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Abstract

To investigate the utility of longitudinal data in genetic analyses of symptoms of anxiety and 

depression, we assessed individual differences between age 7 and 18 using growth mixture 

models, and investigated the genetic and non-genetic factors contributing to the trajectories.

Mothers of 7,706 girl and 7,418 boy twins from the Netherlands Twin Register rated the anxious 

depression scale (SxAnxDep) of the Child Behavior Check List (CBCL) at age 7, 10 and 12 years. 

2,706 girl and 1,856 boy twins completed the Youth Self Report (YSR) at age 14, 16 and 18.

While individual trajectories varied considerably, these differences were largely idiosyncratic and 

could not be grouped into separate latent classes with class-specific average growth curves. The 

intercept, which reflects the individuals’ baseline level of SxAnxDep across time, explained 

55-58% of the total phenotypic variance. The slope factor, which captures a common average 

trend over time, did not explain variance in the phenotype. This finding also underlines the high 

level of idiosyncrasy of trajectories that lack a common longitudinal structure.

The analyses of twin data showed that the random intercept factor of SxAnxDep during childhood 

and during adolescence is considerably more heritable than the observations at any single age, 

namely between 60% and 84%. One explanation is that different factors contribute to the level of 

symptoms of anxiety and depression at any given time point, including temporary events and 

emotions. When considering baseline stability, these temporary influences average out, with the 

result of a more reliable and more heritable phenotype.
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Introduction

It has proven to be more difficult to identify genetic variants influencing major depressive 

disorder (MDD) than other psychiatric disorders. In a genome-wide association (GWA) 

study with a sample size comparable to, for example, a GWA analysis of bipolar disorder 

(Group 2011), no single nucleotide polymorphism (SNP) reached genome-wide significance 

(Wray et al. 2010). Estimates of the variance explained by all SNPs varied between 20 and 

30% for MDD (Lee et al. 2013; Lubke et al. 2012) indicating that the SNPs analyzed in a 

GWA study do have an effect on MDD, that can be captured by increasing the sample size. 

One of several reasons that sample sizes for MDD need to be larger than for other 

psychiatric disorders is the often mentioned heterogeneity of the phenotype (Levinson et al. 

2014; Wray et al. 2010). Levinson et al. (2014) sum up several variables that could explain 

heterogeneity, such as sex, age of onset, recurrence, symptom profile and longitudinal 

course. Decreasing the heterogeneity, in addition to an increase in sample size, could also 

lead to improved statistical power in a GWA study.

MDD is often comorbid with anxiety disorders. So far, these disorders have been less 

extensively investigated than MDD in GWA studies and no genome-wide significant hits 

have been observed (Erhardt et al. 2011; Otowa et al. 2012; Walter et al. 2013). Genetic 

epidemiological analyses in both adults and children showed that anxiety and depression 

share genetic risk factors (Kendler et al. 2011; Middeldorp et al. 2005; Rhee et al. 2015). 

This suggests that it could be useful to focus the search for genetic variants on a phenotype 

that comprises depression as well as anxiety. A GWA study on internalizing symptoms in 

children aged around three years old reported that around 20% of the variance was explained 

by SNPs (Benke et al. 2014). Moreover, genetic variants influencing later adult psychiatric 

disorders appeared to jointly have an effect on internalizing symptoms at age 3.

In the current paper, we focus on the longitudinal course of symptoms of anxiety and 

depression during childhood and adolescence, and investigate the role of genetic factors on 

the developmental course. The aim is to identify a more homogeneous phenotype which 

would provide increased statistical power in a genome-wide association study.

Epidemiological studies of the development of anxiety disorders and depression during 

childhood and depression, were reviewed by Merikangas et al (2009). Depression rates are 

low during childhood and increase during adolescence, especially in girls. For anxiety, the 

picture differs for the specific anxiety disorders, but overall there is an increase in prevalence 

from childhood to adulthood. Longitudinal studies show the heterogeneity in the 

developmental course of anxiety and depressive disorders during childhood and adolescence. 

Some of the children with anxiety and depression continue to have symptoms in 

adolescence, but some remit (Copeland et al. 2009). There is also heterotypic continuity, i.e., 

children with anxiety disorders are at risk for depression at later ages (Beesdo-Baum and 

Knappe 2012). In addition, as expected from the increased prevalence during adolescence, 
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there is a group with an onset of symptoms during adolescence without any preceding 

symptoms during childhood (reviewed in Costello et al (2011). These patterns are also seen 

when studying continuous measures of anxiety and depression. In the Young Netherlands 

Twin Register, which assesses anxious depression symptoms (SxAnxDep) in twins every 

two to three years, mean scores remained at the same level between age 7 and 12 and then 

showed an increase. The increase was larger in girls than in boys (Nivard et al. 2015). 

Further, the two year correlations for SxAnxDep were approximately 0.5 in childhood and 

0.6 in adolescence indicating stability as well as change in this age period (Nivard et al. 

2015).

The heterogeneity in the developmental course in anxiety and depression has been studied in 

more detail in several population based studies by analyzing whether different characteristic 

developmental trajectories can be identified using Growth Mixture Models (GMM) 

(Brendgen et al. 2005; Broeren et al. 2013; Cote et al. 2002; Crocetti et al. 2009; Dekker et 

al. 2007; Duchesne et al. 2008; Fanti and Henrich 2010; Feng et al. 2008; Legerstee et al. 

2013; Letcher et al. 2012; Letcher et al. 2009; Marmorstein et al. 2010; Morin et al. 2011; 

Nivard et al. submitted; Rodriguez et al. 2005; Sterba et al. 2007; Toumbourou et al. 2011). 

However, only four studies performed in three different cohorts, covered the whole period 

from childhood and adolescence, until at least age 15 (Dekker et al. 2007; Letcher et al. 

2009; Nivard et al. submitted; Toumbourou et al. 2011). The results differed between the 

three cohorts. All found trajectories with consistently low scoring individuals. However, 

Dekker et al (2007) identified additional gender specific trajectories. In girls, a stable high 

trajectory was identified, while in boys, decreasing trajectories were identified. Nivard et al 

(submitted) observed an increasing and decreasing trajectory, but no stable high trajectory. 

In the third cohort, in boys and in girls, high, increasing and decreasing trajectories were 

found in addition to the low trajectories (Letcher et al. 2009; Toumbourou et al. 2011). The 

studies performed in either childhood or adolescence, in general, found a low scoring and a 

high scoring class. Results also varied regarding the other classes, i.e., whether classes with 

increasing or decreasing scores over time were also observed (Brendgen et al. 2005; Broeren 

et al. 2013; Cote et al. 2002; Crocetti et al. 2009; Dekker et al. 2007; Duchesne et al. 2008; 

Fanti and Henrich 2010; Feng et al. 2008; Legerstee et al. 2013; Letcher et al. 2012; Letcher 

et al. 2009; Marmorstein et al. 2010; Morin et al. 2011; Rodriguez et al. 2005; Sterba et al. 

2007; Toumbourou et al. 2011). Note that all but three studies (Crocetti et al. 2009; Morin et 

al. 2011; Nivard et al. submitted) fixed the variance of the intercept and slopes to zero in all 

classes. This lack of random effects within the latent growth curve model can lead to an 

over-extraction of classes because individual variability in intercepts and slopes is captured 

by additional classes (e.g. a high and low class)(Lubke and Neale 2006; Muthen and Muthen 

2000).

Data obtained in twins can be used to investigate how genetic factors influence the 

longitudinal course of a trait. The outcomes of the twin analyses can thereby indicate the 

most suitable strategy to analyze longitudinal data in a GWA study. Earlier studies applying 

general multivariate or simplex models to longitudinal twin data have shown that stability in 

SxAnxDep is mostly explained by genetic factors, but no twin study so far has investigated 

longitudinal SxAnxDep data while attempting to take individual differences in the 

developmental course into account. In the current study, growth mixture models were fitted 
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to investigate, first, which longitudinal model provides the best description of individual 

differences in the SxAnxDep course, and, second, how the growth factors in the best fitting 

model are influenced by genetic and non-genetic factors. We modeled SxAnxDep between 

age 7 and age 18 in girls and in boys, and estimated the variances of intercepts and slopes in 

the classes. From age 7 to age 12, maternal ratings were available whereas from age 14 to 

age 18 data self-report ratings were available. Due to the change of rater from mother to self-

reports between ages 12 and14, a piecewise growth model framework was used. In addition 

to the trajectory analyses, the twin data were used to estimate the influence of genetic and 

non-genetic factors on the latent factors.

Materials & Methods

Sample

The data for this study were collected by the Young and Adult Netherlands Twin Register 

between 1987 and 2015 (Boomsma et al. 2006; van Beijsterveldt et al. 2013). Children are 

enrolled in the YNTR by their parents at birth. For the ANTR, adolescent and adult twins 

were recruited through city-councils. The minimum age to participate in the ANTR was age 

12. Every two to three years lifestyle, health and behavior are assessed by surveys in an 

ongoing data collection. Previous research has established that the NTR data can be 

considered as representative of the Dutch population (van Beijsterveldt et al. 2013).

Two groups of subjects were selected to, first, estimate the developmental trajectories and, 

second, to estimate the heritability of these trajectories. For the first set of analyses, data 

from twins with measures at two or more time points were included. These data either were 

collected between ages 7-12 years or between ages 14-18 years. This resulted in a sample 

size of n=15,124 (7,706 girls and 7,418 boys) between ages 7-12, and n=4,563 (2,706 girls, 

and 1,856 boys) between ages 14-18. The two subsamples included 1,970 female twins and 

1,337 male twins with data in both age bins. The numbers of female and male monozygotic 

(MZ) and dizygotic (DZ) twins that were included in the trajectory analyses are presented in 

Table 1A.

For the heritability analyses all data were included. Data were available for 12,225 twin 

pairs between ages 7-12 (12,188 complete twin pairs), and for 8,241 twin pairs between ages 

14-18 (6,716 complete twin pairs). The number of male and female monozygotic (MZ) and 

dizygotic (DZ) twin pairs is given in Table 1B.

Measures

Symptoms of anxiety and depression (SxAnxDep) were measured with the anxious 

depression scales of the mother rated Child Behavior Checklist (CBCL) (Achenbach and 

Rescorla 2001) and the Youth Self Report (YSR) (Verhulst et al. 1997) containing 

respectively 14 and 16 items. Example items are “cries a lot”, “fears’, “must be perfect”. The 

test-retest reliability of the SxAnxDep CBCL and YSR items are 0.82, and 0.74 respectively 

(Achenbach and Rescorla 2001). Achenbach & Rescorla (2001) also provide evidence for 

content, criterion and construct validity of the items. Moreover, the CBCL and YSR anxious 
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depression scales predict DSM-IV diagnoses of both anxiety disorders and depression 

(Bellina et al. 2013; van Lang et al. 2005).

In the current study we computed an average score at each age for each individual. Due to 

the skewness of the average score, the average score was categorized into 4 categories. This 

was done based on the sample quartiles for sxAnxDep at age 18 which ensured that there 

were observations in all cells at each age. Category endorsement rates of this aggregate score 

are presented in Table 2 separately for males and females at each age. Correlations between 

ages are given in Table 3, showing male correlations below and female correlations above 

the diagonal. As can be seen, correlations are generally higher between successive ages, and 

are higher over several ages for females than they are for males. Although there is an 

expected drop in correlations when raters change (mother vs. self-ratings), correlations 

between 12-year olds rated by mothers and 14, 16, and 18 self-ratings are similar to the 

correlation between 14 and 18 year old self ratings. This indicates that although raters 

change, the measured trait remains comparable.

Analysis Plan

The overarching goal of the analyses was to investigate the benefit of analyzing longitudinal 

data in genetic studies of anxiety and depression. The planned analyses consisted of two 

parts, a latent growth mixture analysis, and a twin-based heritability analysis.

The goal of the growth mixture analysis was to investigate whether we could identify 

different latent classes with characteristic growth trajectories representing the developmental 

course of SxAnxDep between age 7 and 18, potentially combining data from mother and 

self-ratings. The heritability analysis aimed at investigating how longitudinal data can be 

optimally used to identify genetic variants, and, in case the mixture models revealed multiple 

classes, investigate potential differences in heritability across classes.

1. Separate and Joint Piecewise Growth Mixture Modeling

In the first step, we fitted separate linear growth mixture models for males and females, and 

for mother and self-ratings. In the latent growth model, development is modeled by an 

intercept (I) and a linear slope (S), and if more than three time points are available, 

curvilinear growth can be modeled. Growth mixture models (GMM) extend the standard 

growth model with a latent class variable, featuring a distinct growth model within each 

latent class. Subjects with similar trajectories are grouped into classes in a data-driven 

fashion, since class membership is not known beforehand. Fixing the variances of the 

intercept (I) and linear slope (S) factors to zero within each class results in a restrictive 

GMM (also known as latent class growth models, LCGMs), in which only average within 

class trajectories are estimated (i.e., means of I and S), and all variability within classes is 

considered to be occasion specific (Nagin 1999). We fitted LCGM’s as well as models 

allowing for within class individual differences in the intercepts and slopes, i.e., random 

intercepts and random slopes (Muthen and Muthen 2000).

Next, we applied piecewise growth mixture modeling to combine child and adolescent data. 

This type of growth mixture model can link two intervals that consist of several observed 

time points each. Importantly, piecewise growth modeling permits a change of slope, and, if 
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necessary, also a change in intercept between the two intervals. Therefore, piecewise growth 

modeling can capture an expected trajectory that starts increasing at the beginning of 

adolescence. Piecewise growth modeling is also suitable to handle the fact that the two 

intervals reflected a change in rater (mother vs. self-ratings). We compared piecewise 

models with increasing numbers of classes that only allowed for a change of slope to models 

that also allowed for a change in intercept. The first type of model would support that rater 

differences have a negligible impact on modeling continuous trajectories over the two 

intervals whereas models with a separate intercept for the second interval imply a 

discontinuity which can at least in part be due to rater differences.

All models were fitted with a large number of random starts. Models were considered as 

properly converged if three conditions were met: (1) at least 4 sets of starting values 

converged to the same maximum, (2) all parameter estimates were within their proper range 

(e.g., variance estimates >0), and (3) model estimation resulted in a positive definite 

information matrix.

In sum, the goals of the growth mixture analyses were (1) to identify the numbers of classes 

that best describe the longitudinal patterns of SxAnxDep, (2) to decide whether random 

intercepts and slopes were necessary to describe the structure in the data, and (3) to evaluate 

differences in developmental trajectories between the child and adolescent intervals.

2. Genetics analyses

The type of longitudinal model for the genetic analyses was chosen based on the results of 

the growth mixture analysis. We estimated additive genetic, and shared and non-shared 

environmental effects on the latent growth factors using standard twin modeling (Boomsma 

et al. 2002). Twin modeling utilizes the fact that monozygotic twins share the same genes 

whereas dizygotic twins are expected to share half of their segregating genes. Consequently, 

If MZ twin pairs are more similar for a trait than DZ twin pairs, this suggests that genetic 

factors influence this trait, for example when correlations in MZ pairs are 0.6 and in DZ 

pairs 0.3. If the correlation in DZ pairs is more than half the correlation in MZ twins (e.g. 

rMZ = 0.6 and rDZ=0.5), then there is additional familial resemblance which is not 

explained by genetic factors. Such factors are commonly referred to as shared or common 

environmental factors. The importance of individual-specific environmental factors is 

indicated by the differences within MZ twin pairs. Incorporating these expectations in a 

latent growth model permits estimating the percentages of variance explained by additive 

genetic effects, common environmental effects shared by children growing up in the same 

family, and non-shared environmental effects that contribute to the total variance of the 

latent growth factors.

Results

1. Growth Mixture Modeling for mother and self-ratings, and males and females

In all four groups, linear growth models with random intercepts for a single class emerged as 

the preferred model. Specifically, based on the BIC, models without random effects could be 

rejected. Likelihood ratio tests comparing single class models with random intercepts and 
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fixed slopes to models with random intercepts and random slopes were not significant for 

either male or female mother ratings, (mother/female: p=0.06, mother/male: p=1), but 

significant for self-ratings (self/female p=1.57e-5, self/male: p=0.036). However, the random 

slope effect explained essentially zero percent of the total variance in either model. 

Therefore, we rejected the need for random slopes. Extending the separate growth models to 

more than a single class did not result in proper convergence in either group. Model fitting 

results and more specific information regarding failure of proper convergence are presented 

in Tables 4 and 5 for models fitted to male and female data, respectively.

In the preferred single class linear growth models with random intercepts, for males, mother 

ratings during childhood showed a higher intercept mean compared to self-ratings during 

adolescence (mean mother rating = 0.692, SE=0.045 vs. mean self = 0.253, SE=0.100). For 

females, mother ratings had a lower average baseline compared to self-ratings (mean mother 

rating = 0.850, SE=0.44 vs. mean self = 1.287, SE=0.088). The difference in intercept 

between childhood and adolescence indicates that it might be necessary to account for a 

discontinuity when combining mother and self-ratings in a single model.

The linear growth model splits the total variance in the developmental course of symptoms 

into common factors (i.e., intercept and slope factors) and residual variance. The intercept 

factor represents the baseline, whereas the slope factor represents the common linear trend 

over time. Residual variance captures the more idiosyncratic differences in symptom course 

that cannot be described by the common intercept and slope factors.

In our analyses, the intercept variance contributed considerably to the total variance of the 

phenotype, both in childhood and adolescence, namely about 55% in males and about 58% 

in females. This means that a large part of the variability in symptom course is due to 

individual differences in baseline. The remaining variability was essentially idiosyncratic, 

with the slope factor variance being essentially zero in males and females. The slope mean 

was also zero in both time intervals for males, which means that there was no significant 

common average change. For females, the slope mean, while insignificant during childhood, 

was mildly positive during adolescence (mean=0.087, SE=0.022).

Taken together these results imply that a substantial part of the individual trajectories in 

SxAnxDep are in fact idiosyncratic, and cannot be easily disaggregated into different latent 

growth classes, or described in terms of a common linear development structure. Instead, the 

results point to age specific influences on the individual trajectories possibly including 

temporary effects of events and emotions.

2. Simultaneous analysis of mother and self-ratings

We compared single and 2-class models fitted to mother and self-ratings jointly. Although in 

the separate models we were unable to properly identify 2 classes, joining the data across all 

ages can help to identify multiple classes with characteristic developmental curves. More 

specifically, we compared piecewise growth models that only allow the slope to change 

between mother and self-ratings to models that allowed for a change in intercept as well. An 

intercept (or baseline) change is a discontinuity in average trajectories that can at least in 

part accommodate differences between mother and self-ratings. In case of a single class 
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model such a model is equivalent to fitting linear growth models separately to mother and 

self-ratings.

The results confirmed the findings of modeling child and adolescent data separately, namely 

that it was necessary to include a change in baseline when shifting from mother to self-

ratings. This was true for observations from both males and females. When extending the 

single class version of this model to two classes, we found that the BIC was in fact lower for 

the 2-class model in the males and females. However, the difference in BIC with the single 

class model was small (see Tables 4 and 5). Bootstrapping a confidence interval for the BIC 

showed that the difference in BIC was not substantial. When evaluating the parameters of 

the 2-class models it was clear that for both males and females the two classes were 

basically dividing individuals into groups with a slightly higher baseline vs. a lower baseline 

(see Table 6). The entropy in these 2-class models was very low, which indicates that 

assigning individuals to either class was problematic (see Tables 4 and 5). We therefore 

concluded that the single class models were preferable. The parameter estimates of the 

intercept and slope factor means in the joint single class models that permitted a separate 

intercept for the self-ratings were as expected very similar to the separate single class 

models fitted initially (see Table 6).

In sum, the results of the growth mixture analyses indicate that combining mother and self-

ratings of SxAnxDep does not add much information, that our data support a single class, 

and that the intercept or baseline factor explains a substantial amount of total variance 

whereas the slope factor does not. Therefore, in the following twin analyses, we fitted 

models for mother and self-ratings separately, and focused on the heritability of the intercept 

factor.

3. Genetic analyses

We fitted single class linear growth models to data from monozygotic (MZ) and dizygotic 

(DZ) twins. The variance of the intercept factor was decomposed into variance components 

of additive genetic variance, shared environmental variance, and non-shared/error variance. 

We did not decompose the slope variance since individual differences in the slope factor 

were small. The same model was fitted to mother and self-reports separately based on the 

longitudinal model results.

For all models we provide likelihood based confidence intervals for the estimates of the 

variance components (see Table 7). As can be seen, narrow-sense heritability is very similar 

for males and females, and is slightly higher in adolescent self-reports compared to 

childhood mother reports. The percentages of variance explained by additive genetic effects 

on the intercept of the maternal ratings during childhood were 71% and 63% for males and 

females, respectively. These percentages on the intercept of the self-ratings during 

adolescence were 83% and 84% respectively. Shared environment explained almost all of 

the remaining variance during childhood (23% and 31%, for males and females, 

respectively), implying that non-shared environmental effects were close to zero. As might 

be expected, the non-shared variance increased during adolescence and was estimated at 

16% for males and 12% for females. This was at the cost of shared environmental effects 

that had a zero effect for males during adolescence and a close to zero effect for females. 
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Importantly, narrow sense heritability of baseline stability of anxious depression across age 

is considerably higher than at any given age. Age specific heritabilities were 43% (7 year 

olds), 48% (10 year olds), 46% (12 year olds), 54% (14 year olds), 51% (16-year olds), and 

47% (18-year olds). We also compared the heritability of baseline stability in a growth 

model to the heritability of a simple average of the three ages during childhood and 

adolescence, respectively. The heritability of the average scores was also considerably lower, 

and closer to the heritabilities at each time point, namely 55% and 46%.

Discussion

GWA studies of anxiety and depression phenotypes have been largely unsuccessful so far. 

Possible reasons include phenotypic heterogeneity and the relatively moderate heritability 

(Levinson et al. 2014). These two factors are interrelated, however, and the results of our 

study show that the heritability of the phenotype can be substantially increased by reducing 

phenotypic heterogeneity.

The latent growth curve model separates individual variability into variance due to common 

factors (intercept and slope) and age specific residual variance such as temporary 

fluctuations and measurement error. The intercept factor captures individual variability that 

is common over time, and is therefore interpretable as baseline stability. Consequently, 

growth curve modeling can serve to extract a baseline measurement of SxAnxDep. Our 

study shows that this latent phenotype is substantially more heritable than the scores 

observed at any age, namely between 72% (childhood) and 83% (adolescence) for males and 

64% (childhood) and 84% (adolescence) for females. A measure created by simply summing 

data from the different ages was also considerably less heritable. This gives further evidence 

that using a latent variable modeling approach significantly improves our ability to detect the 

role of additive genetic effects over simpler approaches. The high heritability of baseline 

stability is in line with the results of Nivard et al (2015) who found that stability in 

SxAnxDep was mostly influenced by genetic factors. Since baseline stability does not 

contain measurement error, it is more reliable, and likely a more informative phenotype for 

GWA studies.

In our study, there was considerable heterogeneity in individual trajectories over time both in 

the interval measured by mother ratings when children were 7, 10, and 12 year old, and in 

the interval measured by self-ratings when they were 14, 16, and 18 year old. However, 

these individual differences could not be clearly grouped into a number of latent classes. 

Previous studies have identified more classes (six at maximum) to describe individual 

differences in the developmental course of symptoms of anxiety and depression during 

childhood and adolescence (Brendgen et al. 2005; Broeren et al. 2013; Cote et al. 2002; 

Crocetti et al. 2009; Dekker et al. 2007; Duchesne et al. 2008 ; Fanti and Henrich 2010; 

Feng et al. 2008; Legerstee et al. 2013; Letcher et al. 2012; Letcher et al. 2009; Marmorstein 

et al. 2010; Morin et al. 2011; Nivard et al. submitted; Rodriguez et al. 2005; Sterba et al. 

2007; Toumbourou et al. 2011). However, all, but three of these studies did not include 

random effects in the models (Crocetti et al. 2009; Morin et al. 2011; Nivard et al. 

submitted). This can explain the higher number of identified classes. In one of the studies 

that also modeled random effects, the results were very similar to ours (Crocetti et al. 2009). 
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They identified two classes, which only separated individuals with generally higher scores 

from the lower scoring majority. This type of differentiation is unlikely to improve power in 

GWA studies since the two classes basically reflect a categorization of the phenotype. The 

other two studies did identify 4 or 5 classes, but there were notable differences in methods 

that could explain these discrepancies. Morin et al (2011) analyzed seven time points and 

also included a quadratic term. Moreover, the time between the measurements was shorter 

(less than one year). Measurements in our data were separated by 2-3 years. Shorter 

measurement intervals and a larger number of observations across time might provide a 

better resolution to detect specific trajectory classes with characteristic developmental 

growth curves.

The way the phenotype is defined and measured can also have a substantial impact on 

finding latent classes in a phenotypic analysis. In Nivard et al (submitted) the phenotype was 

constructed by grouping individuals according to their chance of having a DSM-IV anxiety 

or depressive disorder. This type of measure is based on severity, and eliminates individual 

differences within each severity category. Such an operationalization of anxiety and 

depression favors the detection of latent classes compared to using a sum score of individual 

items because part of the individual differences are averaged out prior to fitting mixture 

models, and individuals are already grouped by severity. Furthermore, data were available at 

4 ages which provides a better basis to detect average trajectories over time. In our study, a 

single class linear growth model with a random intercept was the best fitting model. 

Unfortunately we were unable to integrate mother and self-ratings smoothly in a single 

longitudinal trajectory model because of a discontinuity induced by rater differences, and 

instead modeled the two time intervals separately.

In sum, using growth curve modeling, we leveraged information about the phenotype at 

several ages, which cancels out age specific and measurement error variance, and therefore 

results in a more informative and reliable phenotype indicating baseline stability. We did not 

detect clear trajectories that group individuals into different classes, such as stable high in 

SxAnxdep. This signifies that it is difficult to predict developmental patterns during 

childhood and adolescence.

Our twin analyses clearly demonstrate the advantage of longitudinal data for genetic studies. 

Although it might be of interest to investigate age specific genetic effects on anxiety and 

depression, a promising first step would be to use the baseline stability as a more reliable 

and heritable phenotype in GWA studies. These results are consistent with our recent study 

using a different measure, the Hospital Anxiety and Depression Scale (HADS) (Laurin et al. 

2015). Using latent variable methods we selected items from the HADS that permitted a 

narrow and less heterogeneous phenotype definition. The resulting higher phenotype 

reliability in turn improved statistical power in Genomic Complex Trait Analyses (GCTA) 

and GWA analyses (Laurin et al. 2015). The benefit of more narrowly defined phenotypes in 

gene-finding studies was also evident in a study of borderline personality (Lubke et al. 

2014). For genome-wide association meta-analyses, we therefore recommend to establish 

more reliable phenotypes. One way to achieve this is to leverage longitudinal data and study 

the effects of genetic variants on baseline stability.
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Limitations

A main limitation of our study was that a change in rater occurred between ages 12 and 14, 

and that there was an insufficient number of participants with mother and self-ratings at age 

12 to directly model rater differences in a growth mixture model. Mother and self-ratings 

each consisted of three measurements, permitting only linear but not curvilinear growth 

trajectories. The combination of two linear intervals provided a basis to investigate slope 

differences between childhood and adolescence, thus theoretically permitting non-linear 

growth over the entire period. However, the rater differences in our data limited the options 

to smoothly combine childhood and adolescent trajectories and detect average longitudinal 

developmental patterns. Consequently, the growth modeling was done separately for three 

ages at childhood and at adolescent data. A quadratic term could not be included. As a 

result, the twin modeling was limited to estimating the genetic contributions to baseline 

stability of SxAnxDep in each interval separately. The analyses showed, however, that three 

time points are sufficient to extract a highly heritable phenotype that is likely to provide 

increased statistical power in GWAS. Although our study focused on SxAnxDep, we expect 

similar benefits of leveraging longitudinal data for other psychiatric symptom scales.
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Table 1a –

Number of individual twins per age for the mixture trajectory analyses

Age

Zygosity 7 10 12 14 16 18

MZM 2258 2211 2067 366 484 450

DZM 2152 2098 1863 329 354 372

MZF 2586 2619 2373 663 778 865

DZF 2054 1989 1787 438 509 553

DZO 4282 4238 3698 776 884 861

Participants with measurements on at least two occasions between age 7-12 or between age 14-18 were selected for the mixture trajectory analyses. 
MZM(F) = Monozygotic Male (Female) twin; DZM(F) = Dizygotic Male (Female) twin; DZO = Dizygotic opposite sex twin.
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Table 1b -

Number of twin pairs (% complete pairs) by age in the genetic analyses

Age

Zygosity 7 10 12 14 16 18

MZM 1510 (99) 1333 (99) 1147 (98) 519 (82) 647 (81) 468 (78)

DZM 1595 (99) 1281 (99) 1043 (99) 497 (76) 512 (77) 403 (71)

MZF 1721 (99) 1556 (99) 1292 (99) 796 (85) 880 (83) 838 (78)

DZF 1461 (99) 1226 (99) 1005 (99) 642 (83) 671 (75) 552 (72)

DZO 2992 (99) 2620 (99) 2075 (99) 1196 (71) 1289 (69) 957 (65)

MZM(F) = Monozygotic Male (Female) twin pair; DZM(F) = Dizygotic Male (Female) twin pair; DZO = Dizygotic opposite sex twin pair.
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Table 2 -

Endorsement rates (%) for the categorized sum score for males/ females at each time point

Age

   Category   7 10 12 14 16 18

0 33/ 30 31/ 30 37/ 34 43/ 26 39/ 22 37/ 21

1 36/ 37 34/ 34 33/ 35 26/ 23 27/ 23 27/ 21

2 24/ 25 24/ 25 21/ 22 21/ 30 22/ 31 23/ 29

3 08/ 09 11/ 11 09/ 10 10/ 22 12/ 25 12/ 29
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Table 3 -

Polychoric Correlations between ages for males (lower) and females (upper).

  Age 7 10 12 14 16 18

 7 .70 .65 .40 .29 .23

10 .79 .74 .36 .29 .19

12 .52 .80 .43 .35 .20

14 .08 .27 .19 .70 .54

16 .17 .34 .27 .60 .71

18 .00 .15 .35 .26 .50
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Table 4 -

Latent Growth Model Fit in Males

Model # Cl   # Params LogLik   BIC Entropy   Class
    Percentages

Mother Reports (Age 7-12)

1. No Random Effects 1 4 -24172 48379

2 7 -22520 45103 .66 60, 40

3 10 -22169 44427 .61 46, 36, 18

4 13 -22121 44359 .63 45, 29, 22, 04

5 Failed to replicate likelihood

2. Random Intercept 1 5 -22189 44423

2 Failed to converge

3. Random Intercept and Slope 1 6 -22189 44431

2 Failed to replicate likelihood

Self-Reports (Age 14-18)

4. No Random Effects 1 4 -4502 9033

2 7 -4317 8687 .60 67, 33

3 10 -4287 8650 .50 43, 42, 15,

4 13 -4283 8663 .42 35, 28, 21, 16

5. Random Intercept 1 5 -4291 8619

2 Failed to replicate likelihood

6. Random Intercept and Slope 1 6 -4288 8622

2 Failed to replicate likelihood

Piecewise Models (Age 7-18)

7. Random intercept 1 9 -29596 59273

2 15 -29545 59224 .4 76, 24

8. Rater Mean Difference = 0* 1 8 -29612 59297

* Δχ2=25.4, df=1, p = 4.5E-8

Latent class growth models for maternal and self-ratings separately, and jointly using a piecewise model. Models were estimated with an increasing 
number of classes (Cl). Shown are the number of estimated parameters in the model, the final log likelihood value, the Bayesian information 
criterion (BIC), Entropy, and class proportions. Models with multiple classes did not have significantly lower BIC than models with a single class 
(bold). For the piecewise models, we selected a single class model because entropy was low indicating poor class assignment. Secondly, the BIC of 
the two class model fell within 1 SD of bootstrapped BIC for the single class model (BIC SD = 1142). Model 8 tested whether the second intercept 
was necessary to model the discontinuity between raters at ages 12 and 14. This was done by testing whether the mean of the second intercept 
could be set equal to 0. This model fit significantly worse than the unconstrained model, indicating a mean difference between raters.
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Table 5 -

Latent Growth Model Fit in Females

Model # Cl # Params LogLik   BIC Entropy Class
     Percentages

Mother Reports (Age 7-12)

1. No Random Effects 1 4 -25320  50675

2 7 -23645  47353 .65 58, 42

3 10 -23289  46668 .61 46, 37, 17

4 13 -23250  46616 .54 42, 27, 21, 10

5 16 -23232  46607 .54 41, 22, 19, 10, 8

6   Failed to converge

2. Random Intercept 1 5 -23302  46648

2      Failed to replicate likelihood

3. Random Intercept and Slope 1 6 -23301  46657

2      Failed to replicate likelihood

Self-Reports (Age 14-18)

4. No Random Effects 1 4 -7254  14540

2 7 -6894  13843 .59 51, 49

3 10 -6823  13724 .54 48, 27, 25

4 13 -6812  13727 .52 37, 27, 25, 11

5. Random Intercept 1 5 -6824 13688

2 15 -7600  15319 .36 59, 41

6. Random Intercept and Slope 1 6 -6819  13685

2 17 -7586  15307 .40 62, 38

Piecewise Models (Age 7-18)

7. Random intercept 1 9 -34056 68294

2 15 -34000  68136 .31 .61, .39

8*. Rater Mean Difference = 0 1 8 -34190  68453

* χ2=216.4, df=1, p < 1E-16

Latent class growth models for maternal and self-ratings separately, and jointly using a piecewise model. Models were estimated with an increasing 
number of classes (Cl). Shown are the number of estimated parameters in the model, the final log likelihood value, the Bayesian information 
criterion (BIC), Entropy, and class proportions. Models with multiple classes did not have significantly lower BIC than models with a single class 
(bold). For the self-reports, a likelihood ratio test showed that the random slope (6) did not improve fit, so model (5) was chosen. For the piecewise 
models, we selected a single class model because entropy was low indicating poor class assignment. Secondly, the BIC of the two class model fell 
within 1 SD of bootstrapped BIC for the single class model (BIC SD = 1264). Model 8 tested whether the second intercept was necessary to model 
the discontinuity between raters at ages 12 and 14. This was done by testing whether the mean of the second intercept could be set equal to 0. This 
model fit significantly worse than the unconstrained model, indicating a mean difference between raters.
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Table 6:

Factor Mean Estimates in the Piecewise model

Model Name Class
(%)

Intercept
(SE)

Slope (SE) Intercept
(SE)

Slope (SE)

Age 12 Age 7-12 Age 12-14 Age 14-18

Male

Random intercept

1 Class 1 .64 (.04) .00 (.01) -.39 (.08) .02 (.03)

2 Class 76 -.42 (.14) -.09 (.02) .32 (.18) .17 (.06)

24 3.2 (.30) .18 (.04) -2.1 (.29) -.34 (.15)

Female

Random intercept

1 Class 1 .76 (.04) -.01 (.01) .99 (.07) .10 (.02)

2 Class 61 -.37 (.13) -.08 (.02) 1.6 (.15) .34 (.10)

39 2.7 (.37) .09 (.03) .03 (.27) -.26 (.10)

Piecewise intercept and slope estimates (standard errors, SE) for males and females for the single and two class models. The first intercept was 
centered at age 12, and the second intercept is the mean difference between ages 12 and 14. Estimates are on the standard normal liability scale.
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Table 7:

Latent Growth Decomposition (95% confidence intervals) of stability of symptoms of anxiety and depression 

in childhood and adolescence

     Gender   Age    A    C    E

Male 7 - 12 71 (60-83) 23 (12-29) 6 (02-09)

Female 7 - 12 63 (53-75) 31 (30-41) 5 (02-06)

Male 14 - 18 83 (67-92) 0 (0-13) 16 (07-25)

Female 14 - 18 84 (63-94) 3 (0-22) 12 (06-18)

A: Additive genetic, C: common environment, E: non-shared environment + measurement error
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