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Abstract

Health economic evaluations require estimates of expected survival from patients receiving 

different interventions, often over a lifetime. However, data on the patients of interest are typically 

only available for a much shorter follow-up time, from randomised trials or cohorts. Previous work 

showed how to use general population mortality to improve extrapolations of the short-term data, 

assuming a constant additive or multiplicative effect on the hazards for all-cause mortality for 

study patients relative to the general population. A more plausible assumption may be a constant 

effect on the hazard for the specific cause of death targeted by the treatments. To address this 

problem, we use independent parametric survival models for cause-specific mortality among the 

general population. Since causes of death are unobserved for the patients of interest, a polyhazard 

model is used to express their all-cause mortality as a sum of latent cause-specific hazards. 

Assuming proportional cause-specific hazards between the general and study populations then 

allows us to extrapolate mortality of the patients of interest to the long term. A Bayesian 

framework is used to jointly model all sources of data. By simulation we show that ignoring cause-

specific hazards leads to biased estimates of mean survival when the proportion of deaths due to 

the cause of interest changes through time. The methods are applied to an evaluation of 

implantable cardioverter defibrillators (ICD) for the prevention of sudden cardiac death among 

patients with cardiac arrhythmia. After accounting for cause-specific mortality, substantial 

differences are seen in estimates of life years gained from ICD.
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1 Introduction

In health economic evaluations, we compare the expected cost and clinical effectiveness 

associated with different treatments or other health technologies. In the UK the organisation 

responsible for these appraisals is the National Institute for Health and Clinical Excellence 
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(NICE), which recommends whether a new technology should be given public funding in 

the presence of a limited budget. An important component of many health economic 

evaluations is the effect of the new treatment on the long-term survival or some functional of 

it, such as mean survival or life expectancy for the groups of interest. Treatment effects are 

usually obtained from randomised controlled trials (RCTs). However, for many chronic 

diseases, the choice of treatment has an impact on survival over much longer periods than 

those covered by the follow-up of trials. Typically, estimates of expected lifetime survival 

are required to evaluate each treatment policy, but only a short-term survival curve is 

available from the trial.

Assuming that short-term individual-level data are available, the simplest approach to 

estimating long-term expected survival is to fit a parametric or semi-parametric survival 

model to these data, then integrate the fitted survival curve over a lifetime [1]. This approach 

is often sensitive to the choice of model [2]. More importantly, extrapolations from even the 

best-fitting models may be unrealistic if the observed period is short compared to the 

unobserved period. Then it is desirable to include relevant external long-term data. Survival 

data for patients with the disease of interest may be available from disease registries or 

hospital-based cohorts [1]. These may provide information on longer-term follow-up or 

older ages [3], but the follow-up will not always be sufficiently long. Population lifetime 

survival might be obtained from national agencies such as the UK Office for National 

Statistics, however untestable assumptions about how the general population survival differs 

from the extrapolated survival of the patients of interest are usually necessary. For example, 

patients who have survived a certain length of time may sometimes be assumed to be 

“cured” and have the same survival as the general population [4].

Our motivating example concerns implantable cardioverter defibrillators for the secondary 

prevention of cardiac arrhythmia. Connolly et al.[5] present a meta-analysis of RCTs 

comparing ICDs to anti-arrhythmic drugs. The studies included had around 5 years of 

follow-up. To inform policy in a UK context, we combine their published summaries with 

individual data from a cohort of UK ICD patients and age-sex matched national population 

survival data [available at http://www.ons.gov.uk/ons/taxonomy/index.html?nscl=Interim

+Life+Tables]. Demiris and Sharples [6] described models for estimating expected survival 

based on these specific datasets. A Bayesian model with shared parameters was fitted 

simultaneously to all data sources. Hazards were assumed to be proportional (or additive) 

between the study populations and the general population. More plausibly, however, the 

relationships between the hazards will be different for different causes of death. In 

polyhazard models [7] the overall hazard is decomposed as a sum of contributions, 

interpreted as particular causes of death which are not published in the data. Demiris et al.[8] 

used a poly-Weibull model to extrapolate mean survival after transplantation, using a single 

dataset with reasonably long follow-up, where high initial surgery-related hazards and 

increasing long-term mortality results in a “bathtub” or U-shaped hazard curve.

In this paper we combine short-term individual-level data on patients of interest with causes 

of death unknown, and long-term general population data with causes of death known, to 

obtain extrapolations of the expected lifetime of the patients of interest. We assume that the 

hazard for death from the disease of interest is proportional, while the hazard for all other 
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causes is identical, between the study patients and the general population. In Section 2 we 

present the two-component polyhazard modelling framework used throughout this paper. 

Then in Section 3 we perform a simulation study to investigate the biases in expected 

survival resulting from assuming that the hazard for all-cause mortality is proportional 

between the general population and the study patients (as in [6]) when in reality the 

relationships among the hazards are different for different causes of death. Section 4 

presents the proposed methodology applied to the data studied by Demiris and Sharples [6] 

on the comparison between implantable cardioverter defibrillators and anti-arrhythmic drugs 

for cardiac arrhythmia. As well as being proportional between the general and study 

population, hazards are also assumed to be proportional between treatment groups within the 

study population, though this assumption is also untestable given the limited follow-up of 

the RCT providing the treatment effect. Finally we discuss the findings and limitations of 

these methods, in particular the risks of combining data from different sources and the 

importance of publishing causes of death.

2 Two Component Polyhazard Model

We have two individual-level survival datasets, one from the general population, and one 

from patients with some disease of interest. Suppose there are two possible causes of death, 

where the disease group has an increased hazard of death from the cause of interest k = 1 

and identical hazard for other causes k = 2. In this section we show how to use the 

population data to extrapolate the survival of the disease group. For the moment we assume 

the patients of interest all receive the same treatment. In Section 4.3 we extend this method 

to a comparison of survival between treatment groups.

2.1 Population data

Assume that for an individual in the general population (superscript p), the distributions of 

the times to death  for causes k = 1, 2 come from the same parametric family but with 

different parameters. For illustration here we use Weibull distributions with shape and rate 

parameters αk and λk, respectively:

Thus the hazard is either constant, increasing or decreasing over time if αk = 1, αk > 1 or αk 

< 1, respectively. For each individual i in the population data, suppose the cause of death is 

known, so the corresponding cause-specific survival time  is observed if the individual 

died from cause k (denoted ) or censored otherwise  The data 

 for k = 1, 2 therefore contribute the following terms to the 

likelihood for parameters α = (α1, α2), and λ = (λ1, λ2).

(1)
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where Sp(t|αk, λk) = exp(−λktαk) and hp(t|αk, λk) = λkαktαk−1 are the survivor and hazard 

functions of the cause-specific Weibull distributions.

2.2 Study data

For patients in the study group, we assume that the other-cause survival distribution is the 

same as that for the population, Weibull(α2, λ2). The hazard for the cause of interest, 

however, is proportionally increased to reflect their higher risk, with the increase described 

by the cause-specific log hazard ratio β between the study and population groups. Thus the 

survival distribution for the cause of interest is Weibull(α1, eβλ1).

The causes of death are not observed in the study data, therefore we cannot fit independent 

Weibull models as in (1). Instead, we use the fact that if there are K competing causes of 

death with respective hazard functions h1(t), …, hk (t), then the actual death time follows a 

polyhazard model [7] with overall hazard ∑khk (t). In this case, k = 1 or 2, and the observed 

death times in the study data follow a poly-Weibull distribution with hazard function:

(2)

The contribution of the study data  to the overall likelihood is 

given by

(3)

where the survivor function for the poly-Weibull distribution is Ss(t|α, λ, β) = exp (-eβλ1tα1 - 
λ2tα2).

2.3 Combining population and study data

The overall likelihood for the combined population and study data is then

(4)

We estimate the parameters α, λ, β in a Bayesian framework. This allows any previously-

published information about differences between populations to be included as prior 

distributions on the corresponding hazard ratio (see Section 4.3), and facilitates computation 

by Markov Chain Monte Carlo (MCMC) in software such as WinBUGS [9]. During the 

MCMC process we use samples from the posterior distributions of the parameters to 

compute the posterior distribution of the mean survival, or life expectancy of the study 

patients, defined as the area under the survival curve:
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Polyhazard models based on various distributions, including the Weibull, were compared by 

[7]. In applications, the fit of any assumed distribution to the observed data, and its 

plausibility in extrapolation, should be checked. An advantage of the Weibull (also shared by 

the Gompertz distribution, for example) is its proportional hazards property, which enables 

differences between populations to be expressed intuitively as hazard ratios. The potential 

identifiability problems with the poly-Weibull model have been discussed [8] — when fitted 

to a single survival dataset without cause of death recorded, the parameters can only be 

identified if the multiple causes have hazard trajectories that can be easily distinguished 

given the overall hazard trajectory. For example, two causes with strictly increasing and 

strictly decreasing hazards result in a U-shaped hazard for overall survival. In our case, 

information on the cause-specific parameters λk and αk is enhanced by the population data 

 through the likelihood (4). In Section 4.3, we explain how to extend this method to also 

estimate the survival of patients receiving a different treatment from those in the study data, 

assuming that a summary treatment effect is available from literature or further individual 

data.

3 Simulation

In this section we perform a simulation study to investigate the potential bias incurred from 

ignoring a cause-specific survival effect when extrapolating survival. Estimates obtained by 

the polyhazard-based model described in Section 2 are compared with those from two 

misspecified models, which do not take into account the cause-specific effect, but assume 

that the study patients have a proportionally increased hazard for overall survival compared 

to the general population.

3.1 Design of the simulation study

Censored survival data for hypothetical general and study populations, with assumed age of 

60 at time 0, were simulated. We assumed two mutually exclusive causes of death, each with 

a Weibull survival distribution, as in Section 2. This implies 2-component poly-Weibull 

distributions for overall survival. The following factors that could affect the accuracy and 

precision of the parameter estimates were varied in the simulations:

(i) The Weibull shape parameters α (Table 1). Model 1 assumes that the shape 

parameters for the two causes of death are the same, equivalent to a Weibull 

model for overall mortality with hazard equal to the sum of the component-

specific hazards. Models 2 and 3 have a higher shape parameter for causes 

other than the disease of interest, suggesting that the proportion of overall 

mortality due to the cause of interest decreases through time, and this is 

particularly rapid in Model 3.

(ii) The increase in the cause specific risk for the study group relative to the 

general population: β = 1.5 or 3.
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The Weibull parameters and mean survival implied by these six combinations of scenarios 

are summarised in Table 1. Model 2 with β = 1.5 approximately reflects the mortality rates 

in our motivating application to the UK ICD cohort. For each scenario and simulation 

replicate, two datasets were generated, the first with 1,000 observations corresponding to 

times of death for the general population and the second with times of death for 500 patients 

from the study cohort. Censoring times were generated from an exponential distribution, up 

to 10 years, at which time all surviving patients were censored. The exponential rate was set 

to 0.15 if β = 1.5, or 0.4 if β = 3, to give a similar pattern of censoring to the ICD cohort, 

where 15% of events were observed by 10 years.

The hazard functions for the models described above are presented in Figure 1. The 

population data are represented in the top row, while the middle and bottom rows represent 

the study data whose cause-specific log hazard ratio β compared to the population is 1.5 and 

3 respectively. Notice that in Model 1 (left column) the hazard related to other causes is 

larger than the hazard of interest in the general population, but that direction is reversed in 

the study cohort. In models 2 and 3 (middle and right columns), the hazard related to the 

cause of interest is very small in the population data, but increases in the study cohort at a 

rate that depends on β. A characteristic of Model 3, that is plausible for some situations, is 

that the hazard for the cause of interest in the study group is higher compared to other causes 

for a certain period of time at the beginning of the study, which represents the time 

immediately after presentation, but as the patient gets older the hazard of dying from other 

causes becomes predominant.

For each of the six scenarios we simulated 50 replicate datasets and fitted three different 

models:

1. Poly-Weibull (4): this is the true model and assumes a cause specific 

effect, in that the hazard for mortality from the disease of interest differs 

between the study and general populations, but the hazards for other 

causes do not.

2. Weibull model fitted to the combined data, with joint likelihood defined by 

a product of population and study likelihoods with common shape α and 

scales λ and eβλ respectively. Thus the hazard for overall mortality is 

assumed proportional between the study and general population.

3. Semi-parametric “Cox-like” model: using a similar joint likelihood with 

proportional hazards (for all causes) between the population and the study 

group. The baseline hazard is a piecewise-constant function with change 

points at every observed death time. This model is described in more detail 

by Demiris and Sharples [6] and Jackson et al. [2]. Like the standard Cox 

model, this assumes proportional hazards while making minimal 

assumptions about the baseline hazard.

3.2 Prior distributions

We used weakly informative priors corresponding to beliefs expressed on an easily-

interpretable scale. For all poly-Weibull and Weibull models, we used Uniform(0,100) priors 
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for the scale (1/λk or 1/λ). This expresses the belief that patients cannot survive more than 

about 60 years after entry to the study (simulated patients were assumed to be aged 60 at 

entry) — since even when α is at its prior limits, the implied mean cause-specific survival 

time of (1/λ)Γ(1 + 1/α) cannot be more than about 60. We expect the hazard for both 

arrhythmia-related death and other causes of death to increase through time. Therefore we 

use weakly informative Normal priors for log(αk) (or log(α)) with a mean of 0.5 and 

standard deviation of 0.78 = (log(log(100)/ log(2) + 1) − 0.5)/Φ−1(0.975), which implies an 

expected hazard ratio of 1.5 for a doubled time since age 60, with 95% credible interval 

approximately between 0.64 and 100. For the log hazard ratio of mortality from the disease 

of interest between the general population and the patients of interest, we use Normal priors 

with mean 0 and standard deviation of 2.5, which gives a 95% credible interval for the 

hazard ratio of between 1/150 to 150. To aid the identifiability of the two components of the 

poly-Weibull model, we constrained the scale parameters such that λ1 < λ2, as suggested by 

[8]. For the semi-parametric model, independent Gamma(cµ, c) priors were used for the 

baseline hazards, as in [6], with c = 200 to ensure a high variance, and the mean µ set to the 

true hazard.

The models were fitted using Markov chain Monte Carlo (MCMC) algorithms in WinBUGS 

[9], using the WBDev add-on [10] to implement the poly-Weibull distribution. An example 

of the WinBUGS code required for these models is given in Appendix A.

3.3 Results

Tables 2 and 3 show, for each of six scenarios, the mean (over simulation replicates) of the 

posterior mean expected survival, the corresponding mean absolute (and percentage) bias, 

and the coverage of the 95% credible intervals.

Independently of the value of β, when the data are simulated from the Weibull model 1, there 

is negligible bias and coverage close to the nominal 95% for all fitted models. This is 

expected, since the true model has the same shape parameter for both causes of death, and 

thus reduces to a Weibull model for overall mortality. When the data arise from Models 2 

and 3, as the difference between the cause-specific shape parameters increases, the bias 

resulting from fitting the Weibull model also increases. This is illustrated in figures 2 and 3, 

which show the posterior mean and 95% credible interval for expected survival for each 

simulation replicate. The red solid horizontal line represents the true value and the blue 

dashed line is the mean (over 50 replicates) of the posterior means. The poly-Weibull model 

gives the least biased estimates for β = 1.5. For β = 3, the Cox-like model also has 

reasonably low biases — but although the posterior means of expected survival are not far 

from the true value, the uncertainty around the estimates is always bigger compared to the 

other models, due to the need to estimate a different baseline hazard for every interval 

between event times (Figures 2,3). This can lead to interval estimates with excess coverage 

(e.g. Table 3, Model 3). Though there is some uncertainty in these estimates of coverage, 

due to only performing 50 simulation replicates. Most noticeable is the bias introduced when 

ignoring the cause specific effect by assuming a Weibull model. When the contribution of 

the cause of interest to overall mortality is rapidly decreasing through time (Model 3), and β 

= 1.5, the Weibull model underestimates the mean survival by an average of 5.6 years. 
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Likewise if β = 3, mean survival is underestimated by almost 3 years. In both cases this is a 

bias of the order of 30%, which would often make a substantial difference to policy 

decisions. In contrast, the biases in the estimates obtained using the Cox-like model are 

much lower, with mean survival underestimated by at most 2.68 years. Thus the flexibility of 

the baseline hazards in the Cox model will, to some extent, compensate for the misspecified 

assumption of proportional hazards for overall survival to give minimally biased estimates of 

overall survival. The price for this is a reduction in efficiency and loss in precision 

(demonstrated by coverage probability of 1), which may be important if the data set is small.

These results are also illustrated in Figure 4, which compares the true survival curves to a 

fitted survival curve for a representative simulation replicate. There is a good fit by all 

models when the data are generated from Model 1, whereas the mean survival is 

underestimated by the Weibull model when the data are generated from Model 3. The 

underestimation is particularly evident when survival is extrapolated. The pattern for bias in 

the Cox-like model is less clear in our simulations, reflecting the higher variance in these 

estimates.

Our simulation study has focused on the specific case of the use of Weibull and Cox models 

for overall survival when the contribution of the cause-specific risk of interest is decreasing 

over time, so that overall survival is correctly modelled by a Poly-Weibull distribution. 

Whilst this study gives an indication of the patterns of bias and efficiency when estimating 

mean survival, it does not comprehensively investigate the degree of bias and efficiency. The 

study demonstrated that for model 3, in which a doubling of time relates to a doubling of 

risk for the rapidly increasing hazard, the frequently-used Weibull distribution can result in 

bias of the order of 30%, whilst the Cox model will be more accurate (at most 13.5% bias in 

our simulations). We note that the extent of bias due to changing risk contribution is 

primarily influenced by the shape parameters α. Detailed examination of these parameters 

(or analogous parameters in alternative survival functions) is most likely to provide insight 

into the implications of ignoring cause-specific hazards. Additionally, the simulation study 

does not investigate a wide range of possible survival distributions. For example, the Poly-

Weibull may give poor estimates of overall survival if the data were generated according to, 

say, a Poly-Gompertz distribution. Therefore, assessment of model fit to both short-term and 

long-term data sources is important, though not all assumptions about extrapolated 

parameters can be checked that way, and a more comprehensive simulation study could be 

worthwhile.

4 Application to implantable cardioverter defibrillators

4.1 ICD cohort and population data

The simulation study showed the potential for bias when study group survival is extrapolated 

by applying overall instead of cause-specific hazard ratios to population data when the cause 

of interest is not a constant proportion of all cause mortality through time. Here we apply the 

same models to a study of implantable cardioverter defibrillators (ICD) in a cohort of 

patients with cardiac arrhythmia who have survived a ’sudden cardiac death’ event. Thus 

arrhythmia-related deaths are cause k = 1.
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The study data consist of 535 patients implanted with ICDs between 1991 and 2002 (244 

and 291 implants from Papworth and Liverpool hospitals, respectively). There were 81 

observed deaths and the follow-up was at most 10 years post implant, with 75% of the 

sample having follow-up below 3.5 years. The empirical survival curve is illustrated in 

Figure 5 (left). Causes of death were not recorded. The average age at implant was 60 years 

and men represented 81% of this cohort. The empirical hazard rate fluctuated around an 

approximately constant value during the observed follow-up period (Figure 5, right), 

however it is unlikely to remain constant in the long term since we expect mortality rates to 

increase with age. As in Demiris and Sharples [6], we assume that the distributional family 

governing the survival of ICD patients is the same as that of the general population in the 

UK matched by age and sex. While Demiris and Sharples [6] assumed proportional hazards 

for all causes of death between the ICD cohort and the general age-sex matched population, 

we assume that the ICD patients have (higher) proportional hazards for arrhythmic deaths, 

but identical mortality for other causes of death, compared to the population.

The UK population survival data were generated using annual life tables, by age and sex, 

published by the UK Office for National Statistics (ONS) (http://www.ons.gov.uk/ons/

taxonomy/index.html?nscl=Interim+Life+Tablesdownloaded16thDec2012). We also obtain 

population data on causes of death from the UK ONS, in particular their table of deaths by 

underlying cause, for diseases of the circulatory system. In an informal discussion with a 

clinical expert (Andrew Grace, personal communication) we identified which coded causes 

of death in this table were thought to be arrhythmia-related, thus potentially preventable by 

ICD implantation. Hence we computed the proportion of deaths which were related to 

arrhythmia, illustrated in Figure 6 for sex and 5-year age groups. For each ICD patient, we 

generated survival times from 20 controls from the general population, matched by age and 

sex. The survival time for each control was generated by randomly sampling their annual 

survival status, year by year, using the survival probabilities from the published life tables. A 

cause of death (classified as arrhythmia or non-arrhythmia) was similarly generated for each 

control by random sampling using the data in Figure 6. 20 controls were judged to be 

sufficiently many that we can assume negligible sampling uncertainty in the population data 

relative to the study data.

Note that over the age range of interest (≥ 60 years) the proportion of deaths (potentially) 

related to arrhythmia is fairly constant for men but is increasing for women (Figure 6). This 

suggests that assuming proportional all-cause hazards may give greater biases for women 

than men in extrapolated survival estimates.

4.2 Models for combining cohort and population data

In previous sections, we extrapolated the survival of a single group of patients at high risk of 

death from a specific cause, using population survival patterns We do this here for the ICD 

cohort using the previously-described models: a Weibull with proportional all-cause hazards 

between the ICD cohort and the population data, a Bayesian semi-parametric Cox-like 

model, and a poly-Weibull model with proportional hazards for arrhythmia mortality. The 

same prior distributions were used as in the simulation study (Section 3.2). As a test of the 

Weibull assumption for cause-specific hazards, we fitted an alternative polyhazard model 
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based on the Gompertz distribution. This “poly-Gompertz” model has the same definition as 

in Equation (2), but with cause k hazard λk exp(αkt) instead of λkαktαk−1, so that we again 

assume proportional cause-specific hazards, but with a differently-shaped hazard trajectory. 

Similar principles were used to derive its priors.

4.3 Comparisons between competing treatments

In cost-effectiveness analysis, we typically need to compare expected survival between 

patients receiving different interventions. Thus we add a third data source to our ICD 

patients and our general population. In this example, we compare patients implanted with 

ICDs to patients treated with anti-arrhythmic drugs (AAD). A summary treatment effect is 

available from a meta-analysis of three randomised controlled trials [5] comparing ICDs 

with anti-arrhythmic drugs (AAD) for the secondary prevention of sudden cardiac death. For 

the outcome of death from any cause, the hazard ratio (ICD:AAD) was 0.72 (95% CI: 0.60 – 
0.87). For death from arrhythmia-related causes the published hazard ratio was 0.50 (95% 

CI: 0.37 – 0.67). We can incorporate this information straightforwardly in our previous 

models as a prior distribution, assuming only the hazard related to arrhythmia deaths is 

affected by the treatment. Thus, using the notation of Section 2, the hazards for the 

population, ICD and AAD groups under the polyhazard models are respectively given by:

(5)

where γ is the log hazard ratio (AAD:ICD) related to arrhythmia-related deaths. Using the 

meta-analysis summary statistic given above, we set the prior for this parameter to be N 
(0.693, 0.1482).

For the Weibull and Cox-like models, which assume proportional overall hazards, we have 

population hazard hp(t|λ, α), and

where γ here is the log hazard ratio (AAD:ICD) related to all causes of death. For these 

models the prior for γ was N (0.3285, 0.0932), also obtained from the meta-analysis 

summary hazard ratio.

The outcome of interest is the life years gained (LYG) from a policy of ICD implantation 

compared to AAD treatment, which is the difference between the expected survival for 

patients under each treatment. These are presented in Table 4, and the estimates for the basic 

parameters are given in Table 5 of the online Appendix B.

Benaglia et al. Page 10

Stat Med. Author manuscript; available in PMC 2016 April 27.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



4.4 Comparison of model fit

The poly-Weibull distribution fits the ICD study data reasonably well overall (Figure 5), and 

by gender (Supplementary Figure 7). Supplementary Figure 8 indicates that the Weibull 

distribution gives an adequate fit to the general population survival data by cause and gender. 

This suggests the poly-Weibull-based model is reasonable for use in extrapolation. The 

estimates of the survival of ICD patients from the other three models agree with the Kaplan-

Meier estimate well. Though note that short-term fit is only a limited guide to long-term 

model adequacy — the poly-Gompertz models show substantially poorer fit to the long-term 
general population data for both arrhythmic and non-arrhythmic death times separately and 

both genders (Figure 8). Figure 5 also suggests the hazard over 40 years is underestimated 

(or survival overestimated) by the poly-Gompertz model due to the influence of the data 

from the first 5 years on the shape of the trajectory.

The polyhazard models are of identical complexity, so improvements in fit can be quantified 

by reductions in the posterior mean deviance  corresponding to likelihood contributions 

(1) (for each cause of death separately) and (3). While  for the study data is 16 lower for 

the poly-Gompertz model compared to the poly-Weibull, the corresponding  for long-term 

general population arrhythmic and non-arrhythmic deaths is 270 and 98 higher respectively, 

indicating a poorer overall fit for the poly-Gompertz. This suggests the poly-Gompertz 

would give less plausible extrapolations of long-term survival of our study patients, despite 

the marginally better short-term fit.

4.5 Comparison of expected survival

The estimated life years gained is greater by more than one year under the poly-Weibull 

model, compared to the two models which ignore causes of death (Table 4). This difference 

between the models is most apparent in the estimated survival for the AAD patients, which 

is also influenced by the meta-analysis through the parameter γ. These results are also 

demonstrated in Figure 5, which shows the fitted survival curves and log hazards for both 

the ICD and AAD patients. The poly-Gompertz gives much higher estimates of expected 

survival and life years gained, and its poorer fit to the long-term data suggests that these are 

implausible. Under the Cox-like model the expected survival for both the treatment groups is 

greater compared to the Weibull, but the incremental survival is not materially affected — 

this suggests that modelling the baseline survival more flexibly does not completely alleviate 

bias due to ignoring cause-specific mortality.

Recall that the priors were weakly informative and based on beliefs expressed on a natural 

scale (Section 3.2). The results were found to be robust to alternative standard choices, 

except in the case of the polyhazard models for women, where the mean survival was 

sensitive to the assumed prior variance, since these models are weakly identifiable given 

there are only 104 women in the ICD data, 12 of whom died. For example in the poly-

Weibull, the mean ICD survival for women was 11.13 under a N(0, 1000) prior for the 

log(λk), which is effectively uniform on a different scale though permits unnaturally high 

survival times.
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As previously noted, Figure 6 shows that the proportion of deaths by age for men which are 

due to arrhythmia is approximately constant from age 60, but increases with age for women. 

Because of this, the effect of treatment might differ by gender (see application in Section 4). 

The expected survival and life years gained for each gender individually are presented in 

Table 4. Again, the life years gained are greater for both men and women if assuming a 

cause specific rather than an overall mortality differential between the general and study 

populations. For women this difference is approximately 65% higher, which implies that in a 

cost-effectiveness analysis the cost per year of life gained would be almost 60% of that 

estimated by the models that ignore causes of death. However, even for men, there is a 

difference of about a year between the estimated survival of AAD patients after accounting 

for cause-specific mortality. Interpretation of the results in this particular example is not 

straightforward. The overall mean survival for both men and women is similar for the 

Weibull, Cox-like and Poly-Weibull models, which was expected for men but not for 

women. Failure to identify the increasing proportion of deaths attributable to arrhythmias in 

women may be due to the small sample in the ICD cohort (12 deaths in 104 women), which 

may have caused identification problems in the poly-Weibull model. Sensitivity to prior 

distributions highlighted above is also an indication of the lack of information in this data 

set. In this example the increase in life years gained for both men and women in the cause-

specific analysis results from the difference in estimated mean survival for the AAD 

patients, which is driven by both the published arrhythmia-specific hazard ratio and the 

proportion of all cause mortality that can be influenced by an ICD. Reliable analysis will 

depend on correct classification of the causes of death that can be influenced by the ICD and 

an estimate of the arrhythmia-specific hazard ratio γ that is consistent with these causes. The 

large difference between the Poly-Weibull and Weibull observed in this example may be due 

to inconsistency in the definition of “arrhythmic mortality” between the cause-specific 

hazard ratios published by Connolly et al. [5] and our clinical colleague’s informal 

identification of arrhythmia-related causes of death in the general population — thus the 

model may not be adjusting for the difference between the population and study patients 

properly.

4.6 Sensitivity to classification of causes of death

To investigate this potential misclassification, we performed two sensitivity analyses, in 

which we randomly reclassified 10% and 20% of the arrhythmia-coded deaths in the general 

population as non-arrhythmic, and fitted the poly-Weibull model again. This resulted in 

reductions in the expected survival of both treatment groups, and a 4% and 8% reduction in 

the expected life years gained from ICD, respectively (Table 6). This is as expected, since 

with fewer deaths in the long term which might have been affected by the treatment, the 

effect of treatment on extrapolated survival will be lower. The same reductions in expected 

life years gained are observed for the same analyses by gender. However, the estimated 

survival of male AAD patients is still about a year lower after accounting for cause-specific 

mortality using the Poly-Weibull.

Another possible explanation is that the ICD study cohort may be at greater risk than the 

general population from other causes of death in addition to arrhythmia. Labelling these 
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causes ‘cause 3’ (and omitting the parameters α, λ on the right hand side for clarity) the 

population survival in Equation (5) would become

The parameter β would then represent the log hazard ratio between the population and 

cohort for these causes combined with arrhythmia, so that

However, assuming the published effect γof treatment (AAD or ICD) only applies to cause 1 

mortality, the true hazard for the AAD group would then be

In order for our previous model (5) to apply in this situation, with  replaced by 

, γ would need to represent the effect of treatment on causes 1 and 3 combined, 

which would be weaker than the published arrhythmia-specific effect. Since the AAD group 

has poorer survival, this would explain the possible underestimation of the AAD-specific 

survival in the poly-Weibull model.

5 Discussion

Extrapolations of survival of patients from randomised trials or study cohorts can often be 

facilitated with official survival statistics from the general population. This requires carefully 

characterising the differences between the population and the study patients. We have 

examined the circumstances under which simply assuming proportional hazards for all-cause 

mortality can lead to bias when estimating expected lifetime survival. If the study patients 

are at a higher risk of death from some identifiable cause, and the contribution of that cause 

to overall mortality is not constant through time, then the hazards for overall mortality will 

not be proportional. The resulting bias can be alleviated by using proportional hazards for 

the cause of interest, assuming that cause-specific survival times are available in either the 

population or the study data. If causes of death are unpublished in just one of the two 

datasets, as in our example, then overall survival in that dataset can be modelled with a 

polyhazard distribution, whose hazard is defined as the sum of cause-specific hazards.

In our application to implantable cardioverter defibrillators, ignoring the cause-specific 

hazard ratio resulted in a lower estimate of the gain in mean survival for women, for whom 

the proportion of deaths due to arrhythmia increases with age. The corresponding life years 

gained from ICD implantation as compared to anti-arrhythmic drugs (AAD) was 

approximately 65% higher after accounting for cause-specific survival. Hence the cost per 

life year gained, required for policy-making, would be substantially higher under the Weibull 

model, which is likely to be misspecified. Care should be taken in the interpretation of these 

estimates, since the size and direction of bias will be influenced both by the varying 
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proportion of arrhythmia deaths and by other model assumptions, such as the fit of the 

Weibull model, the accuracy of the classification of causes of death, and the assumption that 

the causes which distinguish the “arrhythmia” cohort from the population are the same 

causes affected by the published “arrhythmia-specific” treatment effect. In the ICD example, 

both men and women ICD patients had lower estimated gain in survival time compared to 

AAD patients using the Weibull model (Table 4), despite the largely constant proportion of 

deaths classified as arrhythmia-related (Figure 6). It is possible that assumptions regarding 

the classification of causes of death and the partitioning of the overall hazard into cause-

specific hazards influenced these estimates of survival, as discussed in the previous section, 

particularly since they are extrapolated. It is difficult to distinguish the effect of each 

questionable assumption in extrapolation. This emphasises the need for sensitivity analyses, 

and careful and consistent categorisation of causes of death in survival data. In addition, a 

more comprehensive simulation study, including a wider range of survival distributions and 

patterns of risk contributions, would clarify the extent of potential bias and efficiency 

resulting from ignoring cause-specific hazards.

The Weibull distribution is particularly convenient for modelling cause-specific survival 

since its proportional hazards property gives an intuitive scale for expressing the differences 

between populations, and treatment effects are typically published as hazard ratios. 

However, the Weibull family has a limited range of hazard trajectories, which may not 

express, for example, the rapidly increasing hazards seen in older populations. Different 

distributions can be used to generate polyhazard models. The Gompertz was investigated in 

our application, though found to be less suitable for our data. A semi-parametric Cox-type 

model with competing hazards would allow a more flexible baseline hazard for describing 

general population survival patterns, though any assumptions about proportionality of 

hazards should still be checked. Our simulation also suggested that bias can be alleviated by 

using a semi-parametric model, while still assuming proportional overall hazards, but at the 

cost of reduced precision compared to using the true parametric survival distribution. In 

addition, our poly-Weibull formulation assumes that hazards for different causes are additive 

and independent of each other, an assumption which is again impossible to test and may 

require sensitivity analysis.

As in any Bayesian application, priors may be influential for smaller sample sizes and 

models with more parameters. If substantive prior knowledge exists, as it does for human 

survival, it should be included. In our example, expected survival for women appeared to be 

overestimated by a year under an unrestricted diffuse prior which placed about 50% prior 

mass on mean survival times of more than 1000 years.

If the interest is in comparing expected survival between different interventions, then the 

intervention effect will typically be only available from randomised trials with short-term 

follow-up. Comparing survival over longer periods requires untestable assumptions, such as 

the treatment effect remaining constant after the end of the trial, or instantly reducing to 

zero, or decreasing gradually through time. Again, these can only be explored through 

sensitivity analysis. Note also that the example we present involves a joint analysis of 

randomised data, included as a prior on an intervention effect γ, and observational data. The 

posterior distribution of the intervention effect is however identical to the prior, since the 
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observational data do not contribute any likelihood. γ can therefore be interpreted as a causal 

effect of the randomised intervention. In other examples, we might want to estimate γ from a 

combination of randomised and observational data. Then for a causal interpretation we must 

ensure, for example, that all confounders have been controlled for.

Finally it is important to bear in mind the context in which these issues arise. Survival 

patterns in different subgroups are almost invariably a feature of health economic decision 

models, but other primary and secondary data sources are often included. In particular, 

disease progression and its relationship with survival is typically modelled, along with costs 

and utility assessments associated with different health states. The relationship between 

cause-specific survival methods and other components of the decision model should be the 

subject of future work.
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Figure 1. 
Hazard functions for data simulated for the population (first row) and study group with β = 

1.5 (second row) and β = 3 (third row); under models 1 (left) 2 (middle) or 3 (right).
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Figure 2. 
Posterior means and 95% credible intervals for expected survival under 50 simulation 

replicates, for data simulated under three different models and β = 1.5. True value shown in 

red, and mean of 50 posterior means shown in blue.
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Figure 3. 
Posterior means and 95% credible intervals for expected survival under 50 simulation 

replicates, for data simulated under three different models and β = 3. True value shown in 

red, and mean of 50 posterior means shown in blue.
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Figure 4. 
True and fitted survival curves for one simulation replicate, under true models 1, 2, and 3, 

and β = 1.5 (top) or β = 3 (bottom)
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Figure 5. 
Survival curves (left) and log hazards (right) for ICD patients (short-term observed and long-

term fitted), AAD patients (long-term fitted), and general population (observed) using the 

Weibull, Cox-like, poly-Weibull and poly-Gompertz models.
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Figure 6. 
Proportion of deaths in the UK population in 2002 which were due to cardiac arrhythmia
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Table 1.

Weibull distribution parameters governing simulated population and study data under six simulation scenarios, 

defined by combinations of three Weibull shape specifications and two log (study/population) hazard ratios β.

Data Parameter 1:Weibull 2: decreasing cause-
specific relative hazard

3: rapidly decreasing
cause-specific relative hazard

General population α0 (1.7, 1.7) (1.5, 2) (1.5, 4.5)

(n0 = 1000) λ0 (0.0015, 0.0022) (0.0015, 0.0022) (1.5 × 10−3, 1.5 × 10−7)

mean 24.04 17.58 26.96

Study group α (1.7, 1.7) (1.5, 2) (1.5, 4.5)

(n = 500) λ (0.0015eβ, 0.0022) (0.0015eβ, 0.0022) (0.003eβ, 0.001)

β = 1.5 mean 14.32 14.22 19.78

Study group α (1.7, 1.7) (1.5, 2) (1.5, 4.5)

(n = 500) λ (0.0015eβ, 0.0022) (0.0015eβ, 0.0022) (0.003eβ, 0.001)

β = 3 mean 6.72 8.09 9.20
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Table 2.

Bias and coverage in point and interval estimates of expected survival when β = 1.5

Model True Weibull Cox-like Poly-Weibull

1: Weibull Mean 14.32 14.31 14.71 14.76

Bias (%) −0.01 (−0.1%) 0.39 (2.7%) 0.44 (3.1%)

Coverage 0.94 0.98 0.96

  2: Decreasing Mean 14.22 13.40 13.75 14.16

  cause-specific Bias (%) −0.82 (−5.8%) −0.47 (−3.3%) −0.06 (−0.4%)

  relative hazard Coverage 0.78 0.96 0.72

3: Rapidly decreasing Mean 19.78 14.19 17.10 19.15

cause-specific relative Bias (%) −5.62 (−28.4%) −2.68 (−13.5%) −0.63 (−3.20%)

hazard Coverage 0.00 0.80 0.90
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Table 3.

Bias and coverage in point and interval estimates of expected survival when β = 3

Model True Weibull Cox-like Poly-Weibull

1:Weibull Mean (95% CI) 6.72 6.76 7.11 6.95

Bias (%) 0.04 (0.6%) 0.39 (5.8%) 0.23 (3.40%)

Coverage 0.92 0.96 0.84

  2: Decreasing Mean (95% CI) 8.09 7.08 7.78 7.68

  cause-specific Bias (%) −1.01 (−12.5%) −0.31 (−3.8%) −0.41 (−5.1%)

  relative hazard Coverage 0.52 0.96 0.82

3: Rapidly decreasing Mean (95% CI) 9.20 6.77 9.13 8.71

cause-specific relative Bias (%) −2.43 (−26.4%) −0.07 (−0.8%) −0.49 (−5.3%)

hazard Coverage 0.00 1.00 0.86
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Table 4.

Posterior mean (posterior standard deviation) of expected survival for patients receiving ICDs and AAD, by 

sex

Parameter

Survival Models

Weibull Cox-like Poly-Weibull Poly-Gompertz

OVERALL

     ICD mean survival 8.88 (0.71) 9.41 (0.78) 9.18 (0.75) 11.54 (1.03)

     AAD mean survival 7.06 (0.73) 7.43 (0.81) 6.06 (0.80) 7.62 (1.15)

     Life years gained 1.82 (0.49) 1.98 (0.53) 3.12 (0.61) 3.92 (0.78)

MALE

     ICD mean survival 8.52 (0.73) 9.04 (0.81) 8.72 (0.75) 11.00 (1.03)

     AAD mean survival 6.79 (0.73) 7.13 (0.82) 5.80 (0.78) 7.31 (1.14)

     Life years gained 1.73 (0.47) 1.91 (0.52) 2.91 (0.58) 3.69 (0.74)

FEMALE

     ICD mean survival 10.11 (1.95) 9.87 (2.14) 9.96 (1.97) 14.54 (3.25)

     AAD mean survival 8.22 (1.66) 7.92 (1.81) 6.85 (1.61) 9.87 (3.14)

     Life years gained 1.89 (0.62) 1.95 (0.65) 3.11 (0.76) 4.67 (1.05)
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