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Abstract

Multivariable fractional polynomial (MFP) models are commonly used in medical research. The
datasets in which MFP models are applied often contain covariates with missing values. To handle
the missing values, we describe methods for combining multiple imputation with MFP modelling,
considering in turn three issues: first, how to impute so that the imputation model does not favour
certain fractional polynomial (FP) models over others; second, how to estimate the FP exponents
in multiply imputed data; and third, how to choose between models of differing complexity. Two
imputation methods are outlined for different settings. For model selection, methods based on
Wald-type statistics and weighted likelihood-ratio tests are proposed and evaluated in simulation
studies. The Wald-based method is very slightly better at estimating FP exponents. Type | error
rates are very similar for both methods, although slightly less well controlled than analysis of
complete records; however, there is potential for substantial gains in power over the analysis of
complete records. We illustrate the two methods in a dataset from five trauma registries for which
a prognostic model has previously been published, contrasting the selected models with that
obtained by analysing the complete records only.
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1 Introduction

In medical research, it is common to investigate the association between a continuous
variable x and some outcome y. A default approach is to assume this association is linear. In
scenarios where linearity is in doubt, researchers will sometimes categorise x[1, 2], forcing
xto operate in step functions placed at (ultimately arbitrary) cut points [3, 4], which makes
this a poor solution. Smoothing is thus central in medical statistics. Two popular and flexible
approaches to allowing smooth nonlinear associations are splines [5] and fractional
polynomials (FP) [6]. FP models, and the methods used to build them, have the attraction of
simplicity that has commended them to applied methodologists and explains their use in
applied research. The current paper aims to describe how FP models can be applied in the
presence of missing data and does not consider using splines with missing data, although we
note that because both approaches have their place [7], such work would be useful.

The article originally introducing FP models acknowledged some shortcomings [8] but,
according to Google Scholar, has been cited over 1000 times (accessed on 25 January 2015).
While methods for developing FP methods are well established with fully observed data,
many of the datasets to which FP models have been applied in the past have contained
incomplete covariates [9-12].

Multiple imputation (M) is a general approach to handling missing data. Missing values are
imputed M > 1 times by draws from the posterior predictive distribution of a model,
returning M rectangular datasets. Each of these is analysed identically with the model that
would have been used in the absence of missing data, and the resulting estimates are
combined using rules developed by Rubin [13].

In principle, it should be possible to combine MI with FP methods. However, M1 was
developed assuming the analysis model of interest is fixed and known, while the testing
required to build FP models would need to be used in imputed data, making it difficult to
combine the two [6]. Researchers are at present faced with a choice between using MI with
an analysis model that assumes linearity [14], building FP models in complete records [15],
or using an ad hoc combination of MI with FP models [9-12].

The aim of this article is to propose and evaluate techniques for combining FPs with MI. We
begin by describing FP models and how they are built (Section 2) and briefly outlining Ml
(Section 3). The issues that arise when combining the two are explained (Section 4) and
some solutions introduced (Sections 5, 6 and 7). Two simulation studies evaluate these
methods (Sections 6 and 7). Finally, the methods for building models are applied to the
analysis of a dataset from five trauma centres for illustrative purposes (Section 8) [14].

2 Fractional polynomials

For a regression model involving a single continuous covariate x, a univariable FP model of
dimension D, termed ‘FPLD’, has Dterms in xand linear predictor
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This is the linear predictor for a regression model — including nonlinear models such as
logistic regression and Cox proportional hazards models. Values of pyare typically restricted
to the set Swhere

Se {_27_17_0'5)010'5)11273} ’ (2)

which provides much practical flexibility. By convention, X° = log x. Values of x must be
strictly positive; for variables with negative values, [6] advises adding a constant to all
values so that the smallest value is equal to the smallest increment between any two values.
With D >1, it is possible to have repeated powers for a covariate; the g-th term is then taken
as x°1, but the (d+ 1)th is set to X’ log(x). For example, an FP2 logistic regression model
with (07, p2) = (-2,-2) would be

logit () =80+ 12, >+ Bz 2logzs,  (3)

where 7is the probability that the binary outcome is 1. Values of D >2 are rarely considered
in practice, possibly because if such relationships are considered, plausible splines would be
preferred. A variable thought to have a U-shaped relationship with outcome would require D
= 2. Meanwhile, D=1 would be desirable for certain variables because it forces outcome to
be a monotonic function of x, and departures from this may be medically implausible.
Figure 1 plots a selection of FP functions with D= 2, illustrating the range of curves on offer
compared with linear functions, step functions or conventional polynomials.

The approach described in the preceding text can be extended to FP functions of multiple
continuous covariates and is called a multivariable FP (MFP) model. With C continuous
covariates x3,...,X¢, the linear predictor is

C D

Bo+ Y Beazler.

c=1d=1 (4)

The D, indicates that the complexity of the FP function may differ for different c.

2.1 Building fractional polynomial models

Methods for selecting FP models are described fully in [6] but summarised briefly here.
There are two components involved in selecting models:
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Q) Estimation of py for py= (1,...,pp). This is performed by identifying the value
of pthat maximises the log-likelihood and must be performed for each value of
dconsidered in the next step.

(2 Selection between models of different complexity. Likelihood ratios are used to
test the simpler model (e.g. treating xas linear or omitting it altogether) against
the best-fitting FP Dyax model; if the test is significant at nominal level q, the
next simplest model is tested versus the FP Dy,x model, and so on. The
selected model is the simplest for which the test against the FP Dy, model is
not significant. If all tests are significant, the FP Dy,5x model is chosen.

In testing between models of different complexity, 1 degree of freedom (df) is assigned to
each £, and 1 df to each p; thus, a test of FP1 versus FP2 is on 2 df. This assignment may
lead to miscalibration of type | error rates for two reasons [16]. First, Sare estimated
conditional on p, treating p as fixed and known. The precision of confidence intervals

around 3 is thus overstated. Second, the parameter space for p is discrete, constrained to
taking values in S. The 1 df apportioned to each p estimated assumes the parameter space is
continuous in (—oo, 00). This is not the case, meaning the 1 df is overly generous, implying
conservatism in the testing procedures [16].

Building MFP models involves repeated application of the FP procedure to each x,in turn
[6]. First, xo.r= (X1,..., X1, Xp+1,---,X() are treated as linear, and the FP selection procedure
is applied to x,. The functional form of x.is retained when FP is applied to x1. This is
applied to each variable in turn. The procedure is then run for the variables again
conditioning on the current FP model, until the selected forms FPs are stable for a full cycle.

3 Missing data and multiple imputation

References [9-12] all built FP models in partially observed datasets. The approaches used
were ad hoc, so there is a need to understand and critique the potential approaches.

In a general context (not just FP models), Ml is a flexible and popular approach to dealing
with uncertainty due to missing data [17]. Each missing value is imputed M > 1 times,
producing M ‘complete’ imputed datasets. The analysis model that would be used for a
complete dataset can then be fitted to each imputed dataset. The results of the A analyses
are combined using rules described by Rubin [13], which can be used to combine estimators
of population parameters.

By default, MI implementations assume data are ‘missing at random’ (MAR) or ‘missing
completely at random’ (MCAR). These assumptions say that the probability of data being
missing is independent of the missing values themselves; for MAR, this statement is
conditional on the observed data. A more awkward assumption is ‘missing not at random’.
MI implementations can be extended to missing not at random, but here we focus on MAR
and MCAR.

Multivariate missing data can be imputed from a joint model, such as a multivariate normal
or log-linear model, or by ‘chained equations’ (often termed “fully conditional
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specification’, FCS or MICE) [17]. The chained equations approach involves specifying a
univariate imputation model for each incomplete variable conditional on other variables, and
conditioning on current imputed values as covariates in the imputation of other variables.
Incomplete variables are imputed in turn, and the process is repeated several (typically
around 10) times.

If the models used for imputation and analysis are correctly specified, and under the
assumption of MAR, MI provides an approximation to fitting a joint model for the
distribution of covariates and outcome, leading to consistent estimates with nominal
coverage. It is impossible to tell if the imputation and analysis models are correctly specified
but it is desirable that the imputation model for incomplete covariates is at least ‘compatible’
with the analysis model, which is a necessary condition for the models to be correctly
specified. Compatibility means that a joint model exists that implies both the imputation and
analysis models as conditionals [18, 19].

A weaker condition is ‘semi-compatibility’ [19-21], meaning the analysis model is
compatible with a special case of the imputation model: the imputation model is ‘richer’
than the analysis model [17]. These concepts are important in developing methods to
combine FPs models with MI and are used in Section 5.

4 Difficulties in combining fractional polynomials with multiple imputation

Methods for building FP models with complete data are heavily reliant on likelihood-ratio
testing. In multiply imputed datasets, this approach is inappropriate, because we do not have
a likelihood in M1 data [17]. With MI data, hypotheses would usually be tested using Wald
statistics [22]. However, the FP testing procedure does not obtain an estimate of Var(;) and
so Wald statistics are not available. Procedures related to likelihood-ratio tests do exist for
MI data [22, 23] and are discussed in Section 7.

Imputation can become complex with FP models. Compatibility of the imputation and
analysis models comes to the fore because when the analysis model is unknown, it becomes
difficult to ensure that the imputation model is compatible or semi-compatible.

The remainder of this paper aims to develop methods for dealing with these issues. First, we
adapt two imputation methods to be used when the analysis involves FPs; second, we
compare log-likelihoods and Wald statistics to identify the ‘best-fitting’ model of dimension
d third, we compare a testing procedure based on weighted likelihood ratios with one based
on the model Wald statistic.

5 Imputing for fractional polynomials

Ahead of building an FP model, imputation must allow for the form of the FP functions that
may be selected. If not, the imputation and analysis models may be incompatible, with
consequences for estimation. Some options and our method of choice are outlined in the
succeeding text.
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5.1 Just another variable

\on Hippel developed an approach for imputing squared terms and interactions that ignores
the true relationship between transformations and imputes functions as though the
relationship was not deterministic, but estimated in the imputation [24]. For example, xand
X2 may be treated as bivariate normal for the purposes of imputation. Seaman e a/. later
showed that the approach only works accurately for linear regression when xare MCAR and
demonstrated potential for serious bias under departures from these conditions [25].

5.2 Predictive mean matching

Predictive mean matching has previously looked promising in settings where the imputation
model is misspecified [17], either within von Hippel’s approach [24] or by ‘passively’
imputing the nonlinear function from an imputed value of the original variable [25].
However, although it can improve on parametric imputation assuming linearity, it has
recently been shown to lead to bias in estimating nonlinear relationships [25, 26].

5.3 Substantive model compatible fully conditional specification

This imputation approach is based on rejection sampling. Bartlett et a/. describe a method
termed ‘substantive model compatible fully conditional specification” (SMC FCS) and
demonstrate that it can be used to impute squares and interactions in a way that is both
compatible with the analysis model and respects the deterministic relationship between
functions [21]. Briefly, the method involves specifying a marginal distribution for x, termed
the proposal distribution, and rejecting or accepting proposal draws from this distribution
with probabilities proportional to the likelihood of the observed outcome given the proposed
value of x. This is embedded in a chained equations procedure where each x is imputed in
turn.

SMC FCS is a general solution to imputation of nonlinear functions; Carpenter and Kenward
give FPs as one example [27]. However, they assume the FP functions to be included in the
analysis model have been chosen at the point of imputation. To relax this assumption, one
solution may be to allow for a very general form for x, by including all candidate FP
functions for the purposes of rejection sampling, which may be eight different
transformations. This ensures the imputation models are semi-compatible with whatever FP
model is eventually selected.

The proposal is currently limited by two computational problems. The first is that imputed
values of x, must be positive so that FP transformations can be taken. Using a truncated
model or predictive mean matching for drawing from the proposal distribution may resolve
this. The second problem is collinearity. Even if the true model is truly a high-dimensional
FP, several of the variables may be collinear in the analysis model, leading to unstable
rejection probabilities. If imputation was from a joint model, a suitable ridge parameter
could be used to stabilise the model, but the method is based on chained equations, making
the choice of an appropriate parameter difficult.

The rejection sampling method has potential but requires further thought to be usable for FP
imputation problems, and it is not obvious how sensible dropping of collinear functions can
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be automated. One solution may be to specify a suitably flexible cubic spline model within
the imputation step. In principle, this offers a similar flexibility to FPs. However, such an
imputation model would imply that the final analysis model should also involve splines, and
our aim is to develop imputation methods for FP analysis models. Further, a spline-based
imputation model is not compatible or semi-compatible with an FP analysis model; the
suggestion is based on both being flexible methods for modelling nonlinear effects. The
usefulness of this approach would need verifying in simulations.

5.4 Drawing exponents via bootstrapping

The difficulty with imputation for FPs is in incorporating uncertainty about p in imputation
models. When the posterior distribution is difficult to draw from, the approximate Bayesian
bootstrap (ABB) can be a solution. A sample is drawn with replacement where individuals’
probabilities of being resampled are drawn from a scaled multinomial distribution [28]. For
larger samples, this procedure becomes very similar inferentially to the bootstrap. We use
the ABB to develop a method for imputing FP1 functions.

Consider an incomplete continuous covariate x with complete outcome y. The following
imputation procedure is compatible with FP1 models for yon x:

Q) Use ABB to draw a sample from the individuals with observed values of x.

(2) For p=-2(.)3, where (.) represents some small increment, fit a linear
regression of X’ on yand any other covariates in the analysis model. This is
compatible with the assumption that the analysis model is a regression model
of yon x” (and other covariates) for unknown p. Values in (.) must span the
candidate powers considered by the analysis but could be less coarse.
Increments of 0.2 are used in the present paper.

(3) Find the value of preturning the largest value of log(L) + J, where L is the
likelihood and Jis the Jacobian for the transformation from xto x°, required in
order to make the log-likelihoods comparable, and denote this value p*. (As
the maximum from a bootstrap sample, g* is a nonparametric draw from the
approximate posterior of p.)

4) Restore the partially observed dataset.

(5) Impute missing (X)7" using linear regression of X** on yand other variables
from step 2.

(6) Passively impute x* by taking the p*-th root of (x*)~".

This procedure returns one of M imputed datasets.

As noted earlier, it is important that x* are positive, so that the standard FP transformations
can be calculated for all x*. We have implemented two options for imputation:

Q) Impute using a truncated regression imputation model. Specify a (lower)
truncation bound for x at some value > 0 and transform to a bound for x”* in
step 5 (a lower bound for g* > 0 and an upper bound for g* < 0).
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2 Perform the imputation in step 5 using predictive mean matching [17, 29, 30].
Because the observed values of xare positive, the imputed values will be also.

5.5 Choice of imputation method

The current work uses the method based on the ABB for simulations, where the lower
bounds are respected by drawing x”* using predictive mean matching. However, the method
described in the preceding text applies only to FP1 functions. For an extensionto D=2, a
suitable approach may be to take the ‘polynomial combination’ approach of Vink and van
Buuren to fit a model for all pairs of exponents (py, ) in an FP2 model [31]. We note that
such an extension would be extremely computationally intensive.

6 Estimation of exponents

The FP function selection procedure, which considers maximum dimension Dqax, requires
estimation of the best-fitting FPd'models for d=1,...,Dnax as well as the linear and
(possibly) null models. This section considers methods for estimating the best-fitting FPd
model in multiply imputed data.

6.1 Candidate methods

Wood, White and Royston consider methods for variable selection in multiply imputed data
based on Wald tests and weighted likelihood-ratio tests based on stacked Ml data [22]. We
consider two related methods for the estimation of p

Log-likelihoods. The M imputed datasets are stacked and each FPd model
fitted, treating the imputed datasets as a single complete dataset; p is selected
to maximise the log-likelihood.

Wald statistics. 3|p and Var(3|p) are estimated for all candidate p via Rubin’s
rules and the Wald statistic for testing 4= 0 calculated, with p selected to
maximise this quantity.

With complete data, the ‘best-fitting” FPd'model is simply the one returning the largest value
of the log-likelihood. With multiply imputed datasets, the log-likelihood is hot meaningful
for formal inferences, such as hypothesis tests. However, in comparing the fit of candidate
FPdmodels with different values of p, the log-likelihoods are not referred to any
distribution. Because the models are of the same complexity, the ordering of competing FPd
models by log-likelihoods will be the same regardless of scale, so stacked observations need
not be weighted.

Wald statistics have not previously been used for FP model building in complete data, and it
is not clear whether they can be used to estimate p. However, Wald tests have previously
been shown to be the ideal method for variable selection methods in Ml data [22] and will be
evaluated as the basis of testing procedures in Section 7; if they are also used to estimate p,
then the overall procedure is more coherent.

If both of the aforementioned methods are unbiased, as expected, the method that estimates
p with the greatest precision will be favoured.
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6.2 Simulation design

To compare these methods, a simulation study based on FP1 is used. The true model
involves linear regression of a continuous outcome y on an FP1 function of a continuous
covariate x. Because we aim to compare bias and precision of log-likelihoods with Wald
statistics for estimating p, we use a larger set S here than the usual eight transformations
given in 2. This does not impact on the methods themselves but provides a finer picture of
bias and precision for the purpose of comparing methods.

The simulation procedure is as follows.

Q) Complete data are simulated on /7= 300 observations from a bivariate normal
distribution with parameters

o[8[ )
3 0.7 1 (5)

This implies the true analysis model is a linear regression of yon x°. It is
important to produce a strong association between xand y, such that power for
the true analysis model is close to 100% (i.e. if we fix 5 to equal p, then the
test of #= 0 has almost 100% power). If Corr(y;, X°) ~ 0 in any simulated
dataset, the profile for 5 will be flat regardless of true p, and it becomes
impossible to distinguish between good and bad methods with respect to
estimation of p. In the context of prognostic models, where MFP models are
particularly useful, 7= 300 may be regarded as a relatively small sample size

[71.

(2) Forty per cent of values of xare set to missing under a MAR mechanism such
that the probability of x being missing is 0.2 when y < 0 and 0.6 when y> 0.

3) Missing values in x are multiply imputed using the bootstrap method outlined
in Section 5.4.

“) For ¢/ = —=2(.2)3, the linear regression analysis model for (yl=" ) is fitted and

the log-likelihood and Wald statistics based on MI data recorded. The log-

likelihood for complete data and complete records analyses is also recorded.

(5) p is estimated as the value of ¢/ maximising the log-likelihood or Wald
statistic.

This process is repeated a total of 10 000 times for true p=0, 0.5, 1 and 2, and results are
summarised graphically.

6.3 Simulation results

The simulation results are displayed as a spike plot in Figure 2. The columns represent
different true values of o from left to right, p=0, 0.5, 1 and 2. Rows represent different
methods for estimating p: from top to bottom, complete data using the log-likelihood (CD-
1), complete records using the log-likelihood (CR-II), Wald statistics based on Ml data (MI-
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Wald) and log-likelihoods based on M1 data (MI-II). The horizontal axes represent different
values of p and are labelled with the exponents typically used in S. The vertical axes display
the frequency with which a given value was selected over the 10 000 replications. The
vertical axes all originate at 0, but the maxima are scaled individually to make each sub-plot
as clear as possible.

As Figure 2 shows, across all methods, the sampling variance of p increases with the
magnitude of p. This occurs because (for example) when p= 2 in truth, p—3 is closer to the
true model than p—2 is when in truth p= 1. That is, a cubic is closer to a quadratic than a
quadratic is to a straight line.

With complete data, use of log-likelihoods is unbiased and efficient, as expected. Data are
MAR, and so, there is some bias associated with complete-case analysis, as well as lower
precision.

The MI-Wald method exhibits a slight upward bias for p. This bias is lowest for p= 0,
increasing slightly for each larger value of p. The Wald method is also less precise than
using complete-data log-likelihoods but slightly more precise than complete-records log-
likelihoods.

The Ml log-likelihood method also exhibits a small upward bias, which is slightly greater
than the bias in the MI-Wald method. Again, precision is lower than for complete data and
higher than for complete records.

Wald statistics and log-likelihoods based on multiply imputed data both offer an
improvement over analysis of the complete records. With imputed data, Wald statistics
appear to do slightly better than log-likelihoods in terms of both bias and precision.
However, the differences are small, particularly in relation to the set of powers in Stypically
used in FP models. In this example, complete records was the worst method, although
sometimes only slightly worse. It is worth noting that its performance will degrade further
with multiple incomplete covariates.

Both the log-likelihood and Wald methods will be carried forward to the methods evaluated
in the following section, which focuses on hypothesis testing.

7 Methods for fractional polynomial model selection in multiply imputed

data

The candidate methods we consider for selecting between FP models of different dimension
are outlined in the following text. These methods represent a way for researchers to use the
MFP model-building algorithm in MI data.

7.1 Weighted likelihood-ratio tests based on ‘stacked’ data

Wood, White and Royston [22] proposed new methods for hypothesis testing in multiply
imputed data based on log-likelihoods, which naturally extend to MFP models. The
methods, designated ‘stacking’, involved treating the A/ imputed datasets as one dataset of 7
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x M observations. The best stacking method explored in [22], designated ‘W3’, involves
weighting all observations by w,= (1 - 7))/ M, where £ is the fraction of missing data for the
c-th covariate [22]. Equal weights are assigned to all observations for each test, but the
weight changes according to the covariate under scrutiny.

The use of the fraction of missing data for calculating weights is an attempt to weight each
variable back to the correct amount of information: 7, attempts to approximate the fraction
of missing information [32]. When the approximation holds, stacking will work well. This
would require a complete outcome, values to be MCAR and a covariate with missing values
to be uncorrelated with other covariates. These are strong conditions that are extremely
unlikely to be met in practice. When they are not, stacking will perform less well, but it is of
interest to investigate how quickly it degrades under departures from these conditions.

7.2 Wald and AWald tests

Wald tests based on Rubin’s rules have previously been demonstrated to be valid and
powerful for variable selection in Ml data [22].

For FP model selection, consider a Wald-based procedure for a single covariate x. For use
with FPs, the standard Wald statistic versus a null model for the parameters (5 ... fp) can
be calculated using Rubin’s rules. However, if this test is significant, it is not possible to
calculate a Wald statistic to test between non-nested models, say FP1 versus linear (Section
2). It is instead proposed to use the difference between two models’ Wald statistics; we term
this method ‘A Wald’. This is motivated by the fact that with fully observed data, the Wald
statistic approximates the likelihood-ratio test.

Note that there is no guarantee that a AWald statistic will be positive. This may not be a
problem for testing because a negative Wald statistic is not significant at any level, but such
behaviour in the left tail of the distribution might flag unusual behaviour in the right tail.

Model selection proceeds on the basis of Wald tests where possible and AWald otherwise.
The 42 reference distributions and their dfs are the same as those used in the function
selection procedure with complete data.

There is reason to suspect the dfs will be conservative. Consider the test of FP1 versus a null
model. The Wald statistic is calculated from /5 and tested using 2 as the reference

distribution. The df comes from the two extra parameters, p4 and S, as compared with the
null model, but the Wald statistic is actually calculated from 4, conditional on 3 ,, a single
parameter. Conversely, recall from Section 2.1 that @(3) will be underestimated because it

is estimated conditional on 5, , assuming that this is the true pg;. This results in the Wald
statistic for £ being too large. The two errors may cancel out to some extent.

For the remainder of this article, Wald tests calculated against a genuine null model and
those calculated from the difference in Wald statistics will both be referred to as ‘AWald’.
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7.3 Other methods

We considered evaluating two other approaches to this problem. A brief description and
justification of their omission is given in the succeeding text.

The first approach is Meng and Rubin’s likelihood-ratio test for multiply imputed data [23].
This is derived from the asymptotic equivalence of Wald and likelihood-ratio tests and was
developed as a convenience tool to avoid calculation and inversion of M variance—covariance
matrices in high-dimensional datasets. By aiming to approximate a Wald test, it will perform
at best as well as the associated Wald test. In unpublished work, P. R. has found the test to
have extremely low type | error rates and thus hopelessly low power for building FP models.
We do not therefore consider the approach further here.

The second approach is that of Robins and Wang [33]. While their approach is strongly
theoretically, there are several practical difficulties [34].

Robins and Wang take a different approach to imputation: imputed values are drawn
conditional on the observed data and the observed-data maximum likelihood estimate rather
than first drawing parameters of the imputation model from the posterior [33]. The imputer
must save datasets containing the score function of the imputation model and the derivative
of the score function with respect to the parameters of the imputation model. The analysis
model is then applied to the M stacked imputed datasets assuming observations are
independent. The analyst must save a dataset and matrix containing the estimating equations
of the analysis model and the derivative of these equations with respect to the parameters of
the analysis model. The approach provides consistent variance estimation when the
imputation and analysis models are incompatible, although it is unimpressive with small
sample sizes [34].

While Robins and Wang’s method has been implemented in some simple cases involving
monotone missingness [34], the demands are too great to attempt any application to
problems involving FPs, where even ‘standard’ imputation and analysis models tend to be
complex. Hughes, Sterne and Tilling show that the gains of Robins and Wang’s method are
typically modest and disappear with small sample sizes [34]. It is assumed that the
requirements of Robins and Wang’s method would be too much to expect of researchers
looking to apply FP models to incomplete datasets.

7.4 Simulation studies investigating proposed testing procedures

The simulation studies presented in sections 7.4.1 and 7.4.2 investigate the error rates of
model selection by complete records, AWald and stacking for FP1 models, comparing these
with analysis of the complete data as the gold standard. All scenarios involve a continuous

outcome and two covariates, x; and xo. The outcome ) has a linear predictor based on 21 and
an FP1 transformation of x.

7.4.1 Simulation design—The following simulation setup is replicated 5000 times for
each setting investigated. Two sample sizes are used for all settings: 7= 200 and 7= 500.

Covariates are simulated from the model
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2
<m;0.57 1:2) ~ BVN /‘Ll , 0-1 0-13—2 .
M2 0109 a5 (6)

The parameters of this model are important as FP transformations will have more or less
effect depending on the coefficient of variation for the variable being transformed. An FP1
transformation for a variable with mean 5 and variance 1 may allow for a degree of
nonlinearity, in that fitting all FP1 models may give fairly different log-likelihoods. If the
mean is increased but the variance remains the same, FP transformations of the new variable
will be closer to linear, in that the log-likelihoods for the FP1 models will be closer. This is
why the default behaviour of the FP commands for Stata (Stata. College Station, TX:
StataCorp LP.) is to perform a preliminary scaling of x. The parameter values used here are
4 = 0.6 and o1 = 0.2, implying x; has mean 3 and variance 1 (approximately), and (b = 3
and o» = 1. The value of o707 is set to 0 or 0.5 for two different scenarios.

The outcome yis simulated from

y; ~ N (ﬂ0+51$1_i0‘5+52932i’02) D

The linear predictor includes an FP1 function of x; and a linear function of x,. The same
value of p; was used in (6) and (7) so that the joint distribution for the complete data is

($IO'5, Zg, y) ~ MVN. For investigations of type | error, /3 is set to 0. For investigations of
power, f; is chosen such that, with complete data, the test for inclusion of x; has 90% power.
Note that this means £ changes for different values of 010, and n. The true value of p; was
chosen as —0.5 because this is relatively far from 1, meaning the test for FP1 versus a
straight line has a good degree of power. When complete data analysis had 90% power for a
test of FP1 versus null, the test of FP1 versus linear had approximately 80% power.

Values of /% are chosen such that the likelihood-ratio test for inclusion of x, has 90% power
with fully observed data.

For the results presented in 7.4.2, missingness occurs in xq, X» or both, while yis complete.
For each of these scenarios, two missing data mechanisms are invoked. Let 7, be a binary
variable equal to 1 if x,is observed and O if x.is missing, and let 7 denote P(R, = 1). Under
MCAR, we set 7= 0.7. Under MAR, we set logit(7) = ay + @1y, with ey and o chosen so
that 70% of data are observed and comparison of /2; with yreturns an area under the ROC
curve of 0.65, making 7and the degree of MAR comparable across simulation settings.
Here, the sign of @y is always negative so that missing data are more likely at high values of

Y.

Missing x; values are imputed using the bootstrap method described in Section 5.4 using M
= 10 imputations, 10 cycles of chained equations (if both x; and x; are incomplete), with
predictive mean matching with respect to the bounds.
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The function selection procedure is run for complete data, complete records and Ml data
using stacking and AWald. The nominal size of tests used is « = 0.1 throughout, following
Ambler and Royston [16]. The most complex function considered is FP1. This is first tested
against the null model and then against a model including x; as linear. The quantity of
interest is the rejection rate for each method. When ; = 0, this should be as close to «a as
possible, indicating control of the type I error rates; when g; # 0, this should be as close to 1
as possible, maximising power.

The scenario expected to best suit stacking is 010, = 0 with x;, MCAR, because here, 7 will
approximate the fraction of missing information. MAR and o10» = 0.5 will provide a sterner
test for stacking. The test of FP1 against a null model is based on a true Wald statistic. The
test of FP1 versus linear will provide a tougher test because it is based on AWald.

7.4.2 Simulation results—The results for MCAR and MAR were so similar as to be
practically indistinguishable. Results are reported in the succeeding text for MAR only.
Further, results were obtained for tests against a null model and tests against a linear model.
The type | error rates were extremely similar for the two tests, and although power was
(obviously) lower for the test of FP1 versus a linear model, the patterns over different
methods are the same for all scenarios. The results for tests versus a linear model are shown
here in Figure 3; the remainder of the results are given in Appendix but discussed here.

Figure 3 shows results for a scenario with both x; and x; are incomplete. The MFP model
selection algorithm is run for both variables. Results are reported for tests relating to x;. The
type | error for stacking and AWald is slightly further from 0.1 than analysis with complete
data, or analysis of the complete records. However, this is very close, and at worst reaches
0.06. As might be anticipated, although power is never close to that of complete data, both
stacking and AWald offer a substantial improvement over analysis of complete records. For
the larger sample size, the gains in power are greater. Similar results are seen for tests versus
a null model (Figure A.5).

When x is incomplete but x, is complete (Figures A.2 and A.1), complete data and
complete records analyses have type | error rates very close to the nominal 0.1 level, while
the type I error rates for stacking and AWald are slightly lower. When x; is uncorrelated with
Xy, stacking has a slightly lower type I error rate than AWald; when there is correlation
between x; and x,, the two methods are more similar. Power for both stacking and AWald is
relatively low in these scenarios, both being similar or slightly lower than complete records
analysis in all scenarios. This implies that if the only incomplete covariate is the variable of
substantive interest, complete records is as powerful as selecting a model in M| data.

When x5 is incomplete and x; is fully observed, the type | error with respect to xj is
generally well controlled (Figures A.4 and A.3). It can be slightly high for stacking with 7=
200 but not enough to cause concern. The type | error rate is well controlled by AWald
throughout. Both methods can offer a substantial gains in power compared with complete
records analysis. Meanwhile, power for AWald and stacking is extremely close to analysis of
the complete data. Power is slightly higher for stacking than for AWald in settings where
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type | error is less well controlled. This demonstrates that power can be gained for x; when
Xo is incomplete, and so, using Ml is appropriate.

7.4.3 Conclusions on model selection—The aforementioned simulation studies
demonstrate that both the stacking and AWald methods can be used to build MFP models in
multiply imputed datasets.

The type | error is controlled to some extent by both methods. In our simulation studies, the
type | error rates were 0.05 at the lowest and 0.14 at the highest for a test of nominal size
0.1. When a covariate of interest is incomplete but the outcome and confounder/s are
complete, there may be little gain from using M1 instead of complete records analysis: the
type | error rates are lower, and power is very similar (although under MAR, complete
records will lead to biased estimation of p, Section 6).

When a confounder is partially observed but the variable of interest is complete, the gains
from using MI can be large. Type | error rates are higher than nominal in this setting but
generally not enough to cause concern. The power gains of stack and AWald over complete
records can be large here, coming close to the power of complete data analysis in the best
scenarios (although when type | error rates differ, power is strictly not comparable).

When both the covariate of interest and a confounder are incomplete, results lie between the
other two settings. Again, stacking and AWald have type | error rates that are too low —
lower than complete data or complete records. Power can be gained for one variable when
the other is subject to missingness.

The simulation study with both covariates incomplete is arguably closest to the way FP
methods are most often used, which is for building prognostic models. In such settings, there
will typically be several covariates with a complex missing data pattern. The results
demonstrate that in such a setting, use of MI with stack or AWald will be beneficial, leading
to an increased chance of correctly identifying the underlying relationships.

8 Prognostic model for massive transfusion: an illustration of building a

fractional polynomial model in multiply imputed data

8.1 Data and published prognostic model

We illustrate the methods described and evaluated in the preceding text using a dataset of
5693 admissions to five trauma centres [14].

The publication associated with these data involved two main analyses. Our focus is on an
analysis that developed a prognostic model for ‘massive transfusion’, defined as >10 red
cell transfusions [14]. The model was developed with the aim of facilitating appropriate, fast
activation of major haemorrhage protocols by blood banks.

The development of a prognostic model was complicated by incomplete data on covariates.
The variables measured and the frequency of missing values are given in Table I. In total,
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2456 (45%) of the 5693 individuals were complete records. Analysis of this subset would
have potentially led to bias and the tests losing power for all variables.

In [14], data were assumed to be MAR. Multivariate imputation by chained equations was
used to produce 50 imputations after 100 cycles. All variables in Table I were included in the
imputation models. Injury type was the only incomplete categorical variable and was
imputed using logistic regression. For continuous variables, transformations towards
normality were taken before imputation, although for time to emergency department, this
transformation was unsatisfactory, and so, predictive mean matching was used with a ‘donor
pool’ of the three closest individuals [17, 26, 30]. The normalised transformations used for
imputation were also the form in which covariates were included in the prognostic model.
These transformations ensured that each conditional imputation model was compatible with
the analysis model, but as a consequence, the analysis model could not be an FP.

In [14], the prognostic model performed reasonably well. Validation in an external dataset
produced an area under the ROC curve of 0.81, although predicted probabilities were often
too low, demonstrating some miscalibration and/or differences between the training and
validation data. The model was deemed not to be sufficiently accurate to use in practice, and
so, the authors recommended against its adoption by emergency departments.

‘Missing at random’ implies that missing values did not depend on unobserved data. The
assumption is questionable: if, for example, the probability of observing base deficit depends
on prothrombin time, MAR would be false. Modelling the possible missing-not-at-random
mechanism is not the concern of the present paper, but this example analysis must be
interpreted with this in mind.

8.2 MFP models with M| data

Without missing data, the analysis would have involved a logistic regression model with FP
transformations for continuous predictors. This was not performed because it was not clear
how to tackle the MFP algorithm with MI data.

In the following analyses, we use the multiply imputed datasets used in the published
analysis. This means that the imputation may be incompatible with the final MFP model,
although the purpose of the analysis is to demonstrate the two approaches to model building
that were developed earlier. We compare the FP models selected using likelihood-ratio tests
in complete records with stacking and AWald in the Ml data. The covariates included in the
algorithm are sex (binary), age (continuous, Dmmax = 2), time to emergency department
(continuous, Dmax = 1), penetrating injury (binary), systolic blood pressure (continuous,
Dmax = 2), prothrombin time (continuous, Damax = 2) and base deficit (continuous, Dgnax =
2).

Because the number of candidate predictors is relatively small, the FP analysis aims for
caution with respect to omitting covariates completely by performing the test of FPDnax
versus null with nominal significance set at @ = 0.5, meaning variables with little influence
on the probability of massive transfusion can be excluded, but they will be included unless
significance is extremely low. For the remaining tests, the significance level is set at @ = 0.1.
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8.3 Results of reanalysis

Table Il shows the variables and exponents selected in complete records and in the Ml data
by stacking and AWald. For all three methods, convergence was achieved after two cycles
through the FP selection algorithm.

Each method selected a different final model. Only time to emergency department,
prothrombin time and injury type were included in the same form in all models. Complete
records selected the simplest model overall, and AWald selected the most complex, although
the model was similar to that selected by stacking.

The values of p_ selected by the models were sometimes different even when D was the
same. For base deficit, p, = (-1) for stacking and (-0.5) for AWald. This is likely to be
related to the result in Section 6, where stacking was shown to estimate p with slightly more
bias than AWald. However, with multiple continuous variables subject to the model selection
procedures, this can occur at any step of a cycle, and if the wrong form is selected for one
variable, this can have a knock-on effect on the form for the subsequent variables.

Because 3 are comparable conditional on p and D, comparing the values of 3 from the three
selected models would be meaningless. Instead, the estimated FP functions are compared for
age and base deficit from each of the three models for two notional individuals. The values
used are invented but plausible representations of realistic individuals. The covariate values
used are given in Table III.

Figure 4 shows the comparison of fitted functions for these individuals across a range of
values of age (from 6 to 90 years) and base deficit (from =5 to 20), both of which span most
of the observed range of the covariates, while fixing other covariate values. Stacking and
AWald return very similar fitted functions within the ranges considered, despite selecting
slightly different p. For both variables, the fitted functions for complete records are a
completely different shape; in particular, the effect below age 10 years seems extreme.

9 Discussion

We have tackled the problem of combining MI with FP methodology, splitting the problem
into three components: imputation and model building, which is split into estimation of
exponents and selection of model complexity. The results of each component have been
utilised and carried forward to the next component. Table A.1 gives a summary of the
methods we have considered and our advice on their use in relation to FP models.

9.1 Imputation

Two approaches to imputation have been described. The first, based on the ABB, was used
for the simulations of this paper. It has been developed to impute for FP1 functions but could
in principle be extended. The rejection-sampling approach is currently more general and
should in principle work for larger values of Dnax. Neither method is controversial; both
focus existing methods on the task of imputing for FP models. However, other approaches
may exist that could improve on those suggested here.
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In using rejection sampling or the ABB method to impute, both methods were noted as
making imputation models semi-compatible with the analysis model. For reasons of
efficiency, it may be preferable to use a smaller imputation model and draw imputations
from a model that is fully compatible rather than semi-compatible with the analysis model.
Consider FP models in complete data. Although j is ‘estimated’, it is subsequently treated
as fixed and known. In the same spirit, it would be possible to impute initially, select the
model and impute a second time, where the imputation model uses the selected FP
functions. The selected model is then re-fitted. This strategy may have advantages for the
analysis: if the selected exponents are accurate, the restricted imputation strategies will
result in ‘superefficient” imputations [35]. Conversely, if the exponents selected are
inaccurate, the estimates after restricted imputation may compound errors. It is up to applied
researchers to decide whether they are willing to take this risk in practice.

9.2 Model-building algorithm

There are two distinct components to the algorithm used to build MFP models: estimating
the best exponents for a covariate and selecting the appropriate complexity of FP function
for that covariate.

The results of the simulations presented in Section 6 demonstrated that, for estimation of p,
log-likelihoods or Wald statistics from MI data are both superior to using log-likelihoods
based on complete records. This was with a single incomplete variable and one missingness
mechanism; the performance of complete records could degrade further with other
mechanisms and a more general pattern of missing data, although it would be unbiased
under MCAR. Wald statistics appear to have lower bias than log-likelihoods. Because the
differences were only small, both methods were carried forward to model selection work,
which assessed testing procedures based on stacking and AWald. It was judged to be
advantageous to have a coherent method for estimation of p and variable selection: log-
likelihoods for stacking and Wald statistics for AWald testing.

These methods were evaluated in Section 7. Overall, the type | error rates for AWald and
stacking were less well calibrated than for complete data or complete records; however,
issues were not serious, and power could be higher even with lower type | error rates. The
missing data mechanism and patterns in simulations were relatively simple, but complete
records can become extremely inefficient with more complex missing data patterns, so
whenever the proportion of complete records is low, it will be preferable to base the analysis
on M1 using stacking or AWald.

In practice, producing satisfactory imputations requires care. For building FP models in
multiply imputed datasets, we advocate the use of AWald tests or stacking in preference to
complete records analysis.

Acknowledgements

We are grateful to Tina Gaardner and the International Trauma Research Network for use of their data and support
of this work. We thank Shaun Seaman, Angela Wood, Ann-Marie Kalika and two anonymous reviewers for their
helpful comments. I. R. W. was supported by the Medical Research Council (Unit Programme number
U105260558).

Stat Med. Author manuscript; available in PMC 2016 May 18.



s1duosnuBIA Joyiny sispund DN edoin3 ¢

s1dLIOSNUBIA JoLINY sispund DN 8doin3 ¢

Morris et al.

Page 19

This work was funded by the UK Medical Research Council (grant MQEL and Unit Programme U105260558).

Appendix A

A.1 Further results on rejection rates for model selection procedures

A.2 Summary of advice on methods for imputation and model selection

Several options for imputation, estimation of exponents and selection of model complexity
are discussed in Sections 5, 6 and 7, respectively, and some evaluated and compared. Some
options are dismissed and others recommended. Potential components of a strategy, and
reasons for recommending or dismissing them in relation to combining FP models with Ml,
are summarised in Table A.1 here.

A.3 Stata code fragments to implement recommended methods

This supplement gives examples of Stata code to implement some of our preferred
procedures using a publicly available dataset in breast cancer, which can be downloaded and
unzipped from http://portal.uni-freiburg.de/imbi/Royston-Sauerbrei-book/
index.html#datasets. The following analysis involves a logistic regression model relating
recurrence or death (_d) to the number of positive lymph nodes, progesterone receptor status
(fmol I71) and age (in years).

The commands and help files for our recommended methods can be installed from the SSC
(Boston College Statistical Software Components) repository. To download the packages,
submit the following lines of code to Stata:

. foreach pkg in smcfcs icet mfpmi mfpmi_wald mim {

ssc install “pkg’

-}
The original dataset is complete. To introduce missing data in pgr and nodes,

. replace pgr = . if runiform() < 0.2
. replace nodes = . if runiform() < 0.2

To multiply impute missing values 18 times using the method of 5.4 using predictive mean
matching with 12 donors,

. icet pgr nodes, add(18) method(pmm) knn(12) comp(age _d)///
powers(-2(0.1)3)

The following code selects a model using Wald tests to estimate pand select D, for age,
pgr and nodes. The df(#) option specifies the df allowed for the Onax model (2 indicates
an FP1 and 4 indicates an FP2 model):

. mfpmi_wald, df(nodes:2, pgr:4, age:4): logit _d age pgr nodes
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To perform the same analysis using log-likelihoods and stacking to select a model, the code
is

. mfpmi, df(nodes:2, pgr:4, age:4): logit _d age pgr nodes

Finally, assume we have chosen the MFP model we wish to fit, which includes age™2,
age~2In(age), pgr-> and nodes-, as in [36]. The following code creates the FP
transformations before performing MI and fitting the analysis model using SMC FCS:

. gen double age 1 = age”™-2

. gen double age 2 = age™-2*In(age)

. gen double pgr_1 = (pgr+1)n.5

. gen double nodes_1 = nodes”™.5

. smcfcs logit _d age_1 age_ 2 pgr_1 nodes_1, ///

> regress(pgr nodes) passive( pgr_1 = pgr~.5 | nodes_1///
= nodes™.5) ///

> rseed(1) m(9) rjlimit(100)
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Figure 1.
Example FP2 functions of the form f(x)=p,+3,2"" +B22">. The numbers in parentheses
are values of (o1, ) used to plot the curve.
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Figure 2.

Simulation results: estimation of 5 according to method (10 000 replicates). CD-Il is log-
likelihood in complete data; CR-Il is log-likelihood in complete records; MI-Wald is Wald
statistic in multiple imputation (MI) data; MI-11 is log-likelihood in MI data.
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Figure 3.
Type | error (left) and power (right) of FP1 versus linear test of nominal size 0.1 on x; with
X1 and x> missing at random.
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Figure 4.
Fitted functions for two continuous variables (age and base deficit), by fixing parameters for

other covariates, where the method of model selection returns different exponents.
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Figure A.1.
Type | error (left) and power (right) of FP1 versus null test of nominal size 0.1 on x; with x;
missing at random.
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Figure A.2.
Type | error (left) and power (right) of FP1 versus linear test of nominal size 0.1 on x; with
X1 missing at random.
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Figure A.3.

Type | error (left) and power (right) of FP1 versus null test of nominal size 0.1 on x; with x
missing at random.
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Type | error (left) and power (right) of FP1 versus linear test of nominal size 0.1 on x; with
Xp missing at random.
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Figure A.5.
Type | error (left) and power (right) of FP1 versus null test of nominal size 0.1 on x; with
incomplete x; and X, missing at random.
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Table |

Summary of variables in the trauma dataset relevant to this work, 7= 5,693.

Mean (SD) in observed data  Frequency (%) in observed data

Variable Frequency missing (%)
Massive transfusion (outcome) 0(0)

Age (years) 0 (0)

Sex: male 0(0)

Injury type: penetrating 23(0.4)

Time to emergency dept. (mins) 2396 (42)
Systolic blood pressure (mm Hg) 425 (7)

Base deficit (mM) 868 (16)
Prothrombin time (seconds) 1,648 (29)

518 (9)
40 (20)
4161 (73)
580 (10)
65 (40)
126 (29)
34(5.1)
17 (8)

SD, standard deviation.
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Table I
Models selected in trauma data.

Complete records Stack AWald
Age (years) -2 05,1 1,1
S exf — 1 1
Injury typef(blunt/penetrating) 1 1 1
Time to emergency dept. (minutes) 1 1 1
Systolic blood pressure (mm Hg) 1 1 -2,0.5
Base deficit (mM) 1 -1 -0.5
Prothrombin time (seconds) -0.5,-0.5 -0.5,-0.5 -0.5,-0.5

The numbers give the exponents selected for each variable in the final model.

fFor binary variables, an exponent of 1 indicates inclusion in the final model.
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Table Il

Two notional individuals’ covariate values used for Figure 4.

Individual A B
Age (years) 34 24
Sex Female Male
Injury type Blunt  Blunt
Time to emergency dept. (minutes) 63 73
Systolic blood pressure (mm Hg) 91 130
Base deficit (mM) 3.5 5.4
Prothrombin time (seconds) 16.8 14.4

*
Values of age are fixed when base deficit is varied in Figure 4 and vice versa.
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