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Abstract

Obesity and low cognitive function are associated with multiple adverse health outcomes across 

the life-course. They have a small phenotypic correlation (r=−0.11; high BMI - low cognitive 

function), but whether they have a shared genetic aetiology is unknown. We investigated the 

phenotypic and genetic correlations between the traits using data from 6 815 unrelated, genotyped 

members of Generation Scotland - an ethnically homogeneous cohort from five sites across 

Scotland. Genetic correlations were estimated using: same-sample bivariate GCTA-GREML; 

independent samples bivariate GCTA-GREML utilising Generation Scotland for cognitive data, 

and four other samples (n=20 806) for BMI; and bivariate LDSC analysis utilising the largest 

GWAS summary data on cognitive function (n=48 462) and BMI (n=339 224) to date. The GWAS 

summary data were also used to create polygenic scores for the two traits, with within- and cross-
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trait prediction taking place in the independent Generation Scotland cohort. A large genetic 

correlation of −0.51 (SE 0.15) was observed using the same-sample GCTA-GREML approach 

compared to −0.10 (SE 0.08) from the independent samples GCTA-GREML approach, and −0.22 

(SE 0.03) from the bivariate LDSC analysis. A genetic profile score using cognition-specific 

genetic variants accounts for 0.08% (P=0.020) of the variance in BMI, and a genetic profile score 

using BMI-specific variants accounts for 0.42% (P=1.9 × 10−7) of the variance in cognitive 

function. Seven common genetic variants are significantly associated with both traits at P<5 × 

10−5, which is significantly more than expected by chance (P=0.007). All these results suggest 

there are shared genetic contributions to BMI and cognitive function.
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Introduction

The obesity epidemic in the UK is a major public health problem. High body mass index 

(BMI), a marker of obesity, has been associated with an increased risk of multiple disease 

and health outcomes, such as type 2 diabetes and cardiovascular disease.1-3 It has also been 

associated with lower cognitive function.4 Possible mechanisms of this link include brain 

atrophy5 and type 2 diabetes,6 although the causality of such associations is not yet clear.7 

Moreover, a recent study identified an association between increased BMI and a lower risk 

of dementia.8 Studies show genetic influences on both cognitive function9 and BMI.10 Twin 

models indicate inconsistent findings regarding the genetic correlation between the 

traits.11-13 Some report a genetic correlation of around 0.27 (such that genes for poorer 

cognitive performance correlate associate with genes for a higher BMI),12 others a genetic 

correlation of 0.1213, while one found a null association.11 However, a genetic correlation 

has not yet been examined at the molecular genetic level. Identification of any shared 

genetic contributions could aid our understanding of the phenotypic association between 

lower cognitive function and higher BMI. This could also shed light on the aetiology of the 

health outcomes with which both are associated, such as increased mortality risk.14-17

Molecular genetic studies have shown that common genetic variants explain around 30% of 

individual differences in cognitive function9 and around 10-20% of individual differences in 

BMI in adults (~30% in adolescents).18-20 However, this approach, using genome-wide 

complex trait analysis (GCTA-GREML), does not identify the specific variants and genes 

that contribute to the associations. One approach that utilises information from specific 

genetic variants is polygenic scoring, which uses effect sizes (or, the strength of associations 

of different loci with the phenotype in question) from large GWASs to build linear predictors 

of the phenotype in independent cohorts. For example, previous studies have shown that a 

polygenic score for cognitive function (based on a GWAS of 48 462 people) predicts 1.27% 

of the variance in cognitive function in an independent cohort.9 One can also examine 

polygenic scores for correlated traits e.g., a higher polygenic score for schizophrenia is 

correlated with greater life-course cognitive decline.21
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Here, we examine the genotypic correlations between cognitive function and BMI. The 

genetic correlations are calculated using three different approaches: (1) bivariate GCTA-

GREML22,23 where both BMI and cognitive function are measured in the same sample, (2) 

bivariate GCTA-GREML where the traits are measured in different samples, and (3) LDSC 

regression24, which utilises summary GWAS data with potentially overlapping participants 

for each trait. We also relate polygenic risk scores for the two traits - predicting both within 

and across traits. Finally, we examine the overlap between existing GWAS analyses of both 

BMI and cognitive function to identify individual SNP variants and genes that may be 

involved in shared biological pathways.

Material and Methods

Data for the same-sample GCTA-GREML analysis, the phenotypic correlation analysis, and 

the independent cohort for the polygenic prediction analysis came from Generation 

Scotland: the Scottish Family Health Study, a population-based, family-structured cohort 

that sampled over 24 000 people in Scotland between the years 2006 and 2011.25,26 The 

study was set up for family-based genetic epidemiology research; health outcomes including 

coronary heart disease, stroke, cancer, chronic obstructive pulmonary disease, diabetes, and 

mental illness are highly prevalent in Scotland. The sampling frame of the study focused on 

7 953 probands between ages 35-65 years, who were registered with participating general 

medical practitioners from five regional centres: Glasgow, Tayside, Ayrshire, Arran, and the 

North-East of Scotland. The probands were invited to participate through the patient lists at 

the participating general medical practices; in the UK ~96% of the population is registered 

with a general practitioner.26 Up to three generations of the probands’ relatives were then 

recruited. There was no ascertainment bias towards a particular disease or health condition. 

A full description of the cohort has been given previously25,26 and at 

www.generationscotland.org.

Cognitive function data for the independent-samples bivariate GCTA genetic correlation 

analysis came from Generation Scotland.25,26 Open access data from dbGaP for the Gene 

Environment Association Studies initiative (GENEVA) project (comprising three studies, 

total n=14 347: Atherosclerosis Risk in the Community - ARIC, Nurses’ Health Study - 

NHS, and the Health Professionals’ Follow-up Study - HPFS) and the Health and 

Retirement Study (HRS, n=8,652) were used for the BMI analysis. Their dbGaP accession 

numbers are phs000090.v1.p1 (ARIC), phs000091.v2.p1 (GENEVA-T2D), and 

phs000428.v1.p1 (HRS). A summary description of the three cohorts and details about 

quality controls of genotyped data and imputation can be found elsewhere.27

For the LDSC genetic correlation analysis, summary data from the largest GWAS studies to 

date for cognitive function9 and BMI10 were used.

Generation Scotland Ethical details

All components of Generation Scotland received ethical approval from the NHS Tayside 

Committee on Medical Research Ethics (REC Reference Number: 05/S1401/89). GS:SFHS 

has also been granted Research Tissue Bank status by the Tayside Committee on Medical 

Marioni et al. Page 3

Mol Psychiatry. Author manuscript; available in PMC 2016 November 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.generationscotland.org


Research Ethics (REC Reference Number: 10/S1402/20), providing generic ethical approval 

for a wide range of uses within medical research.

Body Mass Index in Generation Scotland

BMI was measured as weight in kilograms divided by height in metres squared 

(measurement details in Supplementary Information File 1). Participants with a BMI less 

than 17 or greater than 50 were considered as outliers and removed prior to the analyses.

Cognitive function in Generation Scotland

A general cognitive factor was obtained via a principal components analysis of four 

cognitive tests that measured processing speed (Wechsler Digit Symbol Substitution Task28), 

verbal declarative memory (Wechsler Logical Memory Test; sum of immediate and delayed 

recall of one paragraph29), executive function (phonemic Verbal Fluency Test; using the 

letters C, F, and L, each for one minute30), and vocabulary (the Mill Hill Vocabulary Scale; 

junior and senior synonyms combined31). The first unrotated principal component, which 

explained 42% of the variance of the four tests, was extracted and used as the cognitive 

variable of interest. Three of the four cognitive tests that were used to derive the general 

cognitive factor were based on verbal stimuli (Verbal Fluency Test, Mill Hill Vocabulary 

Scale, and the Logical Memory Test); however they, along with the Digit Symbol test, 

targeted different domains of cognitive function - executive function, vocabulary, memory, 

and processing speed, respectively. The statistically derived general cognitive factor 

therefore includes common variance from these four different facets of cognitive function.

Generation Scotland Genotyping

Genome-wide genotyping data were measured on a sub-sample of 10 000 participants using 

the Illumina HumanOmniExpressExome-8 v1.0 DNA Analysis BeadChip and Infinium 

chemistry.32 Measurement details and quality control steps are reported in Supplementary 

Information File 1. Post-QC, there was an analysis sample of 6 815 unrelated individuals. 

SNPs with a MAF below 1% were excluded prior to the analysis to prevent rare variants 

having an influence on the downstream analyses.

Generation Scotland, GENEVA, and HRS imputation and Quality Control

Genotype data in Generation Scotland, GENEVA, and the Health and Retirement Study 

were imputed to either HapMap2 or 1000G. Imputation details and quality control steps are 

reported in Supplementary Information File 1. Post-QC, there were 20 806 unrelated 

individuals for analysis in the combined data set. Both phenotypes were adjusted for age in 

each gender group in each cohort separately. Since the genotype data were imputed based on 

different reference panels, we included in the analysis only the SNPs in common with the 

HapMap3 panel because the HapMap3 SNP set was optimized to capture common genetic 

variation in the human genome.33

Statistical Analyses

All phenotypic data analyses were conducted on the unrelated Generation Scotland cohort 

who had genome-wide genotyping data available (n=6 815). To determine the associations 
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between cognitive function and BMI, a linear model was used with general cognitive factor 

as the independent variable. Age and sex were included as covariates.

Age-, sex-, and population stratification-adjusted residuals for general cognitive function and 

BMI were computed by linear regression. A conservative number (fourteen) of ancestry 

components were included.34 The residual values were carried forward to genome-wide 

complex trait analyses – GCTA-GREML22,35 – to obtain the proportion of variation in the 

variables explained by common single nucleotide polymorphisms. The univariate GCTA-

GREML estimates for general cognitive function have been reported previously.34

Three methods were used to estimate the genetic correlation between BMI and general 

cognitive function. First, bivariate GCTA-GREML23 was run in Generation Scotland where 

the phenotypic and genotypic information came from the same unrelated individuals. This 

approach estimates the extent to which genetic similarities correlate with phenotypic 

similarities. However, the relatively small sample size (and corresponding large standard 

errors) for this analysis resulted in an imprecise estimate. Second, bivariate GCTA-GREML 

analysis23 was used on cognitive data from Generation Scotland and BMI data in American 

adults from four publicly available datasets. This approach estimates the genetic correlation 

through the SNP/phenotypic similarities in the independent samples. Third, summary 

GWAS output from the Davies et al.9 and Locke et al.10 papers were used to estimate the 

genetic correlation via the LDSC regression method24. This method does not require raw 

genotype or phenotype information, nor does it matter if there is an overlap of individuals in 

the two GWAS analyses. Briefly, this approach utilises LD structure (SNPs in regions of 

high LD will tag a greater part of the genome than those in low LD) whereby a SNP’s 

association with a phenotype will result from its individual contribution and that of the 

surrounding SNPs in LD with it. In a bivariate setting, the expectation of the product of the 

statistical scores (z-scores) for the SNP-phenotype associations can be expressed as an 

intercept term and another term, including the genetic covariance between the traits, which 

does not depend on sample overlap for the input GWAS data.

A polygenic score for general cognitive function was calculated using data from a GWAS of 

general cognitive function (n=48 462)9; Generation Scotland did not contribute to the meta-

GWAS. The greatest proportion of variance (1.27%, P=1.5 × 10−17) explained in general 

cognitive function was for a predictor that utilised SNPs with a P-value less than 0.5 in 

creating the score.9 Here, we use the same predictor. For a brief summary of polygenic risk 

scoring, please see Supplementary Information File 2.

A polygenic score for BMI was created using summary data from a recent meta-analysis, 

which included 339 224 individuals in a meta-analysis.10 Generation Scotland was not 

included in the study. The greatest proportion of phenotypic variance in BMI is explained by 

a predictor that contains a subset of all HapMap 3 SNPs.10 We applied this predictor to our 

data.

Linear regression models were used to assess the relationship between the phenotypes and 

the polygenic scores, controlling for age, sex, and population stratification (the first 14 PCs). 
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The polygenic scores were pre-adjusted for age, sex, and the 14 PCs with the residuals being 

used in the main models.

Using the results from the polygenic prediction analysis, we can provide estimates for the 

genetic correlation between cognitive function and BMI, based on their theoretical 

relationships (Supplementary Information File 3).

The GWAS output from the general cognitive function and BMI studies were merged to 

identify SNPs common to both analyses (Supplementary Information File 4). Significant hits 

at a suggestive threshold of P<5 × 10−5 in both studies were carried forward as potential 

polygenic variants that are important for individual differences in both traits. The total 

number of hits observed was compared to the expected number, based on an assumption of 

the two traits being independent.

Analyses were carried out in R.36 The polygenic risk scores were created using Plink.37,38

Results

A summary of the Generation Scotland cohort is presented in Table 1. The cohort had a 

median (IQR) age of 57 (49-63) years. 59% of the cohort was female and the median 

education attained was 12-13 years. The mean BMI of the cohort was in the overweight 

range: 27.1 (SD 4.9) kg/m2. The summary data (means and standard deviations) for the four 

cognitive tests that were used in the construction of the general cognitive factor are also 

presented in Table 1.

The age- and sex-adjusted linear regression model (Table 2) yielded a standardised effect 

size (beta) of −0.10 (SE 0.01, P=1.3 × 10−14, n=6 273) between the phenotypic measures of 

general cognitive function and BMI - better cognitive function is correlated with lower BMI. 

There was no evidence for a non-linear association between cognitive function and BMI 

after controlling for age and sex (P = 0.090). A boxplot showing the distribution of cognitive 

function scores by BMI decile is presented in Supplementary Information File 5.

Estimates of the SNP-based heritabilities are presented in Table 3. The first approach, 

utilising data from the Generation Scotland sample alone, found univariate estimates, which 

represent the proportion of variance in the traits explained by common genetic variants, of 

29% (SE 6%) for cognitive function and 28% (SE 6%) for BMI. The estimates for the 

second approach, which used data from Generation Scotland for cognitive function and the 

four US-based cohorts for BMI, were 31% (SE 5%) for cognitive function and 22% (SE 2%) 

for BMI. The estimates for the third approach (LD scoring), which used summary GWAS 

data from the Davies et al.9 and Locke et al.10 papers, were substantially lower for both 

traits: 15% (SE 1%) for cognitive function and 14% (SE 1%) for BMI.

Estimates of the genetic correlation between cognitive function and BMI for the three 

approaches are also reported in Table 3. The first method, bivariate GCTA-GREML using 

data from Generation Scotland for both traits, yielded a genetic correlation of −0.51 (SE 

0.15). The estimate of the same genetic correlation was −0.10 (SE 0.08) using the 

independent-samples GCTA-GREML (GS data for cognitive function, GENEVA and Health 
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and Retirement Study data for BMI). The estimate for the third approach (LDSC regression), 

which used the summary GWAS data from Davies et al.9 and Locke et al.10 was −0.22 (SE 

0.03). All three estimates consistently indicate that the genes associated with better cognitive 

function are also associated with a lower BMI.

The polygenic predictions, which were built using the GWAS summary data from the Davies 

et al.9 and Locke et al.10 GWASs and applied to the Generation Scotland cohort, are shown 

in Table 4. The polygenic score for general cognitive function predicted general cognitive 

function, explaining 0.81% of its variance (P=3.3 × 10−13, n=6 273). The polygenic score 

for general cognitive function also predicted 0.08% of the variance in BMI (P=0.020, n=6 

463). The polygenic predictor for BMI explained 7.1% of the variance in BMI (P<2 × 10−16, 

n=6 463), consistent with that reported previously,10 and 0.42% of the variance in general 

cognitive function (P=1.9 × 10−7, n=6 273).

An analysis of the overlapping SNP variants from the cognition and BMI meta-GWASs 

identified seven variants (from fours genes: AKAP6, TOMM40, TMEM161B, and 

TNRC6B) that were significant for both traits at P<5 × 10−5, which was greater than by 

chance (P=0.007) (Supplementary Information File 4).

Discussion

This study found an overlap of genetic influences on two important correlates of health 

outcomes over the life course: BMI and cognitive function. The phenotypic correlation 

between the traits was −0.11, indicating that better cognitive function is associated with 

lower BMI. The three estimates of the genetic correlation ranged between −0.10 and −0.51. 

A genetic correlation quantifies how genetic variants in one trait are correlated with genetic 

variants for another trait, averaged over the genome. Here, the gene variants associated with 

increased cognitive function scores were associated with lower BMI. We also showed, using 

polygenic risk score predictors derived from independent studies, that individual common 

genetic variants associated with BMI explain a significant proportion of the variance in 

cognitive function, and vice versa. These proportions (0.42% and 0.08%) are very small. 

However, when they are compared to the proportions of variance that each polygenic risk 

score explained in their own respective phenotype (0.81% and 7.1%), this makes the former 

appear more substantial. There are seven individual genetic variants (four independent) that 

are associated with both traits at P<5×10−5, which is significantly more than expected by 

chance (P=0.007). Taken together, these findings point toward some shared biological 

underpinnings for BMI and general cognitive function.

The three empirical approaches taken to calculate the genetic correlation along with the 

theoretically-derived estimate, based on the polygenic prediction results, is a strength of the 

study. Another strength is the novelty of the hypotheses being tested - using polygenic 

scores from BMI to predict general cognitive function and vice versa. Such analyses are 

important as they aid our understanding of common sets of genetic variants that associate 

with multiple outcomes. We explored this further by examining the overlap of top hits from 

previous GWAS analyses of general cognitive function and BMI.
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Although the Generation Scotland study had a large sample size, the same sample genetic 

correlation still carried a relatively large standard error. Compared to the same-sample 

analysis, the independent-samples bivariate GCTA-GREML reduced the SE of the genetic 

correlation from 0.15 to 0.08, which then dropped further to 0.03 when we utilised the 

LDSC regression approach. With the decreasing standard error came a convergence of the 

genetic correlation to an estimate of −0.22 from the LDSC regression analysis, which was 

contained in the 95% confidence intervals for independent-sample and just inside of the 

same-sample GCTA-GREML interval. Again, it is worth noting that the same-sample 

GCTA-GREML estimate was measured with a lack of precision - its 95% confidence 

interval was [−0.80, −0.22]. Theoretically, we would expect, given the polygenic prediction 

results, to have observed a genetic correlation of around −0.32 to −0.24 (Supplementary 

Information File 3), which is in line with the genetic correlation estimated from the LDSC 

regression analysis. One limitation of the Generation Scotland cohort for this study is the 

cross sectional nature of the data. It may be the case that the association between BMI and 

cognitive function is diluted when looking in a cohort with a broad age-range.

The univariate GCTA-GREML estimates obtained here are in accordance with those 

previously reported for general cognitive function9 and slightly higher for BMI.18,19 The 

small within-trait polygenic prediction estimates correspond to those reported in the 

literature for cognitive abilities (~1%).9 The results accord with one of the predictions of the 

system integrity hypothesis, whereby cognitive function is hypothesised to be associated 

with health outcomes because they all reflect a common general build quality of an 

organism.39-41 These results are also consistent with the finding that BMI-related diabetes is 

equally strongly associated with lower cognitive function before and after the onset of the 

disease.7 Larger meta-analysis GWAS studies for cognitive function and BMI will improve 

the predictive power of the polygenic predictors. Sequencing studies in very large samples 

that incorporate rare variants might also help us explain some of the missing heritability 

between molecular estimates of heritability and twin-based findings.

BMI and cognitive function are associated with numerous health outcomes.1-3,15,42,43 

Whereas the phenotypic correlation between the two traits is small, the genetic correlation is 

moderate, suggesting common biological pathways. Another possible explanation is that the 

associations reflect causal pathways. Techniques such as Mendelian Randomisation may 

help to tease apart the extent to which the pathways are shared versus linear (e.g., genes to 

cognitive function to BMI).44 The GWAS hits that are significant for both traits are found in 

genes linked to insulin-related processes (AKAP6), lipid transportation and Alzheimer’s 

disease (TOMM40), retinal arterioral calibre (TMEM161B), and height (TNRC6B). The 

TOMM40 SNP also tags the e4 allele defining SNP of APOE. Given the links between type 

2 diabetes and impaired cognitive function, retinal microvascular disease and cognitive 

function, and height with cognitive function (and, obviously BMI) these are plausible 

candidates that warrant further exploration. It is possible that there is an overlap in the 

anatomical substrate in the brain for the expression of the genes associated with both 

cognitive function and BMI.10 Future studies could consider downstream analyses to 

investigate if these markers lie on causal pathways for the determination for either trait. For 

example, epigenetic marks such as DNA methylation have been identified as correlates of 
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BMI in both blood and adipose tissue45 as well as correlates of dementia in a case-control 

study of diabetics.46

Understanding the genetics of BMI and its overlap with the genetics of other correlates/

predictors of health outcomes e.g., cognitive function, will help elucidate common pathways 

of disease outcomes. This study identified a small phenotypic correlation between BMI and 

cognitive function that is roughly half the size of the genetic correlation. Although genetic 

prediction of these traits is very small when applied to an individual, when coupled with the 

overlapping SNP hits for the traits, they highlight shared genetic pathways for two important 

predictors of health outcomes, BMI and cognitive function.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Characteristics of the unrelated genotyped Generation Scotland cohort study members.

Unrelated Genotyped Cohort

Variable n Mean (SD) or N (%) Range

Demographics

Age (years) 6 463 57* 49-63 18-98

Sex - Female 6 463 3 783 59

Body mass index (kg/m2) 6 463 27.1 4.9 17-50

Cognitive function

Digit Symbol Test (0-13) 6 379 68.5 16.7 0-133

Verbal Fluency (0-inf) 6 392 41.0 12.1 0-97

Logical Memory (0-50) 6 386 30.3 7.9 0-50

Mill Hill Vocabulary Scale (0-44) 6 353 31.3 4.7 0-44

*
Median (quartiles).
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Table 2

General cognitive function associations with BMI.

General cognitive function n Beta* SE P

Unadjusted association 6 273 −0.11 0.01 <2.0 × 10−16

Adjusted for age and sex 6 273 −0.10 0.01 1.3 × 10−14

*
The dependent variable and continuous independent variables were standardised in the regression models.
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Table 3

Age-, sex-, and population stratification-adjusted univariate and bivariate GCTA-derived and LDSC-derived 

estimates.

Univariate estimates n est* SE

General cognitive function

Same-Sample GCTA 6 273 0.29 0.06

Independent-Samples GCTA 6 985 0.31 0.05

LDSC 48 462 0.15 0.01

BMI

Same-Sample GCTA 6 463 0.28 0.06

Independent-Samples GCTA 20 806 0.22 0.02

LD Score 339 224 0.14 0.01

Bivariate estimates N rG SE

Same-sample GCTA 6 273:6 463 −0.51 0.15

Independent-Samples GCTA 6 985:20 806 −0.10 0.08

LD Score 48 462:339 224 −0.22 0.03

BMI: body mass index, rG: genetic correlation, SE: standard error.

*
The proportion of variance in the phenotype explained by common genetic variants
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Table 4

Age- and sex-adjusted polygenic risk score associations with BMI and general cognitive function.

n Beta
† SE P

general cognitive function polygenic score *

general cognitive function 6 273 0.090 0.01 3.3 × 10−13

BMI 6 463 −0.029 0.01 0.020

BMI polygenic score *

general cognitive function 6 273 −0.065 0.01 1.9 × 10−7

BMI 6 463 0.266 0.01 <2 × 10−16

BMI: body mass index

*
Polygenic risk scores were adjusted for age, sex, and 14 multi-dimensional scaling components with residuals taken forward as the independent 

variable of interest.

†
The dependent variable and continuous independent variables were standardised in the regression models.
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