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Abstract

Multivariable fractional polynomial (MFP) models are commonly used in medical research. The 

datasets in which MFP models are applied often contain covariates with missing values. To handle 

the missing values, we describe methods for combining multiple imputation with MFP modelling, 

considering in turn three issues: first, how to impute so that the imputation model does not favour 

certain fractional polynomial (FP) models over others; second, how to estimate the FP exponents 

in multiply imputed data; and third, how to choose between models of differing complexity. Two 

imputation methods are outlined for different settings. For model selection, methods based on 

Wald-type statistics and weighted likelihood-ratio tests are proposed and evaluated in simulation 

studies. The Wald-based method is very slightly better at estimating FP exponents. Type I error 

rates are very similar for both methods, although slightly less well controlled than analysis of 

complete records; however, there is potential for substantial gains in power over the analysis of 

complete records. We illustrate the two methods in a dataset from five trauma registries for which 

a prognostic model has previously been published, contrasting the selected models with that 

obtained by analysing the complete records only.
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1 Introduction

In medical research, it is common to investigate the association between a continuous 

variable x and some outcome y. A default approach is to assume this association is linear. In 

scenarios where linearity is in doubt, researchers will sometimes categorise x [1, 2], forcing 

x to operate in step functions placed at (ultimately arbitrary) cut points [3, 4], which makes 

this a poor solution. Smoothing is thus central in medical statistics. Two popular and flexible 

approaches to allowing smooth nonlinear associations are splines [5] and fractional 

polynomials (FP) [6]. FP models, and the methods used to build them, have the attraction of 

simplicity that has commended them to applied methodologists and explains their use in 

applied research. The current paper aims to describe how FP models can be applied in the 

presence of missing data and does not consider using splines with missing data, although we 

note that because both approaches have their place [7], such work would be useful.

The article originally introducing FP models acknowledged some shortcomings [8] but, 

according to Google Scholar, has been cited over 1000 times (accessed on 25 January 2015). 

While methods for developing FP methods are well established with fully observed data, 

many of the datasets to which FP models have been applied in the past have contained 

incomplete covariates [9–12].

Multiple imputation (MI) is a general approach to handling missing data. Missing values are 

imputed M > 1 times by draws from the posterior predictive distribution of a model, 

returning M rectangular datasets. Each of these is analysed identically with the model that 

would have been used in the absence of missing data, and the resulting estimates are 

combined using rules developed by Rubin [13].

In principle, it should be possible to combine MI with FP methods. However, MI was 

developed assuming the analysis model of interest is fixed and known, while the testing 

required to build FP models would need to be used in imputed data, making it difficult to 

combine the two [6]. Researchers are at present faced with a choice between using MI with 

an analysis model that assumes linearity [14], building FP models in complete records [15], 

or using an ad hoc combination of MI with FP models [9–12].

The aim of this article is to propose and evaluate techniques for combining FPs with MI. We 

begin by describing FP models and how they are built (Section 2) and briefly outlining MI 

(Section 3). The issues that arise when combining the two are explained (Section 4) and 

some solutions introduced (Sections 5, 6 and 7). Two simulation studies evaluate these 

methods (Sections 6 and 7). Finally, the methods for building models are applied to the 

analysis of a dataset from five trauma centres for illustrative purposes (Section 8) [14].

2 Fractional polynomials

For a regression model involving a single continuous covariate x, a univariable FP model of 

dimension D, termed ‘FPD’, has D terms in x and linear predictor
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(1)

This is the linear predictor for a regression model – including nonlinear models such as 

logistic regression and Cox proportional hazards models. Values of pd are typically restricted 

to the set S where

(2)

which provides much practical flexibility. By convention, x0 = log x. Values of x must be 

strictly positive; for variables with negative values, [6] advises adding a constant to all 

values so that the smallest value is equal to the smallest increment between any two values. 

With D > 1, it is possible to have repeated powers for a covariate; the d-th term is then taken 

as xp1 , but the (d + 1)th is set to xp1 log(x). For example, an FP2 logistic regression model 

with (p1, p2) = (−2,−2) would be

(3)

where π is the probability that the binary outcome is 1. Values of D > 2 are rarely considered 

in practice, possibly because if such relationships are considered, plausible splines would be 

preferred. A variable thought to have a U-shaped relationship with outcome would require D 
= 2. Meanwhile, D = 1 would be desirable for certain variables because it forces outcome to 

be a monotonic function of xc, and departures from this may be medically implausible. 

Figure 1 plots a selection of FP functions with D = 2, illustrating the range of curves on offer 

compared with linear functions, step functions or conventional polynomials.

The approach described in the preceding text can be extended to FP functions of multiple 

continuous covariates and is called a multivariable FP (MFP) model. With C continuous 

covariates x1,…,xC, the linear predictor is

(4)

The Dc indicates that the complexity of the FP function may differ for different c.

2.1 Building fractional polynomial models

Methods for selecting FP models are described fully in [6] but summarised briefly here. 

There are two components involved in selecting models:
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(1) Estimation of pd for pd = (p1,…,pD). This is performed by identifying the value 

of p that maximises the log-likelihood and must be performed for each value of 

d considered in the next step.

(2) Selection between models of different complexity. Likelihood ratios are used to 

test the simpler model (e.g. treating x as linear or omitting it altogether) against 

the best-fitting FPDmax model; if the test is significant at nominal level α, the 

next simplest model is tested versus the FPDmax model, and so on. The 

selected model is the simplest for which the test against the FPDmax model is 

not significant. If all tests are significant, the FPDmax model is chosen.

In testing between models of different complexity, 1 degree of freedom (df) is assigned to 

each β, and 1 df to each p; thus, a test of FP1 versus FP2 is on 2 df. This assignment may 

lead to miscalibration of type I error rates for two reasons [16]. First, β are estimated 

conditional on  treating  as fixed and known. The precision of confidence intervals 

around  is thus overstated. Second, the parameter space for  is discrete, constrained to 

taking values in S. The 1 df apportioned to each  estimated assumes the parameter space is 

continuous in (−∞, ∞). This is not the case, meaning the 1 df is overly generous, implying 

conservatism in the testing procedures [16].

Building MFP models involves repeated application of the FP procedure to each xc in turn 

[6]. First, xc′ = (x1,…,xc−1, xc+1,…,xC) are treated as linear, and the FP selection procedure 

is applied to xc. The functional form of xc is retained when FP is applied to xc+1. This is 

applied to each variable in turn. The procedure is then run for the variables again 

conditioning on the current FP model, until the selected forms FPs are stable for a full cycle.

3 Missing data and multiple imputation

References [9–12] all built FP models in partially observed datasets. The approaches used 

were ad hoc, so there is a need to understand and critique the potential approaches.

In a general context (not just FP models), MI is a flexible and popular approach to dealing 

with uncertainty due to missing data [17]. Each missing value is imputed M > 1 times, 

producing M ‘complete’ imputed datasets. The analysis model that would be used for a 

complete dataset can then be fitted to each imputed dataset. The results of the M analyses 

are combined using rules described by Rubin [13], which can be used to combine estimators 

of population parameters.

By default, MI implementations assume data are ‘missing at random’ (MAR) or ‘missing 

completely at random’ (MCAR). These assumptions say that the probability of data being 

missing is independent of the missing values themselves; for MAR, this statement is 

conditional on the observed data. A more awkward assumption is ‘missing not at random’. 

MI implementations can be extended to missing not at random, but here we focus on MAR 

and MCAR.

Multivariate missing data can be imputed from a joint model, such as a multivariate normal 

or log-linear model, or by ‘chained equations’ (often termed ‘fully conditional 
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specification’, FCS or MICE) [17]. The chained equations approach involves specifying a 

univariate imputation model for each incomplete variable conditional on other variables, and 

conditioning on current imputed values as covariates in the imputation of other variables. 

Incomplete variables are imputed in turn, and the process is repeated several (typically 

around 10) times.

If the models used for imputation and analysis are correctly specified, and under the 

assumption of MAR, MI provides an approximation to fitting a joint model for the 

distribution of covariates and outcome, leading to consistent estimates with nominal 

coverage. It is impossible to tell if the imputation and analysis models are correctly specified 

but it is desirable that the imputation model for incomplete covariates is at least ‘compatible’ 

with the analysis model, which is a necessary condition for the models to be correctly 

specified. Compatibility means that a joint model exists that implies both the imputation and 

analysis models as conditionals [18, 19].

A weaker condition is ‘semi-compatibility’ [19–21], meaning the analysis model is 

compatible with a special case of the imputation model: the imputation model is ‘richer’ 

than the analysis model [17]. These concepts are important in developing methods to 

combine FPs models with MI and are used in Section 5.

4 Difficulties in combining fractional polynomials with multiple imputation

Methods for building FP models with complete data are heavily reliant on likelihood-ratio 

testing. In multiply imputed datasets, this approach is inappropriate, because we do not have 

a likelihood in MI data [17]. With MI data, hypotheses would usually be tested using Wald 

statistics [22]. However, the FP testing procedure does not obtain an estimate of Var  and 

so Wald statistics are not available. Procedures related to likelihood-ratio tests do exist for 

MI data [22, 23] and are discussed in Section 7.

Imputation can become complex with FP models. Compatibility of the imputation and 

analysis models comes to the fore because when the analysis model is unknown, it becomes 

difficult to ensure that the imputation model is compatible or semi-compatible.

The remainder of this paper aims to develop methods for dealing with these issues. First, we 

adapt two imputation methods to be used when the analysis involves FPs; second, we 

compare log-likelihoods and Wald statistics to identify the ‘best-fitting’ model of dimension 

d; third, we compare a testing procedure based on weighted likelihood ratios with one based 

on the model Wald statistic.

5 Imputing for fractional polynomials

Ahead of building an FP model, imputation must allow for the form of the FP functions that 

may be selected. If not, the imputation and analysis models may be incompatible, with 

consequences for estimation. Some options and our method of choice are outlined in the 

succeeding text.
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5.1 Just another variable

Von Hippel developed an approach for imputing squared terms and interactions that ignores 

the true relationship between transformations and imputes functions as though the 

relationship was not deterministic, but estimated in the imputation [24]. For example, x and 

x2 may be treated as bivariate normal for the purposes of imputation. Seaman et al. later 

showed that the approach only works accurately for linear regression when x are MCAR and 

demonstrated potential for serious bias under departures from these conditions [25].

5.2 Predictive mean matching

Predictive mean matching has previously looked promising in settings where the imputation 

model is misspecified [17], either within von Hippel’s approach [24] or by ‘passively’ 

imputing the nonlinear function from an imputed value of the original variable [25]. 

However, although it can improve on parametric imputation assuming linearity, it has 

recently been shown to lead to bias in estimating nonlinear relationships [25, 26].

5.3 Substantive model compatible fully conditional specification

This imputation approach is based on rejection sampling. Bartlett et al. describe a method 

termed ‘substantive model compatible fully conditional specification’ (SMC FCS) and 

demonstrate that it can be used to impute squares and interactions in a way that is both 

compatible with the analysis model and respects the deterministic relationship between 

functions [21]. Briefly, the method involves specifying a marginal distribution for xc, termed 

the proposal distribution, and rejecting or accepting proposal draws from this distribution 

with probabilities proportional to the likelihood of the observed outcome given the proposed 

value of x. This is embedded in a chained equations procedure where each xc is imputed in 

turn.

SMC FCS is a general solution to imputation of nonlinear functions; Carpenter and Kenward 

give FPs as one example [27]. However, they assume the FP functions to be included in the 

analysis model have been chosen at the point of imputation. To relax this assumption, one 

solution may be to allow for a very general form for xc by including all candidate FP 

functions for the purposes of rejection sampling, which may be eight different 

transformations. This ensures the imputation models are semi-compatible with whatever FP 

model is eventually selected.

The proposal is currently limited by two computational problems. The first is that imputed 

values of xc must be positive so that FP transformations can be taken. Using a truncated 

model or predictive mean matching for drawing from the proposal distribution may resolve 

this. The second problem is collinearity. Even if the true model is truly a high-dimensional 

FP, several of the variables may be collinear in the analysis model, leading to unstable 

rejection probabilities. If imputation was from a joint model, a suitable ridge parameter 

could be used to stabilise the model, but the method is based on chained equations, making 

the choice of an appropriate parameter difficult.

The rejection sampling method has potential but requires further thought to be usable for FP 

imputation problems, and it is not obvious how sensible dropping of collinear functions can 
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be automated. One solution may be to specify a suitably flexible cubic spline model within 

the imputation step. In principle, this offers a similar flexibility to FPs. However, such an 

imputation model would imply that the final analysis model should also involve splines, and 

our aim is to develop imputation methods for FP analysis models. Further, a spline-based 

imputation model is not compatible or semi-compatible with an FP analysis model; the 

suggestion is based on both being flexible methods for modelling nonlinear effects. The 

usefulness of this approach would need verifying in simulations.

5.4 Drawing exponents via bootstrapping

The difficulty with imputation for FPs is in incorporating uncertainty about p in imputation 

models. When the posterior distribution is difficult to draw from, the approximate Bayesian 

bootstrap (ABB) can be a solution. A sample is drawn with replacement where individuals’ 

probabilities of being resampled are drawn from a scaled multinomial distribution [28]. For 

larger samples, this procedure becomes very similar inferentially to the bootstrap. We use 

the ABB to develop a method for imputing FP1 functions.

Consider an incomplete continuous covariate x with complete outcome y. The following 

imputation procedure is compatible with FP1 models for y on x:

(1) Use ABB to draw a sample from the individuals with observed values of x.

(2) For p = −2(.)3, where (.) represents some small increment, fit a linear 

regression of xp on y and any other covariates in the analysis model. This is 

compatible with the assumption that the analysis model is a regression model 

of y on xp (and other covariates) for unknown p. Values in (.) must span the 

candidate powers considered by the analysis but could be less coarse. 

Increments of 0.2 are used in the present paper.

(3) Find the value of p returning the largest value of log(L) + J, where L is the 

likelihood and J is the Jacobian for the transformation from x to xp, required in 

order to make the log-likelihoods comparable, and denote this value p*. (As 

the maximum from a bootstrap sample, p* is a nonparametric draw from the 

approximate posterior of p.)

(4) Restore the partially observed dataset.

(5) Impute missing (x)p* using linear regression of xp* on y and other variables 

from step 2.

(6) Passively impute x* by taking the p*-th root of (x*)p*.

This procedure returns one of M imputed datasets.

As noted earlier, it is important that x* are positive, so that the standard FP transformations 

can be calculated for all x*. We have implemented two options for imputation:

(1) Impute using a truncated regression imputation model. Specify a (lower) 

truncation bound for x1 at some value > 0 and transform to a bound for xp* in 

step 5 (a lower bound for p* ⩾ 0 and an upper bound for p* < 0).
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(2) Perform the imputation in step 5 using predictive mean matching [17, 29, 30]. 

Because the observed values of x are positive, the imputed values will be also.

5.5 Choice of imputation method

The current work uses the method based on the ABB for simulations, where the lower 

bounds are respected by drawing xp* using predictive mean matching. However, the method 

described in the preceding text applies only to FP1 functions. For an extension to D = 2, a 

suitable approach may be to take the ‘polynomial combination’ approach of Vink and van 

Buuren to fit a model for all pairs of exponents (p1, p2) in an FP2 model [31]. We note that 

such an extension would be extremely computationally intensive.

6 Estimation of exponents

The FP function selection procedure, which considers maximum dimension Dmax, requires 

estimation of the best-fitting FPd models for d = 1,…,Dmax as well as the linear and 

(possibly) null models. This section considers methods for estimating the best-fitting FPd 
model in multiply imputed data.

6.1 Candidate methods

Wood, White and Royston consider methods for variable selection in multiply imputed data 

based on Wald tests and weighted likelihood-ratio tests based on stacked MI data [22]. We 

consider two related methods for the estimation of p:

Log-likelihoods. The M imputed datasets are stacked and each FPd model 

fitted, treating the imputed datasets as a single complete dataset;  is selected 

to maximise the log-likelihood.

Wald statistics.  and  are estimated for all candidate p via Rubin’s 

rules and the Wald statistic for testing β = 0 calculated, with  selected to 

maximise this quantity.

With complete data, the ‘best-fitting’ FPd model is simply the one returning the largest value 

of the log-likelihood. With multiply imputed datasets, the log-likelihood is not meaningful 

for formal inferences, such as hypothesis tests. However, in comparing the fit of candidate 

FPd models with different values of p, the log-likelihoods are not referred to any 

distribution. Because the models are of the same complexity, the ordering of competing FPd 
models by log-likelihoods will be the same regardless of scale, so stacked observations need 

not be weighted.

Wald statistics have not previously been used for FP model building in complete data, and it 

is not clear whether they can be used to estimate p. However, Wald tests have previously 

been shown to be the ideal method for variable selection methods in MI data [22] and will be 

evaluated as the basis of testing procedures in Section 7; if they are also used to estimate p, 
then the overall procedure is more coherent.

If both of the aforementioned methods are unbiased, as expected, the method that estimates 

p with the greatest precision will be favoured.
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6.2 Simulation design

To compare these methods, a simulation study based on FP1 is used. The true model 

involves linear regression of a continuous outcome y on an FP1 function of a continuous 

covariate x. Because we aim to compare bias and precision of log-likelihoods with Wald 

statistics for estimating p, we use a larger set S here than the usual eight transformations 

given in 2. This does not impact on the methods themselves but provides a finer picture of 

bias and precision for the purpose of comparing methods.

The simulation procedure is as follows.

(1) Complete data are simulated on n = 300 observations from a bivariate normal 

distribution with parameters

(5)

This implies the true analysis model is a linear regression of y on xp. It is 

important to produce a strong association between x and y, such that power for 

the true analysis model is close to 100% (i.e. if we fix  to equal p, then the 

test of β = 0 has almost 100% power). If Corr(y, xp) ≈ 0 in any simulated 

dataset, the profile for  will be flat regardless of true p, and it becomes 

impossible to distinguish between good and bad methods with respect to 

estimation of p. In the context of prognostic models, where MFP models are 

particularly useful, n = 300 may be regarded as a relatively small sample size 

[7].

(2) Forty per cent of values of x are set to missing under a MAR mechanism such 

that the probability of x being missing is 0.2 when y ⩽ 0 and 0.6 when y > 0.

(3) Missing values in x are multiply imputed using the bootstrap method outlined 

in Section 5.4.

(4)
For p′ = −2(.2)3, the linear regression analysis model for  is fitted and 

the log-likelihood and Wald statistics based on MI data recorded. The log-

likelihood for complete data and complete records analyses is also recorded.

(5)  is estimated as the value of p′ maximising the log-likelihood or Wald 

statistic.

This process is repeated a total of 10 000 times for true p = 0, 0.5, 1 and 2, and results are 

summarised graphically.

6.3 Simulation results

The simulation results are displayed as a spike plot in Figure 2. The columns represent 

different true values of p: from left to right, p = 0, 0.5, 1 and 2. Rows represent different 

methods for estimating p: from top to bottom, complete data using the log-likelihood (CD-

ll), complete records using the log-likelihood (CR-ll), Wald statistics based on MI data (MI-
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Wald) and log-likelihoods based on MI data (MI-ll). The horizontal axes represent different 

values of  and are labelled with the exponents typically used in S. The vertical axes display 

the frequency with which a given value was selected over the 10 000 replications. The 

vertical axes all originate at 0, but the maxima are scaled individually to make each sub-plot 

as clear as possible.

As Figure 2 shows, across all methods, the sampling variance of  increases with the 

magnitude of p. This occurs because (for example) when p = 2 in truth,  is closer to the 

true model than  is when in truth p = 1. That is, a cubic is closer to a quadratic than a 

quadratic is to a straight line.

With complete data, use of log-likelihoods is unbiased and efficient, as expected. Data are 

MAR, and so, there is some bias associated with complete-case analysis, as well as lower 

precision.

The MI-Wald method exhibits a slight upward bias for p. This bias is lowest for p = 0, 

increasing slightly for each larger value of p. The Wald method is also less precise than 

using complete-data log-likelihoods but slightly more precise than complete-records log-

likelihoods.

The MI log-likelihood method also exhibits a small upward bias, which is slightly greater 

than the bias in the MI-Wald method. Again, precision is lower than for complete data and 

higher than for complete records.

Wald statistics and log-likelihoods based on multiply imputed data both offer an 

improvement over analysis of the complete records. With imputed data, Wald statistics 

appear to do slightly better than log-likelihoods in terms of both bias and precision. 

However, the differences are small, particularly in relation to the set of powers in S typically 

used in FP models. In this example, complete records was the worst method, although 

sometimes only slightly worse. It is worth noting that its performance will degrade further 

with multiple incomplete covariates.

Both the log-likelihood and Wald methods will be carried forward to the methods evaluated 

in the following section, which focuses on hypothesis testing.

7 Methods for fractional polynomial model selection in multiply imputed 

data

The candidate methods we consider for selecting between FP models of different dimension 

are outlined in the following text. These methods represent a way for researchers to use the 

MFP model-building algorithm in MI data.

7.1 Weighted likelihood-ratio tests based on ‘stacked’ data

Wood, White and Royston [22] proposed new methods for hypothesis testing in multiply 

imputed data based on log-likelihoods, which naturally extend to MFP models. The 

methods, designated ‘stacking’, involved treating the M imputed datasets as one dataset of n 
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× M observations. The best stacking method explored in [22], designated ‘W3’, involves 

weighting all observations by wc = (1 − fc)/M, where fc is the fraction of missing data for the 

c-th covariate [22]. Equal weights are assigned to all observations for each test, but the 

weight changes according to the covariate under scrutiny.

The use of the fraction of missing data for calculating weights is an attempt to weight each 

variable back to the correct amount of information: fc attempts to approximate the fraction 

of missing information [32]. When the approximation holds, stacking will work well. This 

would require a complete outcome, values to be MCAR and a covariate with missing values 

to be uncorrelated with other covariates. These are strong conditions that are extremely 

unlikely to be met in practice. When they are not, stacking will perform less well, but it is of 

interest to investigate how quickly it degrades under departures from these conditions.

7.2 Wald and ΔWald tests

Wald tests based on Rubin’s rules have previously been demonstrated to be valid and 

powerful for variable selection in MI data [22].

For FP model selection, consider a Wald-based procedure for a single covariate x. For use 

with FPs, the standard Wald statistic versus a null model for the parameters (β1 … βD) can 

be calculated using Rubin’s rules. However, if this test is significant, it is not possible to 

calculate a Wald statistic to test between non-nested models, say FP1 versus linear (Section 

2). It is instead proposed to use the difference between two models’ Wald statistics; we term 

this method ‘Δ Wald’. This is motivated by the fact that with fully observed data, the Wald 

statistic approximates the likelihood-ratio test.

Note that there is no guarantee that a ΔWald statistic will be positive. This may not be a 

problem for testing because a negative Wald statistic is not significant at any level, but such 

behaviour in the left tail of the distribution might flag unusual behaviour in the right tail.

Model selection proceeds on the basis of Wald tests where possible and ΔWald otherwise. 

The χ2 reference distributions and their dfs are the same as those used in the function 

selection procedure with complete data.

There is reason to suspect the dfs will be conservative. Consider the test of FP1 versus a null 

model. The Wald statistic is calculated from βc1 and tested using  as the reference 

distribution. The df comes from the two extra parameters, pc1 and βc1, as compared with the 

null model, but the Wald statistic is actually calculated from βc1, conditional on  a single 

parameter. Conversely, recall from Section 2.1 that  will be underestimated because it 

is estimated conditional on  assuming that this is the true pc1. This results in the Wald 

statistic for β being too large. The two errors may cancel out to some extent.

For the remainder of this article, Wald tests calculated against a genuine null model and 

those calculated from the difference in Wald statistics will both be referred to as ‘ΔWald’.
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7.3 Other methods

We considered evaluating two other approaches to this problem. A brief description and 

justification of their omission is given in the succeeding text.

The first approach is Meng and Rubin’s likelihood-ratio test for multiply imputed data [23]. 

This is derived from the asymptotic equivalence of Wald and likelihood-ratio tests and was 

developed as a convenience tool to avoid calculation and inversion of M variance–covariance 

matrices in high-dimensional datasets. By aiming to approximate a Wald test, it will perform 

at best as well as the associated Wald test. In unpublished work, P. R. has found the test to 

have extremely low type I error rates and thus hopelessly low power for building FP models. 

We do not therefore consider the approach further here.

The second approach is that of Robins and Wang [33]. While their approach is strongly 

theoretically, there are several practical difficulties [34].

Robins and Wang take a different approach to imputation: imputed values are drawn 

conditional on the observed data and the observed-data maximum likelihood estimate rather 

than first drawing parameters of the imputation model from the posterior [33]. The imputer 

must save datasets containing the score function of the imputation model and the derivative 

of the score function with respect to the parameters of the imputation model. The analysis 

model is then applied to the M stacked imputed datasets assuming observations are 

independent. The analyst must save a dataset and matrix containing the estimating equations 

of the analysis model and the derivative of these equations with respect to the parameters of 

the analysis model. The approach provides consistent variance estimation when the 

imputation and analysis models are incompatible, although it is unimpressive with small 

sample sizes [34].

While Robins and Wang’s method has been implemented in some simple cases involving 

monotone missingness [34], the demands are too great to attempt any application to 

problems involving FPs, where even ‘standard’ imputation and analysis models tend to be 

complex. Hughes, Sterne and Tilling show that the gains of Robins and Wang’s method are 

typically modest and disappear with small sample sizes [34]. It is assumed that the 

requirements of Robins and Wang’s method would be too much to expect of researchers 

looking to apply FP models to incomplete datasets.

7.4 Simulation studies investigating proposed testing procedures

The simulation studies presented in sections 7.4.1 and 7.4.2 investigate the error rates of 

model selection by complete records, ΔWald and stacking for FP1 models, comparing these 

with analysis of the complete data as the gold standard. All scenarios involve a continuous 

outcome and two covariates, x1 and x2. The outcome y has a linear predictor based on  and 

an FP1 transformation of x1.

7.4.1 Simulation design—The following simulation setup is replicated 5000 times for 

each setting investigated. Two sample sizes are used for all settings: n = 200 and n = 500.

Covariates are simulated from the model
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(6)

The parameters of this model are important as FP transformations will have more or less 

effect depending on the coefficient of variation for the variable being transformed. An FP1 

transformation for a variable with mean 5 and variance 1 may allow for a degree of 

nonlinearity, in that fitting all FP1 models may give fairly different log-likelihoods. If the 

mean is increased but the variance remains the same, FP transformations of the new variable 

will be closer to linear, in that the log-likelihoods for the FP1 models will be closer. This is 

why the default behaviour of the FP commands for Stata (Stata. College Station, TX: 

StataCorp LP.) is to perform a preliminary scaling of x. The parameter values used here are 

μ1 = 0.6 and σ1 = 0.2, implying x1 has mean 3 and variance 1 (approximately), and μ2 = 3 

and σ2 = 1. The value of σ1σ2 is set to 0 or 0.5 for two different scenarios.

The outcome y is simulated from

(7)

The linear predictor includes an FP1 function of x1 and a linear function of x2. The same 

value of p1 was used in (6) and (7) so that the joint distribution for the complete data is 

 For investigations of type I error, β1 is set to 0. For investigations of 

power, β1 is chosen such that, with complete data, the test for inclusion of x1 has 90% power. 

Note that this means β1 changes for different values of σ1σ2 and n. The true value of p1 was 

chosen as −0.5 because this is relatively far from 1, meaning the test for FP1 versus a 

straight line has a good degree of power. When complete data analysis had 90% power for a 

test of FP1 versus null, the test of FP1 versus linear had approximately 80% power.

Values of β2 are chosen such that the likelihood-ratio test for inclusion of x2 has 90% power 

with fully observed data.

For the results presented in 7.4.2, missingness occurs in x1, x2 or both, while y is complete. 

For each of these scenarios, two missing data mechanisms are invoked. Let Rc be a binary 

variable equal to 1 if xc is observed and 0 if xc is missing, and let π denote P(Rc = 1). Under 

MCAR, we set π = 0.7. Under MAR, we set logit(πi) = ω0 + ω1yi, with ω0 and ω1 chosen so 

that 70% of data are observed and comparison of R1 with y returns an area under the ROC 

curve of 0.65, making π and the degree of MAR comparable across simulation settings. 

Here, the sign of ω1 is always negative so that missing data are more likely at high values of 

y.

Missing x1 values are imputed using the bootstrap method described in Section 5.4 using M 
= 10 imputations, 10 cycles of chained equations (if both x1 and x2 are incomplete), with 

predictive mean matching with respect to the bounds.
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The function selection procedure is run for complete data, complete records and MI data 

using stacking and ΔWald. The nominal size of tests used is α = 0.1 throughout, following 

Ambler and Royston [16]. The most complex function considered is FP1. This is first tested 

against the null model and then against a model including x1 as linear. The quantity of 

interest is the rejection rate for each method. When β1 = 0, this should be as close to α as 

possible, indicating control of the type I error rates; when β1 ≠ 0, this should be as close to 1 

as possible, maximising power.

The scenario expected to best suit stacking is σ1σ2 = 0 with xc MCAR, because here, fc will 

approximate the fraction of missing information. MAR and σ1σ2 = 0.5 will provide a sterner 

test for stacking. The test of FP1 against a null model is based on a true Wald statistic. The 

test of FP1 versus linear will provide a tougher test because it is based on ΔWald.

7.4.2 Simulation results—The results for MCAR and MAR were so similar as to be 

practically indistinguishable. Results are reported in the succeeding text for MAR only. 

Further, results were obtained for tests against a null model and tests against a linear model. 

The type I error rates were extremely similar for the two tests, and although power was 

(obviously) lower for the test of FP1 versus a linear model, the patterns over different 

methods are the same for all scenarios. The results for tests versus a linear model are shown 

here in Figure 3; the remainder of the results are given in Appendix but discussed here.

Figure 3 shows results for a scenario with both x1 and x2 are incomplete. The MFP model 

selection algorithm is run for both variables. Results are reported for tests relating to x1. The 

type I error for stacking and ΔWald is slightly further from 0.1 than analysis with complete 

data, or analysis of the complete records. However, this is very close, and at worst reaches 

0.06. As might be anticipated, although power is never close to that of complete data, both 

stacking and ΔWald offer a substantial improvement over analysis of complete records. For 

the larger sample size, the gains in power are greater. Similar results are seen for tests versus 

a null model (Figure A.5).

When x1 is incomplete but x2 is complete (Figures A.2 and A.1), complete data and 

complete records analyses have type I error rates very close to the nominal 0.1 level, while 

the type I error rates for stacking and ΔWald are slightly lower. When x1 is uncorrelated with 

x2, stacking has a slightly lower type I error rate than ΔWald; when there is correlation 

between x1 and x2, the two methods are more similar. Power for both stacking and ΔWald is 

relatively low in these scenarios, both being similar or slightly lower than complete records 

analysis in all scenarios. This implies that if the only incomplete covariate is the variable of 

substantive interest, complete records is as powerful as selecting a model in MI data.

When x2 is incomplete and x1 is fully observed, the type I error with respect to x1 is 

generally well controlled (Figures A.4 and A.3). It can be slightly high for stacking with n = 

200 but not enough to cause concern. The type I error rate is well controlled by ΔWald 

throughout. Both methods can offer a substantial gains in power compared with complete 

records analysis. Meanwhile, power for ΔWald and stacking is extremely close to analysis of 

the complete data. Power is slightly higher for stacking than for ΔWald in settings where 
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type I error is less well controlled. This demonstrates that power can be gained for x1 when 

x2 is incomplete, and so, using MI is appropriate.

7.4.3 Conclusions on model selection—The aforementioned simulation studies 

demonstrate that both the stacking and ΔWald methods can be used to build MFP models in 

multiply imputed datasets.

The type I error is controlled to some extent by both methods. In our simulation studies, the 

type I error rates were 0.05 at the lowest and 0.14 at the highest for a test of nominal size 

0.1. When a covariate of interest is incomplete but the outcome and confounder/s are 

complete, there may be little gain from using MI instead of complete records analysis: the 

type I error rates are lower, and power is very similar (although under MAR, complete 

records will lead to biased estimation of p; Section 6).

When a confounder is partially observed but the variable of interest is complete, the gains 

from using MI can be large. Type I error rates are higher than nominal in this setting but 

generally not enough to cause concern. The power gains of stack and ΔWald over complete 

records can be large here, coming close to the power of complete data analysis in the best 

scenarios (although when type I error rates differ, power is strictly not comparable).

When both the covariate of interest and a confounder are incomplete, results lie between the 

other two settings. Again, stacking and ΔWald have type I error rates that are too low – 

lower than complete data or complete records. Power can be gained for one variable when 

the other is subject to missingness.

The simulation study with both covariates incomplete is arguably closest to the way FP 

methods are most often used, which is for building prognostic models. In such settings, there 

will typically be several covariates with a complex missing data pattern. The results 

demonstrate that in such a setting, use of MI with stack or ΔWald will be beneficial, leading 

to an increased chance of correctly identifying the underlying relationships.

8 Prognostic model for massive transfusion: an illustration of building a 

fractional polynomial model in multiply imputed data

8.1 Data and published prognostic model

We illustrate the methods described and evaluated in the preceding text using a dataset of 

5693 admissions to five trauma centres [14].

The publication associated with these data involved two main analyses. Our focus is on an 

analysis that developed a prognostic model for ‘massive transfusion’, defined as ⩾10 red 

cell transfusions [14]. The model was developed with the aim of facilitating appropriate, fast 

activation of major haemorrhage protocols by blood banks.

The development of a prognostic model was complicated by incomplete data on covariates. 

The variables measured and the frequency of missing values are given in Table I. In total, 
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2456 (45%) of the 5693 individuals were complete records. Analysis of this subset would 

have potentially led to bias and the tests losing power for all variables.

In [14], data were assumed to be MAR. Multivariate imputation by chained equations was 

used to produce 50 imputations after 100 cycles. All variables in Table I were included in the 

imputation models. Injury type was the only incomplete categorical variable and was 

imputed using logistic regression. For continuous variables, transformations towards 

normality were taken before imputation, although for time to emergency department, this 

transformation was unsatisfactory, and so, predictive mean matching was used with a ‘donor 

pool’ of the three closest individuals [17, 26, 30]. The normalised transformations used for 

imputation were also the form in which covariates were included in the prognostic model. 

These transformations ensured that each conditional imputation model was compatible with 

the analysis model, but as a consequence, the analysis model could not be an FP.

In [14], the prognostic model performed reasonably well. Validation in an external dataset 

produced an area under the ROC curve of 0.81, although predicted probabilities were often 

too low, demonstrating some miscalibration and/or differences between the training and 

validation data. The model was deemed not to be sufficiently accurate to use in practice, and 

so, the authors recommended against its adoption by emergency departments.

‘Missing at random’ implies that missing values did not depend on unobserved data. The 

assumption is questionable: if, for example, the probability of observing base deficit depends 

on prothrombin time, MAR would be false. Modelling the possible missing-not-at-random 

mechanism is not the concern of the present paper, but this example analysis must be 

interpreted with this in mind.

8.2 MFP models with MI data

Without missing data, the analysis would have involved a logistic regression model with FP 

transformations for continuous predictors. This was not performed because it was not clear 

how to tackle the MFP algorithm with MI data.

In the following analyses, we use the multiply imputed datasets used in the published 

analysis. This means that the imputation may be incompatible with the final MFP model, 

although the purpose of the analysis is to demonstrate the two approaches to model building 

that were developed earlier. We compare the FP models selected using likelihood-ratio tests 

in complete records with stacking and ΔWald in the MI data. The covariates included in the 

algorithm are sex (binary), age (continuous, Dcmax = 2), time to emergency department 

(continuous, Dcmax = 1), penetrating injury (binary), systolic blood pressure (continuous, 

Dcmax = 2), prothrombin time (continuous, Dcmax = 2) and base deficit (continuous, Dcmax = 

2).

Because the number of candidate predictors is relatively small, the FP analysis aims for 

caution with respect to omitting covariates completely by performing the test of FPDcmax 

versus null with nominal significance set at α = 0.5, meaning variables with little influence 

on the probability of massive transfusion can be excluded, but they will be included unless 

significance is extremely low. For the remaining tests, the significance level is set at α = 0.1.
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8.3 Results of reanalysis

Table II shows the variables and exponents selected in complete records and in the MI data 

by stacking and ΔWald. For all three methods, convergence was achieved after two cycles 

through the FP selection algorithm.

Each method selected a different final model. Only time to emergency department, 

prothrombin time and injury type were included in the same form in all models. Complete 

records selected the simplest model overall, and ΔWald selected the most complex, although 

the model was similar to that selected by stacking.

The values of  selected by the models were sometimes different even when D was the 

same. For base deficit, pc = (−1) for stacking and (−0.5) for ΔWald. This is likely to be 

related to the result in Section 6, where stacking was shown to estimate p with slightly more 

bias than ΔWald. However, with multiple continuous variables subject to the model selection 

procedures, this can occur at any step of a cycle, and if the wrong form is selected for one 

variable, this can have a knock-on effect on the form for the subsequent variables.

Because  are comparable conditional on  and D, comparing the values of  from the three 

selected models would be meaningless. Instead, the estimated FP functions are compared for 

age and base deficit from each of the three models for two notional individuals. The values 

used are invented but plausible representations of realistic individuals. The covariate values 

used are given in Table III.

Figure 4 shows the comparison of fitted functions for these individuals across a range of 

values of age (from 6 to 90 years) and base deficit (from −5 to 20), both of which span most 

of the observed range of the covariates, while fixing other covariate values. Stacking and 

ΔWald return very similar fitted functions within the ranges considered, despite selecting 

slightly different . For both variables, the fitted functions for complete records are a 

completely different shape; in particular, the effect below age 10 years seems extreme.

9 Discussion

We have tackled the problem of combining MI with FP methodology, splitting the problem 

into three components: imputation and model building, which is split into estimation of 

exponents and selection of model complexity. The results of each component have been 

utilised and carried forward to the next component. Table A.1 gives a summary of the 

methods we have considered and our advice on their use in relation to FP models.

9.1 Imputation

Two approaches to imputation have been described. The first, based on the ABB, was used 

for the simulations of this paper. It has been developed to impute for FP1 functions but could 

in principle be extended. The rejection-sampling approach is currently more general and 

should in principle work for larger values of Dmax. Neither method is controversial; both 

focus existing methods on the task of imputing for FP models. However, other approaches 

may exist that could improve on those suggested here.
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In using rejection sampling or the ABB method to impute, both methods were noted as 

making imputation models semi-compatible with the analysis model. For reasons of 

efficiency, it may be preferable to use a smaller imputation model and draw imputations 

from a model that is fully compatible rather than semi-compatible with the analysis model. 

Consider FP models in complete data. Although  is ‘estimated’, it is subsequently treated 

as fixed and known. In the same spirit, it would be possible to impute initially, select the 

model and impute a second time, where the imputation model uses the selected FP 

functions. The selected model is then re-fitted. This strategy may have advantages for the 

analysis: if the selected exponents are accurate, the restricted imputation strategies will 

result in ‘superefficient’ imputations [35]. Conversely, if the exponents selected are 

inaccurate, the estimates after restricted imputation may compound errors. It is up to applied 

researchers to decide whether they are willing to take this risk in practice.

9.2 Model-building algorithm

There are two distinct components to the algorithm used to build MFP models: estimating 

the best exponents for a covariate and selecting the appropriate complexity of FP function 

for that covariate.

The results of the simulations presented in Section 6 demonstrated that, for estimation of p, 
log-likelihoods or Wald statistics from MI data are both superior to using log-likelihoods 

based on complete records. This was with a single incomplete variable and one missingness 

mechanism; the performance of complete records could degrade further with other 

mechanisms and a more general pattern of missing data, although it would be unbiased 

under MCAR. Wald statistics appear to have lower bias than log-likelihoods. Because the 

differences were only small, both methods were carried forward to model selection work, 

which assessed testing procedures based on stacking and ΔWald. It was judged to be 

advantageous to have a coherent method for estimation of p and variable selection: log-

likelihoods for stacking and Wald statistics for ΔWald testing.

These methods were evaluated in Section 7. Overall, the type I error rates for ΔWald and 

stacking were less well calibrated than for complete data or complete records; however, 

issues were not serious, and power could be higher even with lower type I error rates. The 

missing data mechanism and patterns in simulations were relatively simple, but complete 

records can become extremely inefficient with more complex missing data patterns, so 

whenever the proportion of complete records is low, it will be preferable to base the analysis 

on MI using stacking or ΔWald.

In practice, producing satisfactory imputations requires care. For building FP models in 

multiply imputed datasets, we advocate the use of ΔWald tests or stacking in preference to 

complete records analysis.
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Appendix A

A.1 Further results on rejection rates for model selection procedures

A.2 Summary of advice on methods for imputation and model selection

Several options for imputation, estimation of exponents and selection of model complexity 

are discussed in Sections 5, 6 and 7, respectively, and some evaluated and compared. Some 

options are dismissed and others recommended. Potential components of a strategy, and 

reasons for recommending or dismissing them in relation to combining FP models with MI, 

are summarised in Table A.1 here.

A.3 Stata code fragments to implement recommended methods

This supplement gives examples of Stata code to implement some of our preferred 

procedures using a publicly available dataset in breast cancer, which can be downloaded and 

unzipped from http://portal.uni-freiburg.de/imbi/Royston-Sauerbrei-book/

index.html#datasets. The following analysis involves a logistic regression model relating 

recurrence or death (_d) to the number of positive lymph nodes, progesterone receptor status 

(fmol l−1) and age (in years).

The commands and help files for our recommended methods can be installed from the SSC 

(Boston College Statistical Software Components) repository. To download the packages, 

submit the following lines of code to Stata:

. foreach pkg in smcfcs icet mfpmi mfpmi_wald mim {

.     ssc install ‘pkg’

. }

The original dataset is complete. To introduce missing data in pgr and nodes,

. replace pgr = . if runiform() < 0.2

. replace nodes = . if runiform() < 0.2

To multiply impute missing values 18 times using the method of 5.4 using predictive mean 

matching with 12 donors,

. icet pgr nodes, add(18) method(pmm) knn(12) comp(age _d)/// 

powers(-2(0.1)3)

The following code selects a model using Wald tests to estimate p and select Dc for age, 

pgr and nodes. The df(#) option specifies the df allowed for the Dmax model (2 indicates 

an FP1 and 4 indicates an FP2 model):

. mfpmi_wald, df(nodes:2, pgr:4, age:4): logit _d age pgr nodes
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To perform the same analysis using log-likelihoods and stacking to select a model, the code 

is

. mfpmi, df(nodes:2, pgr:4, age:4): logit _d age pgr nodes

Finally, assume we have chosen the MFP model we wish to fit, which includes age−2, 

age−2ln(age), pgr.5 and nodes.5, as in [36]. The following code creates the FP 

transformations before performing MI and fitting the analysis model using SMC FCS:

. gen double age_1 = age^−2

. gen double age_2 = age^−2*ln(age)

. gen double pgr_1 = (pgr+1)^.5

. gen double nodes_1 = nodes^.5

. smcfcs logit _d age_1 age_2 pgr_1 nodes_1, ///

>     regress(pgr nodes) passive( pgr_1 = pgr^.5 | nodes_1///

                                  = nodes^.5) ///

>     rseed(1) m(9) rjlimit(100)
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Figure 1. 

Example FP2 functions of the form  The numbers in parentheses 

are values of (p1, p2) used to plot the curve.
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Figure 2. 
Simulation results: estimation of  according to method (10 000 replicates). CD-ll is log-

likelihood in complete data; CR-ll is log-likelihood in complete records; MI-Wald is Wald 

statistic in multiple imputation (MI) data; MI-ll is log-likelihood in MI data.
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Figure 3. 
Type I error (left) and power (right) of FP1 versus linear test of nominal size 0.1 on x1 with 

x1 and x2 missing at random.
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Figure 4. 
Fitted functions for two continuous variables (age and base deficit), by fixing parameters for 

other covariates, where the method of model selection returns different exponents.
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Figure A.1. 
Type I error (left) and power (right) of FP1 versus null test of nominal size 0.1 on x1 with x1 

missing at random.
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Figure A.2. 
Type I error (left) and power (right) of FP1 versus linear test of nominal size 0.1 on x1 with 

x1 missing at random.
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Figure A.3. 
Type I error (left) and power (right) of FP1 versus null test of nominal size 0.1 on x1 with x2 

missing at random.
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Figure A.4. 
Type I error (left) and power (right) of FP1 versus linear test of nominal size 0.1 on x1 with 

x2 missing at random.
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Figure A.5. 
Type I error (left) and power (right) of FP1 versus null test of nominal size 0.1 on x1 with 

incomplete x1 and x2 missing at random.
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Table I

Summary of variables in the trauma dataset relevant to this work, n = 5,693.

Variable Frequency missing (%) Mean (SD) in observed data Frequency (%) in observed data

Massive transfusion (outcome) 0 (0) 518 (9)

Age (years) 0 (0) 40 (20)

Sex: male 0 (0) 4161 (73)

Injury type: penetrating 23 (0.4) 580 (10)

Time to emergency dept. (mins) 2396 (42) 65 (40)

Systolic blood pressure (mm Hg) 425 (7) 126 (29)

Base deficit (mM) 868 (16) 3.4 (5.1)

Prothrombin time (seconds) 1,648 (29) 17 (8)

SD, standard deviation.
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Table II

Models selected in trauma data.

Complete records Stack ΔWald

Age (years) −2 0.5, 1 1, 1

Sex
† — 1 1

Injury type
†
 (blunt/penetrating)

1 1 1

Time to emergency dept. (minutes) 1 1 1

Systolic blood pressure (mm Hg) 1 1 −2, 0.5

Base deficit (mM) 1 −1 −0.5

Prothrombin time (seconds) −0.5, −0.5 −0.5, −0.5 −0.5, −0.5

The numbers give the exponents selected for each variable in the final model.

†
For binary variables, an exponent of 1 indicates inclusion in the final model.
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Table III

Two notional individuals’ covariate values used for Figure 4.

Individual A B

Age (years) *34 *24

Sex Female Male

Injury type Blunt Blunt

Time to emergency dept. (minutes) 63 73

Systolic blood pressure (mm Hg) 91 130

Base deficit (mM) *13.5 *5.4

Prothrombin time (seconds) 16.8 14.4

*
Values of age are fixed when base deficit is varied in Figure 4 and vice versa.
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