond to quartiles of the NMDS score. 

Shadded ribbons correspond to the linear model +/− the running mean absolute error (k=25). 

CWM = community weighted mean. In (A) and (B), dashed lines represent the best fit 

regression applied to the 95% quantile of CWM SLA values.
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Table 1

Linear model parameters, including 95% confidence intervals and performance measures (adjusted R2 and 

Mean Absolute Error, MAE) for gradients estimated with (S) and without (NS) snow.

Taxonomic (N=100) Functional

Richness Simpson NMDS Height (N=98) SLA (N=95) FD (N=67) Chlorophyll (N=74)

GSL

Intercept estim. 10.933 0.760 0.507 −1.933 11.712 0.052 17.952

Intercept lower 5.529 0.730 0.429 −4.373 10.169 0.040 4.562

Intercept upper 16.337 0.791 0.585 0.507 13.255 0.065 31.342

Slope estim. 0.288 0.001 −7.78 × 10−3 0.196 0.035 7.56 × 10−4 0.296

Slope lower 0.208 0.001 −8.94 × 10−3 0.160 0.012 5.70 × 10−4 0.113

Slope upper 0.368 0.002 −6.62 × 10−3 0.231 0.057 9.43 × 10−4 0.478

MAE 6.673 0.035 0.096 2.804 1.784 0.012 11.008

R2 (adj.) 0.334*** 0.292*** 0.641*** 0.543*** 0.080** 0.495*** 0.114**

GSL (NS)

Intercept estim. −128.947 −0.056 4.523 −84.062 −4.082 −0.335 −336.700

Intercept lower −178.584 −0.316 3.804 −110.305 −17.904 −0.467 −472.083

Intercept upper −79.311 0.205 5.243 −57.820 9.741 −0.202 −201.309

Slope estim. 1.147 8.37 × 10−3 −0.042 0.871 0.166 4.0 × 10−3 3.410

Slope lower 1.000 5.97 × 10−3 −0.048 0.630 0.039 2.79 × 10−3 2.181

Slope upper 1.913 10.8 × 10−3 −0.035 1.112 0.293 5.22 × 10−3 4.640

MAE 7.787 0.035 0.096 3.530 1.801 0.013 9.914

R2 (adj.) 0.283*** 0.324*** 0.609*** 0.342*** 0.057* 0.390*** 0.288***

Solar

Intercept estim. 13.549 0.771 0.438 −0.763 11.137 0.056 25.270

Intercept lower 8.174 0.741 0.353 −3.164 9.731 0.044 12.040

Intercept upper 18.924 0.800 0.523 1.639 12.543 0.068 38.500

Slope estim. 3.88 × 10−5 2.03 × 10−7 −1.05 × 10−6 2.79 × 10−5 6.817 × 10−6 1.073 × 10−7 3.00 × 10−5

Slope lower 2.63 × 10−5 1.35 × 10−7 −1.25 × 10−6 2.23 × 10−5 3.596 × 10−6 7.96 × 10−8 1.848 × 10−6

Slope upper 5.13 × 10−5 2.71 × 10−7 −8.57 × 10−7 3.41 × 10−5 1.004 × 10−5 1.35 × 10−7 5.810 × 10−5

MAE 6.953 0.036 0.107 2.941 1.705 0.012 10.894

R2 (adj.) 0.273*** 0.257*** 0.531*** 0.505*** 0.151*** 0.471*** 0.046*

Solar (NS)

Intercept estim. 60.842 0.941 −0.617 13.897 2.696 0.099 113.500

Intercept lower 38.285 0.816 −1.059 1.357 −2.328 0.025 69.508

Intercept upper 83.399 1.066 −0.174 26.438 7.721 0.174 157.568

Slope estim. −4.28 × 10−5 −1.19 × 10−7 8.50 × 10−7 −4.37 × 10−6 1.531 × 10−5 1.62 × 10−9 −1.02 × 10−4

Slope lower −7.33 × 10−5 −2.88 × 10−7 2.51 × 10−7 −4.37 × 10−6 8.504 × 10−6 −9.80 × 10−8 −1.61 × 10−4

Slope upper −1.22 × 10−5 5.066 × 10−8 1.45 × 10−7 −4.37 × 10−6 2.211 × 10−5 1.01 × 10−7 −4.19 × 10−6

MAE 7.745 0.041 0.160 4.132 1.572 0.018 10.418

R2 (adj.) 0.064** 0.009 0.065** −0.008 0.168*** −0.015 0.126**
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P-values are expressed as follows:

NMDS = scores from the first axis of Non-Metric Multidimensional Scaling ordination; SLA = community weighted mean Specific Leaf Area; FD 
= Functional Diversity.

***
0>0.001

**
0.001>0.01

*
0.01>0.05.
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Table 2

Residual variance explained (adjusted R2) by disturbance (% bare ground), frost (number of snow-free frost 

days) and inter-annual growing season length (GSL) variation. Model performance (adjusted R2) and results 

from Moran’s I test are reported for the best model. Significant predictors of model residuals were included in 

the best model

Taxonomic Functional

Richness Simpson NMDS Height SLA Functional diversity Chlorophyll

GSL Residual R2 (disturbance) 0·098*** 0·211*** 0·240*** −0·002 0·055* 0·005 0·054*

Residual R2 (frost) −0·01 0·009 −0·001 0·024 −0·002 −0·015 0·026

Residual R2 (variation) 0·079** −0·009 0·069* 0·079* 0·060** −0·013 0·041*

Moran’s I (P value) 0·305 0·901 0·116 0·725 0·359 0·121 0·95

R2 (best model) 0·434*** 0·467*** 0·768*** 0·534*** 0·291*** (x) 0·495*** 0·213***

Solar Residual R2 (disturbance) 0·123*** 0·236*** 0·257*** −0·008 0·047* 0·009 0·065*

Residual R2 (frost) −0·004 0·002 −0·009 0·030* −0·011 −0·014 −0·005

Residual R2 (variation) 0·158*** 0·008 0·197*** 0·037* 0·053* 0·012 0·086**

Moran’s I (P value) 0·333 0·917 0·131 0·462 0·453 0·131 0·709

R2 (best model) 0·434*** 0·456*** 0·744*** 0·525*** 0·332*** (x) 0·471*** 0·195***

P values:

(x) denotes an interaction effect between solar/GSL and GSL variation (all other multivariate combinations are additive).

NMDS, scores from the first axis of NMDS ordination; SLA, community-weighted mean SLA.

*
P < 0·05

**
P < 0·01

***
P < 0·001.
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